view libtomcrypt/src/hashes/sha2/sha256.c @ 1659:d32bcb5c557d

Add Ed25519 support (#91) * Add support for Ed25519 as a public key type Ed25519 is a elliptic curve signature scheme that offers better security than ECDSA and DSA and good performance. It may be used for both user and host keys. OpenSSH key import and fuzzer are not supported yet. Initially inspired by Peter Szabo. * Add curve25519 and ed25519 fuzzers * Add import and export of Ed25519 keys
author Vladislav Grishenko <themiron@users.noreply.github.com>
date Wed, 11 Mar 2020 21:09:45 +0500
parents 6dba84798cd5
children
line wrap: on
line source

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 */
#include "tomcrypt.h"

/**
  @file sha256.c
  LTC_SHA256 by Tom St Denis
*/

#ifdef LTC_SHA256

const struct ltc_hash_descriptor sha256_desc =
{
    "sha256",
    0,
    32,
    64,

    /* OID */
   { 2, 16, 840, 1, 101, 3, 4, 2, 1,  },
   9,

    &sha256_init,
    &sha256_process,
    &sha256_done,
    &sha256_test,
    NULL
};

#ifdef LTC_SMALL_CODE
/* the K array */
static const ulong32 K[64] = {
    0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
    0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
    0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
    0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
    0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
    0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
    0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
    0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
    0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
    0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
    0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
    0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
    0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
#endif

/* Various logical functions */
#define Ch(x,y,z)       (z ^ (x & (y ^ z)))
#define Maj(x,y,z)      (((x | y) & z) | (x & y))
#define S(x, n)         RORc((x),(n))
#define R(x, n)         (((x)&0xFFFFFFFFUL)>>(n))
#define Sigma0(x)       (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x)       (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define Gamma0(x)       (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x)       (S(x, 17) ^ S(x, 19) ^ R(x, 10))

/* compress 512-bits */
#ifdef LTC_CLEAN_STACK
static int _sha256_compress(hash_state * md, unsigned char *buf)
#else
static int  sha256_compress(hash_state * md, unsigned char *buf)
#endif
{
    ulong32 S[8], W[64], t0, t1;
#ifdef LTC_SMALL_CODE
    ulong32 t;
#endif
    int i;

    /* copy state into S */
    for (i = 0; i < 8; i++) {
        S[i] = md->sha256.state[i];
    }

    /* copy the state into 512-bits into W[0..15] */
    for (i = 0; i < 16; i++) {
        LOAD32H(W[i], buf + (4*i));
    }

    /* fill W[16..63] */
    for (i = 16; i < 64; i++) {
        W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
    }

    /* Compress */
#ifdef LTC_SMALL_CODE
#define RND(a,b,c,d,e,f,g,h,i)                         \
     t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i];   \
     t1 = Sigma0(a) + Maj(a, b, c);                    \
     d += t0;                                          \
     h  = t0 + t1;

     for (i = 0; i < 64; ++i) {
         RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i);
         t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
         S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;
     }
#else
#define RND(a,b,c,d,e,f,g,h,i,ki)                    \
     t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i];   \
     t1 = Sigma0(a) + Maj(a, b, c);                  \
     d += t0;                                        \
     h  = t0 + t1;

    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);

#undef RND

#endif

    /* feedback */
    for (i = 0; i < 8; i++) {
        md->sha256.state[i] = md->sha256.state[i] + S[i];
    }
    return CRYPT_OK;
}

#ifdef LTC_CLEAN_STACK
static int sha256_compress(hash_state * md, unsigned char *buf)
{
    int err;
    err = _sha256_compress(md, buf);
    burn_stack(sizeof(ulong32) * 74);
    return err;
}
#endif

/**
   Initialize the hash state
   @param md   The hash state you wish to initialize
   @return CRYPT_OK if successful
*/
int sha256_init(hash_state * md)
{
    LTC_ARGCHK(md != NULL);

    md->sha256.curlen = 0;
    md->sha256.length = 0;
    md->sha256.state[0] = 0x6A09E667UL;
    md->sha256.state[1] = 0xBB67AE85UL;
    md->sha256.state[2] = 0x3C6EF372UL;
    md->sha256.state[3] = 0xA54FF53AUL;
    md->sha256.state[4] = 0x510E527FUL;
    md->sha256.state[5] = 0x9B05688CUL;
    md->sha256.state[6] = 0x1F83D9ABUL;
    md->sha256.state[7] = 0x5BE0CD19UL;
    return CRYPT_OK;
}

/**
   Process a block of memory though the hash
   @param md     The hash state
   @param in     The data to hash
   @param inlen  The length of the data (octets)
   @return CRYPT_OK if successful
*/
HASH_PROCESS(sha256_process, sha256_compress, sha256, 64)

/**
   Terminate the hash to get the digest
   @param md  The hash state
   @param out [out] The destination of the hash (32 bytes)
   @return CRYPT_OK if successful
*/
int sha256_done(hash_state * md, unsigned char *out)
{
    int i;

    LTC_ARGCHK(md  != NULL);
    LTC_ARGCHK(out != NULL);

    if (md->sha256.curlen >= sizeof(md->sha256.buf)) {
       return CRYPT_INVALID_ARG;
    }


    /* increase the length of the message */
    md->sha256.length += md->sha256.curlen * 8;

    /* append the '1' bit */
    md->sha256.buf[md->sha256.curlen++] = (unsigned char)0x80;

    /* if the length is currently above 56 bytes we append zeros
     * then compress.  Then we can fall back to padding zeros and length
     * encoding like normal.
     */
    if (md->sha256.curlen > 56) {
        while (md->sha256.curlen < 64) {
            md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;
        }
        sha256_compress(md, md->sha256.buf);
        md->sha256.curlen = 0;
    }

    /* pad upto 56 bytes of zeroes */
    while (md->sha256.curlen < 56) {
        md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;
    }

    /* store length */
    STORE64H(md->sha256.length, md->sha256.buf+56);
    sha256_compress(md, md->sha256.buf);

    /* copy output */
    for (i = 0; i < 8; i++) {
        STORE32H(md->sha256.state[i], out+(4*i));
    }
#ifdef LTC_CLEAN_STACK
    zeromem(md, sizeof(hash_state));
#endif
    return CRYPT_OK;
}

/**
  Self-test the hash
  @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int  sha256_test(void)
{
 #ifndef LTC_TEST
    return CRYPT_NOP;
 #else
  static const struct {
      const char *msg;
      unsigned char hash[32];
  } tests[] = {
    { "abc",
      { 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea,
        0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
        0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c,
        0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad }
    },
    { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
      { 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8,
        0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39,
        0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67,
        0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1 }
    },
  };

  int i;
  unsigned char tmp[32];
  hash_state md;

  for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
      sha256_init(&md);
      sha256_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg));
      sha256_done(&md, tmp);
      if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "SHA256", i)) {
         return CRYPT_FAIL_TESTVECTOR;
      }
  }
  return CRYPT_OK;
 #endif
}

#endif



/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */