Mercurial > dropbear
view libtomcrypt/src/ciphers/safer/safer.c @ 1659:d32bcb5c557d
Add Ed25519 support (#91)
* Add support for Ed25519 as a public key type
Ed25519 is a elliptic curve signature scheme that offers
better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.
OpenSSH key import and fuzzer are not supported yet.
Initially inspired by Peter Szabo.
* Add curve25519 and ed25519 fuzzers
* Add import and export of Ed25519 keys
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Wed, 11 Mar 2020 21:09:45 +0500 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ /******************************************************************************* * * FILE: safer.c * * LTC_DESCRIPTION: block-cipher algorithm LTC_SAFER (Secure And Fast Encryption * Routine) in its four versions: LTC_SAFER K-64, LTC_SAFER K-128, * LTC_SAFER SK-64 and LTC_SAFER SK-128. * * AUTHOR: Richard De Moliner ([email protected]) * Signal and Information Processing Laboratory * Swiss Federal Institute of Technology * CH-8092 Zuerich, Switzerland * * DATE: September 9, 1995 * * CHANGE HISTORY: * *******************************************************************************/ #include "tomcrypt.h" #ifdef LTC_SAFER #define __LTC_SAFER_TAB_C__ #include "safer_tab.c" const struct ltc_cipher_descriptor safer_k64_desc = { "safer-k64", 8, 8, 8, 8, LTC_SAFER_K64_DEFAULT_NOF_ROUNDS, &safer_k64_setup, &safer_ecb_encrypt, &safer_ecb_decrypt, &safer_k64_test, &safer_done, &safer_64_keysize, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }, safer_sk64_desc = { "safer-sk64", 9, 8, 8, 8, LTC_SAFER_SK64_DEFAULT_NOF_ROUNDS, &safer_sk64_setup, &safer_ecb_encrypt, &safer_ecb_decrypt, &safer_sk64_test, &safer_done, &safer_64_keysize, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }, safer_k128_desc = { "safer-k128", 10, 16, 16, 8, LTC_SAFER_K128_DEFAULT_NOF_ROUNDS, &safer_k128_setup, &safer_ecb_encrypt, &safer_ecb_decrypt, &safer_sk128_test, &safer_done, &safer_128_keysize, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }, safer_sk128_desc = { "safer-sk128", 11, 16, 16, 8, LTC_SAFER_SK128_DEFAULT_NOF_ROUNDS, &safer_sk128_setup, &safer_ecb_encrypt, &safer_ecb_decrypt, &safer_sk128_test, &safer_done, &safer_128_keysize, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; /******************* Constants ************************************************/ /* #define TAB_LEN 256 */ /******************* Assertions ***********************************************/ /******************* Macros ***************************************************/ #define ROL8(x, n) ((unsigned char)((unsigned int)(x) << (n)\ |(unsigned int)((x) & 0xFF) >> (8 - (n)))) #define EXP(x) safer_ebox[(x) & 0xFF] #define LOG(x) safer_lbox[(x) & 0xFF] #define PHT(x, y) { y += x; x += y; } #define IPHT(x, y) { x -= y; y -= x; } /******************* Types ****************************************************/ #ifdef LTC_CLEAN_STACK static void _Safer_Expand_Userkey(const unsigned char *userkey_1, const unsigned char *userkey_2, unsigned int nof_rounds, int strengthened, safer_key_t key) #else static void Safer_Expand_Userkey(const unsigned char *userkey_1, const unsigned char *userkey_2, unsigned int nof_rounds, int strengthened, safer_key_t key) #endif { unsigned int i, j, k; unsigned char ka[LTC_SAFER_BLOCK_LEN + 1]; unsigned char kb[LTC_SAFER_BLOCK_LEN + 1]; if (LTC_SAFER_MAX_NOF_ROUNDS < nof_rounds) nof_rounds = LTC_SAFER_MAX_NOF_ROUNDS; *key++ = (unsigned char)nof_rounds; ka[LTC_SAFER_BLOCK_LEN] = (unsigned char)0; kb[LTC_SAFER_BLOCK_LEN] = (unsigned char)0; k = 0; for (j = 0; j < LTC_SAFER_BLOCK_LEN; j++) { ka[j] = ROL8(userkey_1[j], 5); ka[LTC_SAFER_BLOCK_LEN] ^= ka[j]; kb[j] = *key++ = userkey_2[j]; kb[LTC_SAFER_BLOCK_LEN] ^= kb[j]; } for (i = 1; i <= nof_rounds; i++) { for (j = 0; j < LTC_SAFER_BLOCK_LEN + 1; j++) { ka[j] = ROL8(ka[j], 6); kb[j] = ROL8(kb[j], 6); } if (strengthened) { k = 2 * i - 1; while (k >= (LTC_SAFER_BLOCK_LEN + 1)) { k -= LTC_SAFER_BLOCK_LEN + 1; } } for (j = 0; j < LTC_SAFER_BLOCK_LEN; j++) { if (strengthened) { *key++ = (ka[k] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 1)&0xFF)]]) & 0xFF; if (++k == (LTC_SAFER_BLOCK_LEN + 1)) { k = 0; } } else { *key++ = (ka[j] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 1)&0xFF)]]) & 0xFF; } } if (strengthened) { k = 2 * i; while (k >= (LTC_SAFER_BLOCK_LEN + 1)) { k -= LTC_SAFER_BLOCK_LEN + 1; } } for (j = 0; j < LTC_SAFER_BLOCK_LEN; j++) { if (strengthened) { *key++ = (kb[k] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 10)&0xFF)]]) & 0xFF; if (++k == (LTC_SAFER_BLOCK_LEN + 1)) { k = 0; } } else { *key++ = (kb[j] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 10)&0xFF)]]) & 0xFF; } } } #ifdef LTC_CLEAN_STACK zeromem(ka, sizeof(ka)); zeromem(kb, sizeof(kb)); #endif } #ifdef LTC_CLEAN_STACK static void Safer_Expand_Userkey(const unsigned char *userkey_1, const unsigned char *userkey_2, unsigned int nof_rounds, int strengthened, safer_key_t key) { _Safer_Expand_Userkey(userkey_1, userkey_2, nof_rounds, strengthened, key); burn_stack(sizeof(unsigned char) * (2 * (LTC_SAFER_BLOCK_LEN + 1)) + sizeof(unsigned int)*2); } #endif int safer_k64_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey) { LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); if (numrounds != 0 && (numrounds < 6 || numrounds > LTC_SAFER_MAX_NOF_ROUNDS)) { return CRYPT_INVALID_ROUNDS; } if (keylen != 8) { return CRYPT_INVALID_KEYSIZE; } Safer_Expand_Userkey(key, key, (unsigned int)(numrounds != 0 ?numrounds:LTC_SAFER_K64_DEFAULT_NOF_ROUNDS), 0, skey->safer.key); return CRYPT_OK; } int safer_sk64_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey) { LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); if (numrounds != 0 && (numrounds < 6 || numrounds > LTC_SAFER_MAX_NOF_ROUNDS)) { return CRYPT_INVALID_ROUNDS; } if (keylen != 8) { return CRYPT_INVALID_KEYSIZE; } Safer_Expand_Userkey(key, key, (unsigned int)(numrounds != 0 ?numrounds:LTC_SAFER_SK64_DEFAULT_NOF_ROUNDS), 1, skey->safer.key); return CRYPT_OK; } int safer_k128_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey) { LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); if (numrounds != 0 && (numrounds < 6 || numrounds > LTC_SAFER_MAX_NOF_ROUNDS)) { return CRYPT_INVALID_ROUNDS; } if (keylen != 16) { return CRYPT_INVALID_KEYSIZE; } Safer_Expand_Userkey(key, key+8, (unsigned int)(numrounds != 0 ?numrounds:LTC_SAFER_K128_DEFAULT_NOF_ROUNDS), 0, skey->safer.key); return CRYPT_OK; } int safer_sk128_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey) { LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); if (numrounds != 0 && (numrounds < 6 || numrounds > LTC_SAFER_MAX_NOF_ROUNDS)) { return CRYPT_INVALID_ROUNDS; } if (keylen != 16) { return CRYPT_INVALID_KEYSIZE; } Safer_Expand_Userkey(key, key+8, (unsigned int)(numrounds != 0?numrounds:LTC_SAFER_SK128_DEFAULT_NOF_ROUNDS), 1, skey->safer.key); return CRYPT_OK; } #ifdef LTC_CLEAN_STACK static int _safer_ecb_encrypt(const unsigned char *block_in, unsigned char *block_out, symmetric_key *skey) #else int safer_ecb_encrypt(const unsigned char *block_in, unsigned char *block_out, symmetric_key *skey) #endif { unsigned char a, b, c, d, e, f, g, h, t; unsigned int round; unsigned char *key; LTC_ARGCHK(block_in != NULL); LTC_ARGCHK(block_out != NULL); LTC_ARGCHK(skey != NULL); key = skey->safer.key; a = block_in[0]; b = block_in[1]; c = block_in[2]; d = block_in[3]; e = block_in[4]; f = block_in[5]; g = block_in[6]; h = block_in[7]; if (LTC_SAFER_MAX_NOF_ROUNDS < (round = *key)) round = LTC_SAFER_MAX_NOF_ROUNDS; while(round-- > 0) { a ^= *++key; b += *++key; c += *++key; d ^= *++key; e ^= *++key; f += *++key; g += *++key; h ^= *++key; a = EXP(a) + *++key; b = LOG(b) ^ *++key; c = LOG(c) ^ *++key; d = EXP(d) + *++key; e = EXP(e) + *++key; f = LOG(f) ^ *++key; g = LOG(g) ^ *++key; h = EXP(h) + *++key; PHT(a, b); PHT(c, d); PHT(e, f); PHT(g, h); PHT(a, c); PHT(e, g); PHT(b, d); PHT(f, h); PHT(a, e); PHT(b, f); PHT(c, g); PHT(d, h); t = b; b = e; e = c; c = t; t = d; d = f; f = g; g = t; } a ^= *++key; b += *++key; c += *++key; d ^= *++key; e ^= *++key; f += *++key; g += *++key; h ^= *++key; block_out[0] = a & 0xFF; block_out[1] = b & 0xFF; block_out[2] = c & 0xFF; block_out[3] = d & 0xFF; block_out[4] = e & 0xFF; block_out[5] = f & 0xFF; block_out[6] = g & 0xFF; block_out[7] = h & 0xFF; return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int safer_ecb_encrypt(const unsigned char *block_in, unsigned char *block_out, symmetric_key *skey) { int err = _safer_ecb_encrypt(block_in, block_out, skey); burn_stack(sizeof(unsigned char) * 9 + sizeof(unsigned int) + sizeof(unsigned char *)); return err; } #endif #ifdef LTC_CLEAN_STACK static int _safer_ecb_decrypt(const unsigned char *block_in, unsigned char *block_out, symmetric_key *skey) #else int safer_ecb_decrypt(const unsigned char *block_in, unsigned char *block_out, symmetric_key *skey) #endif { unsigned char a, b, c, d, e, f, g, h, t; unsigned int round; unsigned char *key; LTC_ARGCHK(block_in != NULL); LTC_ARGCHK(block_out != NULL); LTC_ARGCHK(skey != NULL); key = skey->safer.key; a = block_in[0]; b = block_in[1]; c = block_in[2]; d = block_in[3]; e = block_in[4]; f = block_in[5]; g = block_in[6]; h = block_in[7]; if (LTC_SAFER_MAX_NOF_ROUNDS < (round = *key)) round = LTC_SAFER_MAX_NOF_ROUNDS; key += LTC_SAFER_BLOCK_LEN * (1 + 2 * round); h ^= *key; g -= *--key; f -= *--key; e ^= *--key; d ^= *--key; c -= *--key; b -= *--key; a ^= *--key; while (round--) { t = e; e = b; b = c; c = t; t = f; f = d; d = g; g = t; IPHT(a, e); IPHT(b, f); IPHT(c, g); IPHT(d, h); IPHT(a, c); IPHT(e, g); IPHT(b, d); IPHT(f, h); IPHT(a, b); IPHT(c, d); IPHT(e, f); IPHT(g, h); h -= *--key; g ^= *--key; f ^= *--key; e -= *--key; d -= *--key; c ^= *--key; b ^= *--key; a -= *--key; h = LOG(h) ^ *--key; g = EXP(g) - *--key; f = EXP(f) - *--key; e = LOG(e) ^ *--key; d = LOG(d) ^ *--key; c = EXP(c) - *--key; b = EXP(b) - *--key; a = LOG(a) ^ *--key; } block_out[0] = a & 0xFF; block_out[1] = b & 0xFF; block_out[2] = c & 0xFF; block_out[3] = d & 0xFF; block_out[4] = e & 0xFF; block_out[5] = f & 0xFF; block_out[6] = g & 0xFF; block_out[7] = h & 0xFF; return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int safer_ecb_decrypt(const unsigned char *block_in, unsigned char *block_out, symmetric_key *skey) { int err = _safer_ecb_decrypt(block_in, block_out, skey); burn_stack(sizeof(unsigned char) * 9 + sizeof(unsigned int) + sizeof(unsigned char *)); return err; } #endif int safer_64_keysize(int *keysize) { LTC_ARGCHK(keysize != NULL); if (*keysize < 8) { return CRYPT_INVALID_KEYSIZE; } else { *keysize = 8; return CRYPT_OK; } } int safer_128_keysize(int *keysize) { LTC_ARGCHK(keysize != NULL); if (*keysize < 16) { return CRYPT_INVALID_KEYSIZE; } else { *keysize = 16; return CRYPT_OK; } } int safer_k64_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const unsigned char k64_pt[] = { 1, 2, 3, 4, 5, 6, 7, 8 }, k64_key[] = { 8, 7, 6, 5, 4, 3, 2, 1 }, k64_ct[] = { 200, 242, 156, 221, 135, 120, 62, 217 }; symmetric_key skey; unsigned char buf[2][8]; int err; /* test K64 */ if ((err = safer_k64_setup(k64_key, 8, 6, &skey)) != CRYPT_OK) { return err; } safer_ecb_encrypt(k64_pt, buf[0], &skey); safer_ecb_decrypt(buf[0], buf[1], &skey); if (compare_testvector(buf[0], 8, k64_ct, 8, "Safer K64 Encrypt", 0) != 0 || compare_testvector(buf[1], 8, k64_pt, 8, "Safer K64 Decrypt", 0) != 0) { return CRYPT_FAIL_TESTVECTOR; } return CRYPT_OK; #endif } int safer_sk64_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const unsigned char sk64_pt[] = { 1, 2, 3, 4, 5, 6, 7, 8 }, sk64_key[] = { 1, 2, 3, 4, 5, 6, 7, 8 }, sk64_ct[] = { 95, 206, 155, 162, 5, 132, 56, 199 }; symmetric_key skey; unsigned char buf[2][8]; int err, y; /* test SK64 */ if ((err = safer_sk64_setup(sk64_key, 8, 6, &skey)) != CRYPT_OK) { return err; } safer_ecb_encrypt(sk64_pt, buf[0], &skey); safer_ecb_decrypt(buf[0], buf[1], &skey); if (compare_testvector(buf[0], 8, sk64_ct, 8, "Safer SK64 Encrypt", 0) != 0 || compare_testvector(buf[1], 8, sk64_pt, 8, "Safer SK64 Decrypt", 0) != 0) { return CRYPT_FAIL_TESTVECTOR; } /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ for (y = 0; y < 8; y++) buf[0][y] = 0; for (y = 0; y < 1000; y++) safer_ecb_encrypt(buf[0], buf[0], &skey); for (y = 0; y < 1000; y++) safer_ecb_decrypt(buf[0], buf[0], &skey); for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; return CRYPT_OK; #endif } /** Terminate the context @param skey The scheduled key */ void safer_done(symmetric_key *skey) { LTC_UNUSED_PARAM(skey); } int safer_sk128_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const unsigned char sk128_pt[] = { 1, 2, 3, 4, 5, 6, 7, 8 }, sk128_key[] = { 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0 }, sk128_ct[] = { 255, 120, 17, 228, 179, 167, 46, 113 }; symmetric_key skey; unsigned char buf[2][8]; int err, y; /* test SK128 */ if ((err = safer_sk128_setup(sk128_key, 16, 0, &skey)) != CRYPT_OK) { return err; } safer_ecb_encrypt(sk128_pt, buf[0], &skey); safer_ecb_decrypt(buf[0], buf[1], &skey); if (compare_testvector(buf[0], 8, sk128_ct, 8, "Safer SK128 Encrypt", 0) != 0 || compare_testvector(buf[1], 8, sk128_pt, 8, "Safer SK128 Decrypt", 0) != 0) { return CRYPT_FAIL_TESTVECTOR; } /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ for (y = 0; y < 8; y++) buf[0][y] = 0; for (y = 0; y < 1000; y++) safer_ecb_encrypt(buf[0], buf[0], &skey); for (y = 0; y < 1000; y++) safer_ecb_decrypt(buf[0], buf[0], &skey); for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; return CRYPT_OK; #endif } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */