view libtommath/bn_mp_div.c @ 1663:c795520269f9

Fallback for key gen without hard link support (#89) Add a non-atomic fallback for key generation on platforms where link() is not permitted (such as most stock Android installs) or on filesystems without hard link support (such as FAT).
author Matt Robinson <git@nerdoftheherd.com>
date Sat, 14 Mar 2020 14:37:35 +0000
parents f52919ffd3b1
children 1051e4eea25a
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_MP_DIV_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

#ifdef BN_MP_DIV_SMALL

/* slower bit-bang division... also smaller */
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
   mp_int ta, tb, tq, q;
   int    res, n, n2;

   /* is divisor zero ? */
   if (mp_iszero(b) == MP_YES) {
      return MP_VAL;
   }

   /* if a < b then q=0, r = a */
   if (mp_cmp_mag(a, b) == MP_LT) {
      if (d != NULL) {
         res = mp_copy(a, d);
      } else {
         res = MP_OKAY;
      }
      if (c != NULL) {
         mp_zero(c);
      }
      return res;
   }

   /* init our temps */
   if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
      return res;
   }


   mp_set(&tq, 1uL);
   n = mp_count_bits(a) - mp_count_bits(b);
   if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
       ((res = mp_abs(b, &tb)) != MP_OKAY) ||
       ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
       ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
      goto LBL_ERR;
   }

   while (n-- >= 0) {
      if (mp_cmp(&tb, &ta) != MP_GT) {
         if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
             ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
            goto LBL_ERR;
         }
      }
      if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
          ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
         goto LBL_ERR;
      }
   }

   /* now q == quotient and ta == remainder */
   n  = a->sign;
   n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
   if (c != NULL) {
      mp_exch(c, &q);
      c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
   }
   if (d != NULL) {
      mp_exch(d, &ta);
      d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
   }
LBL_ERR:
   mp_clear_multi(&ta, &tb, &tq, &q, NULL);
   return res;
}

#else

/* integer signed division.
 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 * HAC pp.598 Algorithm 14.20
 *
 * Note that the description in HAC is horribly
 * incomplete.  For example, it doesn't consider
 * the case where digits are removed from 'x' in
 * the inner loop.  It also doesn't consider the
 * case that y has fewer than three digits, etc..
 *
 * The overall algorithm is as described as
 * 14.20 from HAC but fixed to treat these cases.
*/
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
   mp_int  q, x, y, t1, t2;
   int     res, n, t, i, norm, neg;

   /* is divisor zero ? */
   if (mp_iszero(b) == MP_YES) {
      return MP_VAL;
   }

   /* if a < b then q=0, r = a */
   if (mp_cmp_mag(a, b) == MP_LT) {
      if (d != NULL) {
         res = mp_copy(a, d);
      } else {
         res = MP_OKAY;
      }
      if (c != NULL) {
         mp_zero(c);
      }
      return res;
   }

   if ((res = mp_init_size(&q, a->used + 2)) != MP_OKAY) {
      return res;
   }
   q.used = a->used + 2;

   if ((res = mp_init(&t1)) != MP_OKAY) {
      goto LBL_Q;
   }

   if ((res = mp_init(&t2)) != MP_OKAY) {
      goto LBL_T1;
   }

   if ((res = mp_init_copy(&x, a)) != MP_OKAY) {
      goto LBL_T2;
   }

   if ((res = mp_init_copy(&y, b)) != MP_OKAY) {
      goto LBL_X;
   }

   /* fix the sign */
   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
   x.sign = y.sign = MP_ZPOS;

   /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
   norm = mp_count_bits(&y) % DIGIT_BIT;
   if (norm < (DIGIT_BIT - 1)) {
      norm = (DIGIT_BIT - 1) - norm;
      if ((res = mp_mul_2d(&x, norm, &x)) != MP_OKAY) {
         goto LBL_Y;
      }
      if ((res = mp_mul_2d(&y, norm, &y)) != MP_OKAY) {
         goto LBL_Y;
      }
   } else {
      norm = 0;
   }

   /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
   n = x.used - 1;
   t = y.used - 1;

   /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
   if ((res = mp_lshd(&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
      goto LBL_Y;
   }

   while (mp_cmp(&x, &y) != MP_LT) {
      ++(q.dp[n - t]);
      if ((res = mp_sub(&x, &y, &x)) != MP_OKAY) {
         goto LBL_Y;
      }
   }

   /* reset y by shifting it back down */
   mp_rshd(&y, n - t);

   /* step 3. for i from n down to (t + 1) */
   for (i = n; i >= (t + 1); i--) {
      if (i > x.used) {
         continue;
      }

      /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
       * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
      if (x.dp[i] == y.dp[t]) {
         q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)DIGIT_BIT) - (mp_digit)1;
      } else {
         mp_word tmp;
         tmp = (mp_word)x.dp[i] << (mp_word)DIGIT_BIT;
         tmp |= (mp_word)x.dp[i - 1];
         tmp /= (mp_word)y.dp[t];
         if (tmp > (mp_word)MP_MASK) {
            tmp = MP_MASK;
         }
         q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)MP_MASK);
      }

      /* while (q{i-t-1} * (yt * b + y{t-1})) >
               xi * b**2 + xi-1 * b + xi-2

         do q{i-t-1} -= 1;
      */
      q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1uL) & (mp_digit)MP_MASK;
      do {
         q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & (mp_digit)MP_MASK;

         /* find left hand */
         mp_zero(&t1);
         t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1];
         t1.dp[1] = y.dp[t];
         t1.used = 2;
         if ((res = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
            goto LBL_Y;
         }

         /* find right hand */
         t2.dp[0] = ((i - 2) < 0) ? 0u : x.dp[i - 2];
         t2.dp[1] = ((i - 1) < 0) ? 0u : x.dp[i - 1];
         t2.dp[2] = x.dp[i];
         t2.used = 3;
      } while (mp_cmp_mag(&t1, &t2) == MP_GT);

      /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
      if ((res = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
         goto LBL_Y;
      }

      if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) {
         goto LBL_Y;
      }

      if ((res = mp_sub(&x, &t1, &x)) != MP_OKAY) {
         goto LBL_Y;
      }

      /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
      if (x.sign == MP_NEG) {
         if ((res = mp_copy(&y, &t1)) != MP_OKAY) {
            goto LBL_Y;
         }
         if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) {
            goto LBL_Y;
         }
         if ((res = mp_add(&x, &t1, &x)) != MP_OKAY) {
            goto LBL_Y;
         }

         q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & MP_MASK;
      }
   }

   /* now q is the quotient and x is the remainder
    * [which we have to normalize]
    */

   /* get sign before writing to c */
   x.sign = (x.used == 0) ? MP_ZPOS : a->sign;

   if (c != NULL) {
      mp_clamp(&q);
      mp_exch(&q, c);
      c->sign = neg;
   }

   if (d != NULL) {
      if ((res = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) {
         goto LBL_Y;
      }
      mp_exch(&x, d);
   }

   res = MP_OKAY;

LBL_Y:
   mp_clear(&y);
LBL_X:
   mp_clear(&x);
LBL_T2:
   mp_clear(&t2);
LBL_T1:
   mp_clear(&t1);
LBL_Q:
   mp_clear(&q);
   return res;
}

#endif

#endif

/* ref:         HEAD -> master, tag: v1.1.0 */
/* git commit:  08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
/* commit time: 2019-01-28 20:32:32 +0100 */