Mercurial > dropbear
view libtomcrypt/src/headers/tomcrypt_math.h @ 1659:d32bcb5c557d
Add Ed25519 support (#91)
* Add support for Ed25519 as a public key type
Ed25519 is a elliptic curve signature scheme that offers
better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.
OpenSSH key import and fuzzer are not supported yet.
Initially inspired by Peter Szabo.
* Add curve25519 and ed25519 fuzzers
* Add import and export of Ed25519 keys
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Wed, 11 Mar 2020 21:09:45 +0500 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ /** math functions **/ #define LTC_MP_LT -1 #define LTC_MP_EQ 0 #define LTC_MP_GT 1 #define LTC_MP_NO 0 #define LTC_MP_YES 1 #ifndef LTC_MECC typedef void ecc_point; #endif #ifndef LTC_MRSA typedef void rsa_key; #endif #ifndef LTC_MILLER_RABIN_REPS /* Number of rounds of the Miller-Rabin test * "Reasonable values of reps are between 15 and 50." c.f. gmp doc of mpz_probab_prime_p() * As of https://security.stackexchange.com/a/4546 we should use 40 rounds */ #define LTC_MILLER_RABIN_REPS 40 #endif int radix_to_bin(const void *in, int radix, void *out, unsigned long *len); /** math descriptor */ typedef struct { /** Name of the math provider */ const char *name; /** Bits per digit, amount of bits must fit in an unsigned long */ int bits_per_digit; /* ---- init/deinit functions ---- */ /** initialize a bignum @param a The number to initialize @return CRYPT_OK on success */ int (*init)(void **a); /** init copy @param dst The number to initialize and write to @param src The number to copy from @return CRYPT_OK on success */ int (*init_copy)(void **dst, void *src); /** deinit @param a The number to free @return CRYPT_OK on success */ void (*deinit)(void *a); /* ---- data movement ---- */ /** negate @param src The number to negate @param dst The destination @return CRYPT_OK on success */ int (*neg)(void *src, void *dst); /** copy @param src The number to copy from @param dst The number to write to @return CRYPT_OK on success */ int (*copy)(void *src, void *dst); /* ---- trivial low level functions ---- */ /** set small constant @param a Number to write to @param n Source upto bits_per_digit (actually meant for very small constants) @return CRYPT_OK on success */ int (*set_int)(void *a, ltc_mp_digit n); /** get small constant @param a Small number to read, only fetches up to bits_per_digit from the number @return The lower bits_per_digit of the integer (unsigned) */ unsigned long (*get_int)(void *a); /** get digit n @param a The number to read from @param n The number of the digit to fetch @return The bits_per_digit sized n'th digit of a */ ltc_mp_digit (*get_digit)(void *a, int n); /** Get the number of digits that represent the number @param a The number to count @return The number of digits used to represent the number */ int (*get_digit_count)(void *a); /** compare two integers @param a The left side integer @param b The right side integer @return LTC_MP_LT if a < b, LTC_MP_GT if a > b and LTC_MP_EQ otherwise. (signed comparison) */ int (*compare)(void *a, void *b); /** compare against int @param a The left side integer @param b The right side integer (upto bits_per_digit) @return LTC_MP_LT if a < b, LTC_MP_GT if a > b and LTC_MP_EQ otherwise. (signed comparison) */ int (*compare_d)(void *a, ltc_mp_digit n); /** Count the number of bits used to represent the integer @param a The integer to count @return The number of bits required to represent the integer */ int (*count_bits)(void * a); /** Count the number of LSB bits which are zero @param a The integer to count @return The number of contiguous zero LSB bits */ int (*count_lsb_bits)(void *a); /** Compute a power of two @param a The integer to store the power in @param n The power of two you want to store (a = 2^n) @return CRYPT_OK on success */ int (*twoexpt)(void *a , int n); /* ---- radix conversions ---- */ /** read ascii string @param a The integer to store into @param str The string to read @param radix The radix the integer has been represented in (2-64) @return CRYPT_OK on success */ int (*read_radix)(void *a, const char *str, int radix); /** write number to string @param a The integer to store @param str The destination for the string @param radix The radix the integer is to be represented in (2-64) @return CRYPT_OK on success */ int (*write_radix)(void *a, char *str, int radix); /** get size as unsigned char string @param a The integer to get the size (when stored in array of octets) @return The length of the integer in octets */ unsigned long (*unsigned_size)(void *a); /** store an integer as an array of octets @param src The integer to store @param dst The buffer to store the integer in @return CRYPT_OK on success */ int (*unsigned_write)(void *src, unsigned char *dst); /** read an array of octets and store as integer @param dst The integer to load @param src The array of octets @param len The number of octets @return CRYPT_OK on success */ int (*unsigned_read)( void *dst, unsigned char *src, unsigned long len); /* ---- basic math ---- */ /** add two integers @param a The first source integer @param b The second source integer @param c The destination of "a + b" @return CRYPT_OK on success */ int (*add)(void *a, void *b, void *c); /** add two integers @param a The first source integer @param b The second source integer (single digit of upto bits_per_digit in length) @param c The destination of "a + b" @return CRYPT_OK on success */ int (*addi)(void *a, ltc_mp_digit b, void *c); /** subtract two integers @param a The first source integer @param b The second source integer @param c The destination of "a - b" @return CRYPT_OK on success */ int (*sub)(void *a, void *b, void *c); /** subtract two integers @param a The first source integer @param b The second source integer (single digit of upto bits_per_digit in length) @param c The destination of "a - b" @return CRYPT_OK on success */ int (*subi)(void *a, ltc_mp_digit b, void *c); /** multiply two integers @param a The first source integer @param b The second source integer (single digit of upto bits_per_digit in length) @param c The destination of "a * b" @return CRYPT_OK on success */ int (*mul)(void *a, void *b, void *c); /** multiply two integers @param a The first source integer @param b The second source integer (single digit of upto bits_per_digit in length) @param c The destination of "a * b" @return CRYPT_OK on success */ int (*muli)(void *a, ltc_mp_digit b, void *c); /** Square an integer @param a The integer to square @param b The destination @return CRYPT_OK on success */ int (*sqr)(void *a, void *b); /** Divide an integer @param a The dividend @param b The divisor @param c The quotient (can be NULL to signify don't care) @param d The remainder (can be NULL to signify don't care) @return CRYPT_OK on success */ int (*mpdiv)(void *a, void *b, void *c, void *d); /** divide by two @param a The integer to divide (shift right) @param b The destination @return CRYPT_OK on success */ int (*div_2)(void *a, void *b); /** Get remainder (small value) @param a The integer to reduce @param b The modulus (upto bits_per_digit in length) @param c The destination for the residue @return CRYPT_OK on success */ int (*modi)(void *a, ltc_mp_digit b, ltc_mp_digit *c); /** gcd @param a The first integer @param b The second integer @param c The destination for (a, b) @return CRYPT_OK on success */ int (*gcd)(void *a, void *b, void *c); /** lcm @param a The first integer @param b The second integer @param c The destination for [a, b] @return CRYPT_OK on success */ int (*lcm)(void *a, void *b, void *c); /** Modular multiplication @param a The first source @param b The second source @param c The modulus @param d The destination (a*b mod c) @return CRYPT_OK on success */ int (*mulmod)(void *a, void *b, void *c, void *d); /** Modular squaring @param a The first source @param b The modulus @param c The destination (a*a mod b) @return CRYPT_OK on success */ int (*sqrmod)(void *a, void *b, void *c); /** Modular inversion @param a The value to invert @param b The modulus @param c The destination (1/a mod b) @return CRYPT_OK on success */ int (*invmod)(void *, void *, void *); /* ---- reduction ---- */ /** setup Montgomery @param a The modulus @param b The destination for the reduction digit @return CRYPT_OK on success */ int (*montgomery_setup)(void *a, void **b); /** get normalization value @param a The destination for the normalization value @param b The modulus @return CRYPT_OK on success */ int (*montgomery_normalization)(void *a, void *b); /** reduce a number @param a The number [and dest] to reduce @param b The modulus @param c The value "b" from montgomery_setup() @return CRYPT_OK on success */ int (*montgomery_reduce)(void *a, void *b, void *c); /** clean up (frees memory) @param a The value "b" from montgomery_setup() @return CRYPT_OK on success */ void (*montgomery_deinit)(void *a); /* ---- exponentiation ---- */ /** Modular exponentiation @param a The base integer @param b The power (can be negative) integer @param c The modulus integer @param d The destination @return CRYPT_OK on success */ int (*exptmod)(void *a, void *b, void *c, void *d); /** Primality testing @param a The integer to test @param b The number of Miller-Rabin tests that shall be executed @param c The destination of the result (FP_YES if prime) @return CRYPT_OK on success */ int (*isprime)(void *a, int b, int *c); /* ---- (optional) ecc point math ---- */ /** ECC GF(p) point multiplication (from the NIST curves) @param k The integer to multiply the point by @param G The point to multiply @param R The destination for kG @param modulus The modulus for the field @param map Boolean indicated whether to map back to affine or not (can be ignored if you work in affine only) @return CRYPT_OK on success */ int (*ecc_ptmul)( void *k, ecc_point *G, ecc_point *R, void *modulus, int map); /** ECC GF(p) point addition @param P The first point @param Q The second point @param R The destination of P + Q @param modulus The modulus @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ int (*ecc_ptadd)(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *mp); /** ECC GF(p) point double @param P The first point @param R The destination of 2P @param modulus The modulus @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ int (*ecc_ptdbl)(ecc_point *P, ecc_point *R, void *modulus, void *mp); /** ECC mapping from projective to affine, currently uses (x,y,z) => (x/z^2, y/z^3, 1) @param P The point to map @param modulus The modulus @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success @remark The mapping can be different but keep in mind a ecc_point only has three integers (x,y,z) so if you use a different mapping you have to make it fit. */ int (*ecc_map)(ecc_point *P, void *modulus, void *mp); /** Computes kA*A + kB*B = C using Shamir's Trick @param A First point to multiply @param kA What to multiple A by @param B Second point to multiply @param kB What to multiple B by @param C [out] Destination point (can overlap with A or B) @param modulus Modulus for curve @return CRYPT_OK on success */ int (*ecc_mul2add)(ecc_point *A, void *kA, ecc_point *B, void *kB, ecc_point *C, void *modulus); /* ---- (optional) rsa optimized math (for internal CRT) ---- */ /** RSA Key Generation @param prng An active PRNG state @param wprng The index of the PRNG desired @param size The size of the key in octets @param e The "e" value (public key). e==65537 is a good choice @param key [out] Destination of a newly created private key pair @return CRYPT_OK if successful, upon error all allocated ram is freed */ int (*rsa_keygen)(prng_state *prng, int wprng, int size, long e, rsa_key *key); /** RSA exponentiation @param in The octet array representing the base @param inlen The length of the input @param out The destination (to be stored in an octet array format) @param outlen The length of the output buffer and the resulting size (zero padded to the size of the modulus) @param which PK_PUBLIC for public RSA and PK_PRIVATE for private RSA @param key The RSA key to use @return CRYPT_OK on success */ int (*rsa_me)(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, int which, rsa_key *key); /* ---- basic math continued ---- */ /** Modular addition @param a The first source @param b The second source @param c The modulus @param d The destination (a + b mod c) @return CRYPT_OK on success */ int (*addmod)(void *a, void *b, void *c, void *d); /** Modular substraction @param a The first source @param b The second source @param c The modulus @param d The destination (a - b mod c) @return CRYPT_OK on success */ int (*submod)(void *a, void *b, void *c, void *d); /* ---- misc stuff ---- */ /** Make a pseudo-random mpi @param a The mpi to make random @param size The desired length @return CRYPT_OK on success */ int (*rand)(void *a, int size); } ltc_math_descriptor; extern ltc_math_descriptor ltc_mp; int ltc_init_multi(void **a, ...); void ltc_deinit_multi(void *a, ...); void ltc_cleanup_multi(void **a, ...); #ifdef LTM_DESC extern const ltc_math_descriptor ltm_desc; #endif #ifdef TFM_DESC extern const ltc_math_descriptor tfm_desc; #endif #ifdef GMP_DESC extern const ltc_math_descriptor gmp_desc; #endif #if !defined(DESC_DEF_ONLY) && defined(LTC_SOURCE) #define MP_DIGIT_BIT ltc_mp.bits_per_digit /* some handy macros */ #define mp_init(a) ltc_mp.init(a) #define mp_init_multi ltc_init_multi #define mp_clear(a) ltc_mp.deinit(a) #define mp_clear_multi ltc_deinit_multi #define mp_cleanup_multi ltc_cleanup_multi #define mp_init_copy(a, b) ltc_mp.init_copy(a, b) #define mp_neg(a, b) ltc_mp.neg(a, b) #define mp_copy(a, b) ltc_mp.copy(a, b) #define mp_set(a, b) ltc_mp.set_int(a, b) #define mp_set_int(a, b) ltc_mp.set_int(a, b) #define mp_get_int(a) ltc_mp.get_int(a) #define mp_get_digit(a, n) ltc_mp.get_digit(a, n) #define mp_get_digit_count(a) ltc_mp.get_digit_count(a) #define mp_cmp(a, b) ltc_mp.compare(a, b) #define mp_cmp_d(a, b) ltc_mp.compare_d(a, b) #define mp_count_bits(a) ltc_mp.count_bits(a) #define mp_cnt_lsb(a) ltc_mp.count_lsb_bits(a) #define mp_2expt(a, b) ltc_mp.twoexpt(a, b) #define mp_read_radix(a, b, c) ltc_mp.read_radix(a, b, c) #define mp_toradix(a, b, c) ltc_mp.write_radix(a, b, c) #define mp_unsigned_bin_size(a) ltc_mp.unsigned_size(a) #define mp_to_unsigned_bin(a, b) ltc_mp.unsigned_write(a, b) #define mp_read_unsigned_bin(a, b, c) ltc_mp.unsigned_read(a, b, c) #define mp_add(a, b, c) ltc_mp.add(a, b, c) #define mp_add_d(a, b, c) ltc_mp.addi(a, b, c) #define mp_sub(a, b, c) ltc_mp.sub(a, b, c) #define mp_sub_d(a, b, c) ltc_mp.subi(a, b, c) #define mp_mul(a, b, c) ltc_mp.mul(a, b, c) #define mp_mul_d(a, b, c) ltc_mp.muli(a, b, c) #define mp_sqr(a, b) ltc_mp.sqr(a, b) #define mp_div(a, b, c, d) ltc_mp.mpdiv(a, b, c, d) #define mp_div_2(a, b) ltc_mp.div_2(a, b) #define mp_mod(a, b, c) ltc_mp.mpdiv(a, b, NULL, c) #define mp_mod_d(a, b, c) ltc_mp.modi(a, b, c) #define mp_gcd(a, b, c) ltc_mp.gcd(a, b, c) #define mp_lcm(a, b, c) ltc_mp.lcm(a, b, c) #define mp_addmod(a, b, c, d) ltc_mp.addmod(a, b, c, d) #define mp_submod(a, b, c, d) ltc_mp.submod(a, b, c, d) #define mp_mulmod(a, b, c, d) ltc_mp.mulmod(a, b, c, d) #define mp_sqrmod(a, b, c) ltc_mp.sqrmod(a, b, c) #define mp_invmod(a, b, c) ltc_mp.invmod(a, b, c) #define mp_montgomery_setup(a, b) ltc_mp.montgomery_setup(a, b) #define mp_montgomery_normalization(a, b) ltc_mp.montgomery_normalization(a, b) #define mp_montgomery_reduce(a, b, c) ltc_mp.montgomery_reduce(a, b, c) #define mp_montgomery_free(a) ltc_mp.montgomery_deinit(a) #define mp_exptmod(a,b,c,d) ltc_mp.exptmod(a,b,c,d) #define mp_prime_is_prime(a, b, c) ltc_mp.isprime(a, b, c) #define mp_iszero(a) (mp_cmp_d(a, 0) == LTC_MP_EQ ? LTC_MP_YES : LTC_MP_NO) #define mp_isodd(a) (mp_get_digit_count(a) > 0 ? (mp_get_digit(a, 0) & 1 ? LTC_MP_YES : LTC_MP_NO) : LTC_MP_NO) #define mp_exch(a, b) do { void *ABC__tmp = a; a = b; b = ABC__tmp; } while(0) #define mp_tohex(a, b) mp_toradix(a, b, 16) #define mp_rand(a, b) ltc_mp.rand(a, b) #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */