view libtommath/bn_mp_gcd.c @ 1663:c795520269f9

Fallback for key gen without hard link support (#89) Add a non-atomic fallback for key generation on platforms where link() is not permitted (such as most stock Android installs) or on filesystems without hard link support (such as FAT).
author Matt Robinson <git@nerdoftheherd.com>
date Sat, 14 Mar 2020 14:37:35 +0000
parents f52919ffd3b1
children 1051e4eea25a
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_MP_GCD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* Greatest Common Divisor using the binary method */
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  u, v;
   int     k, u_lsb, v_lsb, res;

   /* either zero than gcd is the largest */
   if (mp_iszero(a) == MP_YES) {
      return mp_abs(b, c);
   }
   if (mp_iszero(b) == MP_YES) {
      return mp_abs(a, c);
   }

   /* get copies of a and b we can modify */
   if ((res = mp_init_copy(&u, a)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_init_copy(&v, b)) != MP_OKAY) {
      goto LBL_U;
   }

   /* must be positive for the remainder of the algorithm */
   u.sign = v.sign = MP_ZPOS;

   /* B1.  Find the common power of two for u and v */
   u_lsb = mp_cnt_lsb(&u);
   v_lsb = mp_cnt_lsb(&v);
   k     = MIN(u_lsb, v_lsb);

   if (k > 0) {
      /* divide the power of two out */
      if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
         goto LBL_V;
      }

      if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   /* divide any remaining factors of two out */
   if (u_lsb != k) {
      if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   if (v_lsb != k) {
      if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   while (mp_iszero(&v) == MP_NO) {
      /* make sure v is the largest */
      if (mp_cmp_mag(&u, &v) == MP_GT) {
         /* swap u and v to make sure v is >= u */
         mp_exch(&u, &v);
      }

      /* subtract smallest from largest */
      if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
         goto LBL_V;
      }

      /* Divide out all factors of two */
      if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   /* multiply by 2**k which we divided out at the beginning */
   if ((res = mp_mul_2d(&u, k, c)) != MP_OKAY) {
      goto LBL_V;
   }
   c->sign = MP_ZPOS;
   res = MP_OKAY;
LBL_V:
   mp_clear(&u);
LBL_U:
   mp_clear(&v);
   return res;
}
#endif

/* ref:         HEAD -> master, tag: v1.1.0 */
/* git commit:  08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
/* commit time: 2019-01-28 20:32:32 +0100 */