Mercurial > dropbear
view libtomcrypt/src/pk/ecc/ltc_ecc_map.c @ 1458:bdd3802c8ac6
fix format
Argument no. 3 nominally inconsistent with format (int vs. unsigned int)
author | Francois Perrad <francois.perrad@gadz.org> |
---|---|
date | Sat, 12 Aug 2017 20:51:58 +0200 |
parents | f849a5ca2efc |
children | 6dba84798cd5 |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ #include "tomcrypt.h" /** @file ltc_ecc_map.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /** Map a projective jacbobian point back to affine space @param P [in/out] The point to map @param modulus The modulus of the field the ECC curve is in @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ int ltc_ecc_map(ecc_point *P, void *modulus, void *mp) { void *t1, *t2; int err; LTC_ARGCHK(P != NULL); LTC_ARGCHK(modulus != NULL); LTC_ARGCHK(mp != NULL); if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) { return CRYPT_MEM; } /* first map z back to normal */ if ((err = mp_montgomery_reduce(P->z, modulus, mp)) != CRYPT_OK) { goto done; } /* get 1/z */ if ((err = mp_invmod(P->z, modulus, t1)) != CRYPT_OK) { goto done; } /* get 1/z^2 and 1/z^3 */ if ((err = mp_sqr(t1, t2)) != CRYPT_OK) { goto done; } if ((err = mp_mod(t2, modulus, t2)) != CRYPT_OK) { goto done; } if ((err = mp_mul(t1, t2, t1)) != CRYPT_OK) { goto done; } if ((err = mp_mod(t1, modulus, t1)) != CRYPT_OK) { goto done; } /* multiply against x/y */ if ((err = mp_mul(P->x, t2, P->x)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(P->x, modulus, mp)) != CRYPT_OK) { goto done; } if ((err = mp_mul(P->y, t1, P->y)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(P->y, modulus, mp)) != CRYPT_OK) { goto done; } if ((err = mp_set(P->z, 1)) != CRYPT_OK) { goto done; } err = CRYPT_OK; done: mp_clear_multi(t1, t2, NULL); return err; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */