Mercurial > dropbear
view dbrandom.c @ 1659:d32bcb5c557d
Add Ed25519 support (#91)
* Add support for Ed25519 as a public key type
Ed25519 is a elliptic curve signature scheme that offers
better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.
OpenSSH key import and fuzzer are not supported yet.
Initially inspired by Peter Szabo.
* Add curve25519 and ed25519 fuzzers
* Add import and export of Ed25519 keys
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Wed, 11 Mar 2020 21:09:45 +0500 |
parents | 60fceff95858 |
children | f966834f0f9c |
line wrap: on
line source
/* * Dropbear - a SSH2 server * * Copyright (c) 2002,2003 Matt Johnston * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "includes.h" #include "buffer.h" #include "dbutil.h" #include "bignum.h" #include "dbrandom.h" #include "runopts.h" /* this is used to generate unique output from the same hashpool */ static uint32_t counter = 0; /* the max value for the counter, so it won't integer overflow */ #define MAX_COUNTER (1<<30) static unsigned char hashpool[SHA1_HASH_SIZE] = {0}; static int donerandinit = 0; #define INIT_SEED_SIZE 32 /* 256 bits */ /* The basic setup is we read some data from /dev/(u)random or prngd and hash it * into hashpool. To read data, we hash together current hashpool contents, * and a counter. We feed more data in by hashing the current pool and new * data into the pool. * * It is important to ensure that counter doesn't wrap around before we * feed in new entropy. * */ /* Pass len=0 to hash an entire file */ static int process_file(hash_state *hs, const char *filename, unsigned int len, int prngd) { static int already_blocked = 0; int readfd; unsigned int readcount; int ret = DROPBEAR_FAILURE; #if DROPBEAR_USE_PRNGD if (prngd) { readfd = connect_unix(filename); } else #endif { readfd = open(filename, O_RDONLY); } if (readfd < 0) { goto out; } readcount = 0; while (len == 0 || readcount < len) { int readlen, wantread; unsigned char readbuf[4096]; if (!already_blocked && !prngd) { int res; struct timeval timeout; fd_set read_fds; timeout.tv_sec = 2; timeout.tv_usec = 0; DROPBEAR_FD_ZERO(&read_fds); FD_SET(readfd, &read_fds); res = select(readfd + 1, &read_fds, NULL, NULL, &timeout); if (res == 0) { dropbear_log(LOG_WARNING, "Warning: Reading the randomness source '%s' seems to have blocked.\nYou may need to find a better entropy source.", filename); already_blocked = 1; } } if (len == 0) { wantread = sizeof(readbuf); } else { wantread = MIN(sizeof(readbuf), len-readcount); } #if DROPBEAR_USE_PRNGD if (prngd) { char egdcmd[2]; egdcmd[0] = 0x02; /* blocking read */ egdcmd[1] = (unsigned char)wantread; if (write(readfd, egdcmd, 2) < 0) { dropbear_exit("Can't send command to egd"); } } #endif readlen = read(readfd, readbuf, wantread); if (readlen <= 0) { if (readlen < 0 && errno == EINTR) { continue; } if (readlen == 0 && len == 0) { /* whole file was read as requested */ break; } goto out; } sha1_process(hs, readbuf, readlen); readcount += readlen; } ret = DROPBEAR_SUCCESS; out: close(readfd); return ret; } void addrandom(const unsigned char * buf, unsigned int len) { hash_state hs; #if DROPBEAR_FUZZ if (fuzz.fuzzing) { return; } #endif /* hash in the new seed data */ sha1_init(&hs); /* existing state (zeroes on startup) */ sha1_process(&hs, (void*)hashpool, sizeof(hashpool)); /* new */ sha1_process(&hs, buf, len); sha1_done(&hs, hashpool); } static void write_urandom() { #if DROPBEAR_FUZZ if (fuzz.fuzzing) { return; } #endif #if !DROPBEAR_USE_PRNGD /* This is opportunistic, don't worry about failure */ unsigned char buf[INIT_SEED_SIZE]; FILE *f = fopen(DROPBEAR_URANDOM_DEV, "w"); if (!f) { return; } genrandom(buf, sizeof(buf)); fwrite(buf, sizeof(buf), 1, f); fclose(f); #endif } #if DROPBEAR_FUZZ void fuzz_seed(void) { hash_state