Mercurial > dropbear
view libtommath/bn_mp_jacobi.c @ 1468:b528e3753af4
define CLOCK_MONOTONIC if needed
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Thu, 08 Feb 2018 22:07:59 +0800 |
parents | 60fc6476e044 |
children | 8bba51a55704 |
line wrap: on
line source
#include <tommath_private.h> #ifdef BN_MP_JACOBI_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtom.org */ /* computes the jacobi c = (a | n) (or Legendre if n is prime) * HAC pp. 73 Algorithm 2.149 * HAC is wrong here, as the special case of (0 | 1) is not * handled correctly. */ int mp_jacobi (mp_int * a, mp_int * n, int *c) { mp_int a1, p1; int k, s, r, res; mp_digit residue; /* if a < 0 return MP_VAL */ if (mp_isneg(a) == MP_YES) { return MP_VAL; } /* if n <= 0 return MP_VAL */ if (mp_cmp_d(n, 0) != MP_GT) { return MP_VAL; } /* step 1. handle case of a == 0 */ if (mp_iszero (a) == MP_YES) { /* special case of a == 0 and n == 1 */ if (mp_cmp_d (n, 1) == MP_EQ) { *c = 1; } else { *c = 0; } return MP_OKAY; } /* step 2. if a == 1, return 1 */ if (mp_cmp_d (a, 1) == MP_EQ) { *c = 1; return MP_OKAY; } /* default */ s = 0; /* step 3. write a = a1 * 2**k */ if ((res = mp_init_copy (&a1, a)) != MP_OKAY) { return res; } if ((res = mp_init (&p1)) != MP_OKAY) { goto LBL_A1; } /* divide out larger power of two */ k = mp_cnt_lsb(&a1); if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) { goto LBL_P1; } /* step 4. if e is even set s=1 */ if ((k & 1) == 0) { s = 1; } else { /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */ residue = n->dp[0] & 7; if ((residue == 1) || (residue == 7)) { s = 1; } else if ((residue == 3) || (residue == 5)) { s = -1; } } /* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */ if ( ((n->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) { s = -s; } /* if a1 == 1 we're done */ if (mp_cmp_d (&a1, 1) == MP_EQ) { *c = s; } else { /* n1 = n mod a1 */ if ((res = mp_mod (n, &a1, &p1)) != MP_OKAY) { goto LBL_P1; } if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) { goto LBL_P1; } *c = s * r; } /* done */ res = MP_OKAY; LBL_P1:mp_clear (&p1); LBL_A1:mp_clear (&a1); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */