Mercurial > dropbear
view dsa_make_key.c @ 138:b1edc9158f6c libtomcrypt
Pristine compilation works
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Fri, 17 Dec 2004 06:27:09 +0000 |
parents | d7da3b1e1540 |
children | 5d99163f7e32 |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtomcrypt.org */ #include "mycrypt.h" #ifdef MDSA int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key) { mp_int tmp, tmp2; int err, res; unsigned char buf[512]; _ARGCHK(key != NULL); /* check prng */ if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } /* check size */ if (group_size >= 1024 || group_size <= 15 || group_size >= modulus_size || (modulus_size - group_size) >= (int)sizeof(buf)) { return CRYPT_INVALID_ARG; } /* init mp_ints */ if ((err = mp_init_multi(&tmp, &tmp2, &key->g, &key->q, &key->p, &key->x, &key->y, NULL)) != MP_OKAY) { return mpi_to_ltc_error(err); } /* make our prime q */ if ((err = rand_prime(&key->q, group_size*8, prng, wprng)) != CRYPT_OK) { goto error2; } /* double q */ if ((err = mp_mul_2(&key->q, &tmp)) != MP_OKAY) { goto error; } /* now make a random string and multply it against q */ if (prng_descriptor[wprng].read(buf+1, modulus_size - group_size, prng) != (unsigned long)(modulus_size - group_size)) { err = CRYPT_ERROR_READPRNG; goto error2; } /* force magnitude */ buf[0] = 1; /* force even */ buf[modulus_size - group_size] &= ~1; if ((err = mp_read_unsigned_bin(&tmp2, buf, modulus_size - group_size+1)) != MP_OKAY) { goto error; } if ((err = mp_mul(&key->q, &tmp2, &key->p)) != MP_OKAY) { goto error; } if ((err = mp_add_d(&key->p, 1, &key->p)) != MP_OKAY) { goto error; } /* now loop until p is prime */ for (;;) { if ((err = is_prime(&key->p, &res)) != CRYPT_OK) { goto error2; } if (res == MP_YES) break; /* add 2q to p and 2 to tmp2 */ if ((err = mp_add(&tmp, &key->p, &key->p)) != MP_OKAY) { goto error; } if ((err = mp_add_d(&tmp2, 2, &tmp2)) != MP_OKAY) { goto error; } } /* now p = (q * tmp2) + 1 is prime, find a value g for which g^tmp2 != 1 */ mp_set(&key->g, 1); do { if ((err = mp_add_d(&key->g, 1, &key->g)) != MP_OKAY) { goto error; } if ((err = mp_exptmod(&key->g, &tmp2, &key->p, &tmp)) != MP_OKAY) { goto error; } } while (mp_cmp_d(&tmp, 1) == MP_EQ); /* at this point tmp generates a group of order q mod p */ mp_exch(&tmp, &key->g); /* so now we have our DH structure, generator g, order q, modulus p Now we need a random exponent [mod q] and it's power g^x mod p */ do { if (prng_descriptor[wprng].read(buf, group_size, prng) != (unsigned long)group_size) { err = CRYPT_ERROR_READPRNG; goto error2; } if ((err = mp_read_unsigned_bin(&key->x, buf, group_size)) != MP_OKAY) { goto error; } } while (mp_cmp_d(&key->x, 1) != MP_GT); if ((err = mp_exptmod(&key->g, &key->x, &key->p, &key->y)) != MP_OKAY) { goto error; } key->type = PK_PRIVATE; key->qord = group_size; /* shrink the ram required */ if ((err = mp_shrink(&key->g)) != MP_OKAY) { goto error; } if ((err = mp_shrink(&key->p)) != MP_OKAY) { goto error; } if ((err = mp_shrink(&key->q)) != MP_OKAY) { goto error; } if ((err = mp_shrink(&key->x)) != MP_OKAY) { goto error; } if ((err = mp_shrink(&key->y)) != MP_OKAY) { goto error; } err = CRYPT_OK; #ifdef CLEAN_STACK zeromem(buf, sizeof(buf)); #endif goto done; error : err = mpi_to_ltc_error(err); error2: mp_clear_multi(&key->g, &key->q, &key->p, &key->x, &key->y, NULL); done : mp_clear_multi(&tmp, &tmp2, NULL); return err; } #endif