hs; sha1_init(&hs); sha1_process(&hs, "fuzzfuzzfuzz", strlen("fuzzfuzzfuzz")); sha1_done(&hs, hashpool); counter = 0; donerandinit = 1; } #endif /* Initialise the prng from /dev/urandom or prngd. This function can * be called multiple times */ void seedrandom() { hash_state hs; pid_t pid; struct timeval tv; clock_t clockval; #if DROPBEAR_FUZZ if (fuzz.fuzzing) { return; } #endif /* hash in the new seed data */ sha1_init(&hs); /* existing state */ sha1_process(&hs, (void*)hashpool, sizeof(hashpool)); #if DROPBEAR_USE_PRNGD if (process_file(&hs, DROPBEAR_PRNGD_SOCKET, INIT_SEED_SIZE, 1) != DROPBEAR_SUCCESS) { dropbear_exit("Failure reading random device %s", DROPBEAR_PRNGD_SOCKET); } #else /* non-blocking random source (probably /dev/urandom) */ if (process_file(&hs, DROPBEAR_URANDOM_DEV, INIT_SEED_SIZE, 0) != DROPBEAR_SUCCESS) { dropbear_exit("Failure reading random device %s", DROPBEAR_URANDOM_DEV); } #endif /* A few other sources to fall back on. * Add more here for other platforms */ #ifdef __linux__ /* Seems to be a reasonable source of entropy from timers. Possibly hard * for even local attackers to reproduce */ process_file(&hs, "/proc/timer_list", 0, 0); /* Might help on systems with wireless */ process_file(&hs, "/proc/interrupts", 0, 0); process_file(&hs, "/proc/loadavg", 0, 0); process_file(&hs, "/proc/sys/kernel/random/entropy_avail", 0, 0); /* Mostly network visible but useful in some situations. * Limit size to avoid slowdowns on systems with lots of routes */ process_file(&hs, "/proc/net/netstat", 4096, 0); process_file(&hs, "/proc/net/dev", 4096, 0); process_file(&hs, "/proc/net/tcp", 4096, 0); /* Also includes interface lo */ process_file(&hs, "/proc/net/rt_cache", 4096, 0); process_file(&hs, "/proc/vmstat", 0, 0); #endif pid = getpid(); sha1_process(&hs, (void*)&pid, sizeof(pid)); /* gettimeofday() doesn't completely fill out struct timeval on OS X (10.8.3), avoid valgrind warnings by clearing it first */ memset(&tv, 0x0, sizeof(tv)); gettimeofday(&tv, NULL); sha1_process(&hs, (void*)&tv, sizeof(tv)); clockval = clock(); sha1_process(&hs, (void*)&clockval, sizeof(clockval)); /* When a private key is read by the client or server it will * be added to the hashpool - see runopts.c */ sha1_done(&hs, hashpool); counter = 0; donerandinit = 1; /* Feed it all back into /dev/urandom - this might help if Dropbear * is running from inetd and gets new state each time */ write_urandom(); } /* return len bytes of pseudo-random data */ void genrandom(unsigned char* buf, unsigned int len) { hash_state hs; unsigned char hash[SHA1_HASH_SIZE]; unsigned int copylen; if (!donerandinit) { dropbear_exit("seedrandom not done"); } while (len > 0) { sha1_init(&hs); sha1_process(&hs, (void*)hashpool, sizeof(hashpool)); sha1_process(&hs, (void*)&counter, sizeof(counter)); sha1_done(&hs, hash); counter++; if (counter > MAX_COUNTER) { seedrandom(); } copylen = MIN(len, SHA1_HASH_SIZE); memcpy(buf, hash, copylen); len -= copylen; buf += copylen; } m_burn(hash, sizeof(hash)); } /* Generates a random mp_int. * max is a *mp_int specifying an upper bound. * rand must be an initialised *mp_int for the result. * the result rand satisfies: 0 < rand < max * */ void gen_random_mpint(mp_int *max, mp_int *rand) { unsigned char *randbuf = NULL; unsigned int len = 0; const unsigned char masks[] = {0xff, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f}; const int size_bits = mp_count_bits(max); len = size_bits / 8; if ((size_bits % 8) != 0) { len += 1; } randbuf = (unsigned char*)m_malloc(len); do { genrandom(randbuf, len); /* Mask out the unrequired bits - mp_read_unsigned_bin expects * MSB first.*/ randbuf[0] &= masks[size_bits % 8]; bytes_to_mp(rand, randbuf, len); /* keep regenerating until we get one satisfying * 0 < rand < max */ } while (!(mp_cmp(rand, max) == MP_LT && mp_cmp_d(rand, 0) == MP_GT)); m_burn(randbuf, len); m_free(randbuf); }