Mercurial > dropbear
view gf.c @ 125:d16fc1b2223d libtomcrypt
merge of 8231809d2509aa54773443786e3123766438d924
and e30f886c9c14efb01f49297b3fb6b97c8868fd88
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Tue, 14 Sep 2004 13:28:31 +0000 |
parents | d7da3b1e1540 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtomcrypt.org */ /* polynomial basis GF(2^w) routines */ #include "mycrypt.h" #ifdef GF #define FORLOOP for (i = 0; i < LSIZE; i++) /* c = a + b */ void gf_add(gf_intp a, gf_intp b, gf_intp c) { int i; FORLOOP c[i] = a[i]^b[i]; } /* b = a */ void gf_copy(gf_intp a, gf_intp b) { int i; FORLOOP b[i] = a[i]; } /* a = 0 */ void gf_zero(gf_intp a) { int i; FORLOOP a[i] = 0; } /* is a zero? */ int gf_iszero(gf_intp a) { int i; FORLOOP if (a[i]) { return 0; } return 1; } /* is a one? */ int gf_isone(gf_intp a) { int i; for (i = 1; i < LSIZE; i++) { if (a[i]) { return 0; } } return a[0] == 1; } /* b = a << 1*/ void gf_shl(gf_intp a, gf_intp b) { int i; gf_int tmp; gf_copy(a, tmp); for (i = LSIZE-1; i > 0; i--) b[i] = ((tmp[i]<<1)|((tmp[i-1]&0xFFFFFFFFUL)>>31))&0xFFFFFFFFUL; b[0] = (tmp[0] << 1)&0xFFFFFFFFUL; gf_zero(tmp); } /* b = a >> 1 */ void gf_shr(gf_intp a, gf_intp b) { int i; gf_int tmp; gf_copy(a, tmp); for (i = 0; i < LSIZE-1; i++) b[i] = (((tmp[i]&0xFFFFFFFFUL)>>1)|(tmp[i+1]<<31))&0xFFFFFFFFUL; b[LSIZE-1] = (tmp[LSIZE-1]&0xFFFFFFFFUL)>>1; gf_zero(tmp); } /* returns -1 if its zero, otherwise degree of a */ int gf_deg(gf_intp a) { int i, ii; unsigned long t; ii = -1; for (i = LSIZE-1; i >= 0; i--) if (a[i]) { for (t = a[i], ii = 0; t; t >>= 1, ++ii); break; } if (i == -1) i = 0; return (i<<5)+ii; } /* c = ab */ void gf_mul(gf_intp a, gf_intp b, gf_intp c) { gf_int ta, tb; int i, n; gf_copy(a, ta); gf_copy(b, tb); gf_zero(c); n = gf_deg(ta)+1; for (i = 0; i < n; i++) { if (ta[i>>5]&(1<<(i&31))) gf_add(c, tb, c); gf_shl(tb, tb); } gf_zero(ta); gf_zero(tb); } /* q = a/b, r = a%b */ void gf_div(gf_intp a, gf_intp b, gf_intp q, gf_intp r) { gf_int ta, tb, shifts[LSIZE*32]; int i, magb, mag; mag = gf_deg(a); magb = gf_deg(b); /* special cases */ if (magb > mag) { gf_copy(a, r); gf_zero(q); return; } if (magb == -1) { return; } /* copy locally */ gf_copy(a, ta); gf_copy(b, tb); gf_zero(q); /* make shifted versions of "b" */ gf_copy(tb, shifts[0]); for (i = 1; i <= (mag-magb); i++) gf_shl(shifts[i-1], shifts[i]); while (mag >= magb) { i = (mag - magb); q[i>>5] |= (1<<(i&31)); gf_add(ta, shifts[i], ta); mag = gf_deg(ta); } gf_copy(ta, r); gf_zero(ta); gf_zero(tb); zeromem(shifts, sizeof(shifts)); } /* b = a mod m */ void gf_mod(gf_intp a, gf_intp m, gf_intp b) { gf_int tmp; gf_div(a,m,tmp,b); gf_zero(tmp); } /* c = ab (mod m) */ void gf_mulmod(gf_intp a, gf_intp b, gf_intp m, gf_intp c) { gf_int tmp; gf_mul(a, b, tmp); gf_mod(tmp, m, c); gf_zero(tmp); } /* B = 1/A mod M */ void gf_invmod(gf_intp A, gf_intp M, gf_intp B) { gf_int m, n, p0, p1, p2, r, q, tmp; /* put all variables in known setup state */ gf_zero(p0); gf_zero(p2); gf_copy(M, m); gf_copy(A, n); p0[0] = 1; gf_div(m, n, p1, r); gf_copy(p1, q); /* loop until r == 0 */ while (!gf_iszero(r)) { gf_copy(n, m); gf_copy(r, n); gf_div(m, n, q, r); gf_mul(q, p1, tmp); gf_add(tmp, p0, p2); gf_copy(p1, p0); gf_copy(p2, p1); } gf_copy(p0, B); gf_zero(p0); } /* find a square root modulo a prime. Note the number of * elements is 2^k - 1, so we must square k-2 times to get the * square root.. */ void gf_sqrt(gf_intp a, gf_intp M, gf_intp b) { int k; k = gf_deg(M)-2; gf_copy(a, b); while (k--) gf_mulmod(b, b, M, b); } /* c = gcd(A,B) */ void gf_gcd(gf_intp A, gf_intp B, gf_intp c) { gf_int a, b, r; int n; gf_add(A, B, r); n = gf_deg(r); if (gf_deg(A) > n) { gf_copy(A, a); gf_copy(B, b); } else { gf_copy(A, b); gf_copy(B, a); } do { gf_mod(a, b, r); gf_copy(b, a); gf_copy(r, b); } while (!gf_iszero(r)); gf_copy(a, c); gf_zero(a); gf_zero(b); } /* returns non-zero if 'a' is irreducible */ int gf_is_prime(gf_intp a) { gf_int u, tmp; int m, n; gf_zero(u); u[0] = 2; /* u(x) = x */ m = gf_deg(a); for (n = 0; n < (m/2); n++) { gf_mulmod(u, u, a, u); /* u(x) = u(x)^2 mod a(x) */ gf_copy(u, tmp); tmp[0] ^= 2; /* tmp(x) = u(x) - x */ gf_gcd(tmp, a, tmp); /* tmp(x) = gcd(a(x), u(x) - x) */ if (!gf_isone(tmp)) { return 0; } } return 1; } /* returns bytes required to store a gf_int */ int gf_size(gf_intp a) { int n; n = gf_deg(a); if (n == -1) { return 4; } n = n + (32 - (n&31)); return n/8; } /* store a gf_int */ void gf_toraw(gf_intp a, unsigned char *dst) { int x, n; n = gf_size(a)/4; for (x = 0; x < n; x++) { STORE32L(a[x], dst); dst += 4; } } /* read a gf_int (len == in bytes) */ void gf_readraw(gf_intp a, unsigned char *str, int len) { int x; gf_zero(a); for (x = 0; x < len/4; x++) { LOAD32L(a[x], str); str += 4; } } #endif