Mercurial > dropbear
view libtomcrypt/src/hashes/chc/chc.c @ 1659:d32bcb5c557d
Add Ed25519 support (#91)
* Add support for Ed25519 as a public key type
Ed25519 is a elliptic curve signature scheme that offers
better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.
OpenSSH key import and fuzzer are not supported yet.
Initially inspired by Peter Szabo.
* Add curve25519 and ed25519 fuzzers
* Add import and export of Ed25519 keys
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Wed, 11 Mar 2020 21:09:45 +0500 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ #include "tomcrypt.h" /** @file chc.c CHC support. (Tom St Denis) */ #ifdef LTC_CHC_HASH #define UNDEFED_HASH -17 /* chc settings */ static int cipher_idx=UNDEFED_HASH, /* which cipher */ cipher_blocksize; /* blocksize of cipher */ const struct ltc_hash_descriptor chc_desc = { "chc_hash", 12, 0, 0, { 0 }, 0, &chc_init, &chc_process, &chc_done, &chc_test, NULL }; /** Initialize the CHC state with a given cipher @param cipher The index of the cipher you wish to bind @return CRYPT_OK if successful */ int chc_register(int cipher) { int err, kl, idx; if ((err = cipher_is_valid(cipher)) != CRYPT_OK) { return err; } /* will it be valid? */ kl = cipher_descriptor[cipher].block_length; /* must be >64 bit block */ if (kl <= 8) { return CRYPT_INVALID_CIPHER; } /* can we use the ideal keysize? */ if ((err = cipher_descriptor[cipher].keysize(&kl)) != CRYPT_OK) { return err; } /* we require that key size == block size be a valid choice */ if (kl != cipher_descriptor[cipher].block_length) { return CRYPT_INVALID_CIPHER; } /* determine if chc_hash has been register_hash'ed already */ if ((err = hash_is_valid(idx = find_hash("chc_hash"))) != CRYPT_OK) { return err; } /* store into descriptor */ hash_descriptor[idx].hashsize = hash_descriptor[idx].blocksize = cipher_descriptor[cipher].block_length; /* store the idx and block size */ cipher_idx = cipher; cipher_blocksize = cipher_descriptor[cipher].block_length; return CRYPT_OK; } /** Initialize the hash state @param md The hash state you wish to initialize @return CRYPT_OK if successful */ int chc_init(hash_state *md) { symmetric_key *key; unsigned char buf[MAXBLOCKSIZE]; int err; LTC_ARGCHK(md != NULL); /* is the cipher valid? */ if ((err = cipher_is_valid(cipher_idx)) != CRYPT_OK) { return err; } if (cipher_blocksize != cipher_descriptor[cipher_idx].block_length) { return CRYPT_INVALID_CIPHER; } if ((key = XMALLOC(sizeof(*key))) == NULL) { return CRYPT_MEM; } /* zero key and what not */ zeromem(buf, cipher_blocksize); if ((err = cipher_descriptor[cipher_idx].setup(buf, cipher_blocksize, 0, key)) != CRYPT_OK) { XFREE(key); return err; } /* encrypt zero block */ cipher_descriptor[cipher_idx].ecb_encrypt(buf, md->chc.state, key); /* zero other members */ md->chc.length = 0; md->chc.curlen = 0; zeromem(md->chc.buf, sizeof(md->chc.buf)); XFREE(key); return CRYPT_OK; } /* key <= state T0,T1 <= block T0 <= encrypt T0 state <= state xor T0 xor T1 */ static int chc_compress(hash_state *md, unsigned char *buf) { unsigned char T[2][MAXBLOCKSIZE]; symmetric_key *key; int err, x; if ((key = XMALLOC(sizeof(*key))) == NULL) { return CRYPT_MEM; } if ((err = cipher_descriptor[cipher_idx].setup(md->chc.state, cipher_blocksize, 0, key)) != CRYPT_OK) { XFREE(key); return err; } XMEMCPY(T[1], buf, cipher_blocksize); cipher_descriptor[cipher_idx].ecb_encrypt(buf, T[0], key); for (x = 0; x < cipher_blocksize; x++) { md->chc.state[x] ^= T[0][x] ^ T[1][x]; } #ifdef LTC_CLEAN_STACK zeromem(T, sizeof(T)); zeromem(key, sizeof(*key)); #endif XFREE(key); return CRYPT_OK; } /** Function for processing blocks @param md The hash state @param buf The data to hash @param len The length of the data (octets) @return CRYPT_OK if successful */ static int _chc_process(hash_state * md, const unsigned char *buf, unsigned long len); static HASH_PROCESS(_chc_process, chc_compress, chc, (unsigned long)cipher_blocksize) /** Process a block of memory though the hash @param md The hash state @param in The data to hash @param inlen The length of the data (octets) @return CRYPT_OK if successful */ int chc_process(hash_state * md, const unsigned char *in, unsigned long inlen) { int err; LTC_ARGCHK(md != NULL); LTC_ARGCHK(in != NULL); /* is the cipher valid? */ if ((err = cipher_is_valid(cipher_idx)) != CRYPT_OK) { return err; } if (cipher_blocksize != cipher_descriptor[cipher_idx].block_length) { return CRYPT_INVALID_CIPHER; } return _chc_process(md, in, inlen); } /** Terminate the hash to get the digest @param md The hash state @param out [out] The destination of the hash (length of the block size of the block cipher) @return CRYPT_OK if successful */ int chc_done(hash_state *md, unsigned char *out) { int err; LTC_ARGCHK(md != NULL); LTC_ARGCHK(out != NULL); /* is the cipher valid? */ if ((err = cipher_is_valid(cipher_idx)) != CRYPT_OK) { return err; } if (cipher_blocksize != cipher_descriptor[cipher_idx].block_length) { return CRYPT_INVALID_CIPHER; } if (md->chc.curlen >= sizeof(md->chc.buf)) { return CRYPT_INVALID_ARG; } /* increase the length of the message */ md->chc.length += md->chc.curlen * 8; /* append the '1' bit */ md->chc.buf[md->chc.curlen++] = (unsigned char)0x80; /* if the length is currently above l-8 bytes we append zeros * then compress. Then we can fall back to padding zeros and length * encoding like normal. */ if (md->chc.curlen > (unsigned long)(cipher_blocksize - 8)) { while (md->chc.curlen < (unsigned long)cipher_blocksize) { md->chc.buf[md->chc.curlen++] = (unsigned char)0; } chc_compress(md, md->chc.buf); md->chc.curlen = 0; } /* pad upto l-8 bytes of zeroes */ while (md->chc.curlen < (unsigned long)(cipher_blocksize - 8)) { md->chc.buf[md->chc.curlen++] = (unsigned char)0; } /* store length */ STORE64L(md->chc.length, md->chc.buf+(cipher_blocksize-8)); chc_compress(md, md->chc.buf); /* copy output */ XMEMCPY(out, md->chc.state, cipher_blocksize); #ifdef LTC_CLEAN_STACK zeromem(md, sizeof(hash_state)); #endif return CRYPT_OK; } /** Self-test the hash @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled */ int chc_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const struct { unsigned char *msg, hash[MAXBLOCKSIZE]; int len; } tests[] = { { (unsigned char *)"hello world", { 0xcf, 0x57, 0x9d, 0xc3, 0x0a, 0x0e, 0xea, 0x61, 0x0d, 0x54, 0x47, 0xc4, 0x3c, 0x06, 0xf5, 0x4e }, 16 } }; int i, oldhashidx, idx; unsigned char tmp[MAXBLOCKSIZE]; hash_state md; /* AES can be under rijndael or aes... try to find it */ if ((idx = find_cipher("aes")) == -1) { if ((idx = find_cipher("rijndael")) == -1) { return CRYPT_NOP; } } oldhashidx = cipher_idx; chc_register(idx); for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { chc_init(&md); chc_process(&md, tests[i].msg, strlen((char *)tests[i].msg)); chc_done(&md, tmp); if (compare_testvector(tmp, tests[i].len, tests[i].hash, tests[i].len, "CHC", i)) { return CRYPT_FAIL_TESTVECTOR; } } if (oldhashidx != UNDEFED_HASH) { chc_register(oldhashidx); } return CRYPT_OK; #endif } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */