Mercurial > dropbear
view dh_sys.c @ 20:b939f2d4431e libtomcrypt
Include files accidentally zeroed when merging 0.96 release
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Tue, 15 Jun 2004 16:47:55 +0000 |
parents | d7da3b1e1540 |
children | 5d99163f7e32 |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtomcrypt.org */ int dh_encrypt_key(const unsigned char *inkey, unsigned long keylen, unsigned char *out, unsigned long *len, prng_state *prng, int wprng, int hash, dh_key *key) { unsigned char pub_expt[768], dh_shared[768], skey[MAXBLOCKSIZE]; dh_key pubkey; unsigned long x, y, z, hashsize, pubkeysize; int err; _ARGCHK(inkey != NULL); _ARGCHK(out != NULL); _ARGCHK(len != NULL); _ARGCHK(key != NULL); /* check that wprng/hash are not invalid */ if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } if ((err = hash_is_valid(hash)) != CRYPT_OK) { return err; } if (keylen > hash_descriptor[hash].hashsize) { return CRYPT_INVALID_HASH; } /* make a random key and export the public copy */ if ((err = dh_make_key(prng, wprng, dh_get_size(key), &pubkey)) != CRYPT_OK) { return err; } pubkeysize = sizeof(pub_expt); if ((err = dh_export(pub_expt, &pubkeysize, PK_PUBLIC, &pubkey)) != CRYPT_OK) { dh_free(&pubkey); return err; } /* now check if the out buffer is big enough */ if (*len < (1 + 4 + 4 + PACKET_SIZE + pubkeysize + keylen)) { dh_free(&pubkey); return CRYPT_BUFFER_OVERFLOW; } /* make random key */ hashsize = hash_descriptor[hash].hashsize; x = (unsigned long)sizeof(dh_shared); if ((err = dh_shared_secret(&pubkey, key, dh_shared, &x)) != CRYPT_OK) { dh_free(&pubkey); return err; } dh_free(&pubkey); z = sizeof(skey); if ((err = hash_memory(hash, dh_shared, x, skey, &z)) != CRYPT_OK) { return err; } /* store header */ packet_store_header(out, PACKET_SECT_DH, PACKET_SUB_ENC_KEY); /* output header */ y = PACKET_SIZE; /* size of hash name and the name itself */ out[y++] = hash_descriptor[hash].ID; /* length of DH pubkey and the key itself */ STORE32L(pubkeysize, out+y); y += 4; for (x = 0; x < pubkeysize; x++, y++) { out[y] = pub_expt[x]; } /* Store the encrypted key */ STORE32L(keylen, out+y); y += 4; for (x = 0; x < keylen; x++, y++) { out[y] = skey[x] ^ inkey[x]; } *len = y; #ifdef CLEAN_STACK /* clean up */ zeromem(pub_expt, sizeof(pub_expt)); zeromem(dh_shared, sizeof(dh_shared)); zeromem(skey, sizeof(skey)); #endif return CRYPT_OK; } int dh_decrypt_key(const unsigned char *in, unsigned long inlen, unsigned char *outkey, unsigned long *keylen, dh_key *key) { unsigned char shared_secret[768], skey[MAXBLOCKSIZE]; unsigned long x, y, z,hashsize, keysize; int hash, err; dh_key pubkey; _ARGCHK(in != NULL); _ARGCHK(outkey != NULL); _ARGCHK(keylen != NULL); _ARGCHK(key != NULL); /* right key type? */ if (key->type != PK_PRIVATE) { return CRYPT_PK_NOT_PRIVATE; } /* check if initial header should fit */ if (inlen < PACKET_SIZE+1+4+4) { return CRYPT_INVALID_PACKET; } else { inlen -= PACKET_SIZE+1+4+4; } /* is header correct? */ if ((err = packet_valid_header((unsigned char *)in, PACKET_SECT_DH, PACKET_SUB_ENC_KEY)) != CRYPT_OK) { return err; } /* now lets get the hash name */ y = PACKET_SIZE; hash = find_hash_id(in[y++]); if (hash == -1) { return CRYPT_INVALID_HASH; } /* common values */ hashsize = hash_descriptor[hash].hashsize; /* get public key */ LOAD32L(x, in+y); /* now check if the imported key will fit */ if (inlen < x) { return CRYPT_INVALID_PACKET; } else { inlen -= x; } y += 4; if ((err = dh_import(in+y, x, &pubkey)) != CRYPT_OK) { return err; } y += x; /* make shared key */ x = (unsigned long)sizeof(shared_secret); if ((err = dh_shared_secret(key, &pubkey, shared_secret, &x)) != CRYPT_OK) { dh_free(&pubkey); return err; } dh_free(&pubkey); z = sizeof(skey); if ((err = hash_memory(hash, shared_secret, x, skey, &z)) != CRYPT_OK) { return err; } /* load in the encrypted key */ LOAD32L(keysize, in+y); /* will the outkey fit as part of the input */ if (inlen < keysize) { return CRYPT_INVALID_PACKET; } else { inlen -= keysize; } if (keysize > *keylen) { err = CRYPT_BUFFER_OVERFLOW; goto done; } y += 4; *keylen = keysize; for (x = 0; x < keysize; x++, y++) { outkey[x] = skey[x] ^ in[y]; } err = CRYPT_OK; done: #ifdef CLEAN_STACK zeromem(shared_secret, sizeof(shared_secret)); zeromem(skey, sizeof(skey)); #endif return err; } /* perform an ElGamal Signature of a hash * * The math works as follows. x is the private key, M is the message to sign 1. pick a random k 2. compute a = g^k mod p 3. compute b = (M - xa)/k mod p 4. Send (a,b) Now to verify with y=g^x mod p, a and b 1. compute y^a * a^b = g^(xa) * g^(k*(M-xa)/k) = g^(xa + (M - xa)) = g^M [all mod p] 2. Compare against g^M mod p [based on input hash]. 3. If result of #2 == result of #1 then signature valid */ int dh_sign_hash(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, prng_state *prng, int wprng, dh_key *key) { mp_int a, b, k, m, g, p, p1, tmp; unsigned char buf[520]; unsigned long x, y; int err; _ARGCHK(in != NULL); _ARGCHK(out != NULL); _ARGCHK(outlen != NULL); _ARGCHK(key != NULL); /* check parameters */ if (key->type != PK_PRIVATE) { return CRYPT_PK_NOT_PRIVATE; } if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } /* is the IDX valid ? */ if (is_valid_idx(key->idx) != 1) { return CRYPT_PK_INVALID_TYPE; } /* make up a random value k, * since the order of the group is prime * we need not check if gcd(k, r) is 1 */ if (prng_descriptor[wprng].read(buf, sets[key->idx].size, prng) != (unsigned long)(sets[key->idx].size)) { return CRYPT_ERROR_READPRNG; } /* init bignums */ if ((err = mp_init_multi(&a, &b, &k, &m, &p, &g, &p1, &tmp, NULL)) != MP_OKAY) { return mpi_to_ltc_error(err); } /* load k and m */ if ((err = mp_read_unsigned_bin(&m, (unsigned char *)in, inlen)) != MP_OKAY) { goto error; } #ifdef FAST_PK if ((err = mp_read_unsigned_bin(&k, buf, MIN(32,sets[key->idx].size))) != MP_OKAY) { goto error; } #else if ((err = mp_read_unsigned_bin(&k, buf, sets[key->idx].size)) != MP_OKAY) { goto error; } #endif /* load g, p and p1 */ if ((err = mp_read_radix(&g, sets[key->idx].base, 64)) != MP_OKAY) { goto error; } if ((err = mp_read_radix(&p, sets[key->idx].prime, 64)) != MP_OKAY) { goto error; } if ((err = mp_sub_d(&p, 1, &p1)) != MP_OKAY) { goto error; } if ((err = mp_div_2(&p1, &p1)) != MP_OKAY) { goto error; } /* p1 = (p-1)/2 */ /* now get a = g^k mod p */ if ((err = mp_exptmod(&g, &k, &p, &a)) != MP_OKAY) { goto error; } /* now find M = xa + kb mod p1 or just b = (M - xa)/k mod p1 */ if ((err = mp_invmod(&k, &p1, &k)) != MP_OKAY) { goto error; } /* k = 1/k mod p1 */ if ((err = mp_mulmod(&a, &key->x, &p1, &tmp)) != MP_OKAY) { goto error; } /* tmp = xa */ if ((err = mp_submod(&m, &tmp, &p1, &tmp)) != MP_OKAY) { goto error; } /* tmp = M - xa */ if ((err = mp_mulmod(&k, &tmp, &p1, &b)) != MP_OKAY) { goto error; } /* b = (M - xa)/k */ /* check for overflow */ if ((unsigned long)(PACKET_SIZE + 4 + 4 + mp_unsigned_bin_size(&a) + mp_unsigned_bin_size(&b)) > *outlen) { err = CRYPT_BUFFER_OVERFLOW; goto done; } /* store header */ y = PACKET_SIZE; /* now store them both (a,b) */ x = (unsigned long)mp_unsigned_bin_size(&a); STORE32L(x, out+y); y += 4; if ((err = mp_to_unsigned_bin(&a, out+y)) != MP_OKAY) { goto error; } y += x; x = (unsigned long)mp_unsigned_bin_size(&b); STORE32L(x, out+y); y += 4; if ((err = mp_to_unsigned_bin(&b, out+y)) != MP_OKAY) { goto error; } y += x; /* check if size too big */ if (*outlen < y) { err = CRYPT_BUFFER_OVERFLOW; goto done; } /* store header */ packet_store_header(out, PACKET_SECT_DH, PACKET_SUB_SIGNED); *outlen = y; err = CRYPT_OK; goto done; error: err = mpi_to_ltc_error(err); done: mp_clear_multi(&tmp, &p1, &g, &p, &m, &k, &b, &a, NULL); return err; } /* verify the signature in sig of the given hash */ int dh_verify_hash(const unsigned char *sig, unsigned long siglen, const unsigned char *hash, unsigned long hashlen, int *stat, dh_key *key) { mp_int a, b, p, g, m, tmp; unsigned long x, y; int err; _ARGCHK(sig != NULL); _ARGCHK(hash != NULL); _ARGCHK(stat != NULL); _ARGCHK(key != NULL); /* default to invalid */ *stat = 0; /* check initial input length */ if (siglen < PACKET_SIZE+4+4) { return CRYPT_INVALID_PACKET; } /* header ok? */ if ((err = packet_valid_header((unsigned char *)sig, PACKET_SECT_DH, PACKET_SUB_SIGNED)) != CRYPT_OK) { return err; } /* get hash out of packet */ y = PACKET_SIZE; /* init all bignums */ if ((err = mp_init_multi(&a, &p, &b, &g, &m, &tmp, NULL)) != MP_OKAY) { return mpi_to_ltc_error(err); } /* load a and b */ INPUT_BIGNUM(&a, sig, x, y, siglen); INPUT_BIGNUM(&b, sig, x, y, siglen); /* load p and g */ if ((err = mp_read_radix(&p, sets[key->idx].prime, 64)) != MP_OKAY) { goto error1; } if ((err = mp_read_radix(&g, sets[key->idx].base, 64)) != MP_OKAY) { goto error1; } /* load m */ if ((err = mp_read_unsigned_bin(&m, (unsigned char *)hash, hashlen)) != MP_OKAY) { goto error1; } /* find g^m mod p */ if ((err = mp_exptmod(&g, &m, &p, &m)) != MP_OKAY) { goto error1; } /* m = g^m mod p */ /* find y^a * a^b */ if ((err = mp_exptmod(&key->y, &a, &p, &tmp)) != MP_OKAY) { goto error1; } /* tmp = y^a mod p */ if ((err = mp_exptmod(&a, &b, &p, &a)) != MP_OKAY) { goto error1; } /* a = a^b mod p */ if ((err = mp_mulmod(&a, &tmp, &p, &a)) != MP_OKAY) { goto error1; } /* a = y^a * a^b mod p */ /* y^a * a^b == g^m ??? */ if (mp_cmp(&a, &m) == 0) { *stat = 1; } /* clean up */ err = CRYPT_OK; goto done; error1: err = mpi_to_ltc_error(err); error: done: mp_clear_multi(&tmp, &m, &g, &p, &b, &a, NULL); return err; }