Mercurial > dropbear
view libtommath/bn_mp_sqrtmod_prime.c @ 1504:bd0bc6b5a87c
Merge branch 'master' of github.com:mkj/dropbear
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Fri, 16 Feb 2018 23:33:46 +0800 |
parents | 60fc6476e044 |
children | f52919ffd3b1 |
line wrap: on
line source
#include <tommath_private.h> #ifdef BN_MP_SQRTMOD_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library is free for all purposes without any express * guarantee it works. */ /* Tonelli-Shanks algorithm * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html * */ int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret) { int res, legendre; mp_int t1, C, Q, S, Z, M, T, R, two; mp_digit i; /* first handle the simple cases */ if (mp_cmp_d(n, 0) == MP_EQ) { mp_zero(ret); return MP_OKAY; } if (mp_cmp_d(prime, 2) == MP_EQ) return MP_VAL; /* prime must be odd */ if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY) return res; if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */ if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { return res; } /* SPECIAL CASE: if prime mod 4 == 3 * compute directly: res = n^(prime+1)/4 mod prime * Handbook of Applied Cryptography algorithm 3.36 */ if ((res = mp_mod_d(prime, 4, &i)) != MP_OKAY) goto cleanup; if (i == 3) { if ((res = mp_add_d(prime, 1, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto cleanup; res = MP_OKAY; goto cleanup; } /* NOW: Tonelli-Shanks algorithm */ /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ if ((res = mp_copy(prime, &Q)) != MP_OKAY) goto cleanup; if ((res = mp_sub_d(&Q, 1, &Q)) != MP_OKAY) goto cleanup; /* Q = prime - 1 */ mp_zero(&S); /* S = 0 */ while (mp_iseven(&Q) != MP_NO) { if ((res = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup; /* Q = Q / 2 */ if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY) goto cleanup; /* S = S + 1 */ } /* find a Z such that the Legendre symbol (Z|prime) == -1 */ if ((res = mp_set_int(&Z, 2)) != MP_OKAY) goto cleanup; /* Z = 2 */ while(1) { if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY) goto cleanup; if (legendre == -1) break; if ((res = mp_add_d(&Z, 1, &Z)) != MP_OKAY) goto cleanup; /* Z = Z + 1 */ } if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto cleanup; /* C = Z ^ Q mod prime */ if ((res = mp_add_d(&Q, 1, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; /* t1 = (Q + 1) / 2 */ if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto cleanup; /* R = n ^ ((Q + 1) / 2) mod prime */ if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto cleanup; /* T = n ^ Q mod prime */ if ((res = mp_copy(&S, &M)) != MP_OKAY) goto cleanup; /* M = S */ if ((res = mp_set_int(&two, 2)) != MP_OKAY) goto cleanup; res = MP_VAL; while (1) { if ((res = mp_copy(&T, &t1)) != MP_OKAY) goto cleanup; i = 0; while (1) { if (mp_cmp_d(&t1, 1) == MP_EQ) break; if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup; i++; } if (i == 0) { if ((res = mp_copy(&R, ret)) != MP_OKAY) goto cleanup; res = MP_OKAY; goto cleanup; } if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto cleanup; /* t1 = 2 ^ (M - i - 1) */ if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto cleanup; /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto cleanup; /* C = (t1 * t1) mod prime */ if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto cleanup; /* R = (R * t1) mod prime */ if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto cleanup; /* T = (T * C) mod prime */ mp_set(&M, i); /* M = i */ } cleanup: mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); return res; } #endif