Mercurial > dropbear
view libtomcrypt/src/modes/f8/f8_start.c @ 1659:d32bcb5c557d
Add Ed25519 support (#91)
* Add support for Ed25519 as a public key type
Ed25519 is a elliptic curve signature scheme that offers
better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.
OpenSSH key import and fuzzer are not supported yet.
Initially inspired by Peter Szabo.
* Add curve25519 and ed25519 fuzzers
* Add import and export of Ed25519 keys
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Wed, 11 Mar 2020 21:09:45 +0500 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ #include "tomcrypt.h" /** @file f8_start.c F8 implementation, start chain, Tom St Denis */ #ifdef LTC_F8_MODE /** Initialize an F8 context @param cipher The index of the cipher desired @param IV The initialization vector @param key The secret key @param keylen The length of the secret key (octets) @param salt_key The salting key for the IV @param skeylen The length of the salting key (octets) @param num_rounds Number of rounds in the cipher desired (0 for default) @param f8 The F8 state to initialize @return CRYPT_OK if successful */ int f8_start( int cipher, const unsigned char *IV, const unsigned char *key, int keylen, const unsigned char *salt_key, int skeylen, int num_rounds, symmetric_F8 *f8) { int x, err; unsigned char tkey[MAXBLOCKSIZE]; LTC_ARGCHK(IV != NULL); LTC_ARGCHK(key != NULL); LTC_ARGCHK(salt_key != NULL); LTC_ARGCHK(f8 != NULL); if ((err = cipher_is_valid(cipher)) != CRYPT_OK) { return err; } #ifdef LTC_FAST if (cipher_descriptor[cipher].block_length % sizeof(LTC_FAST_TYPE)) { return CRYPT_INVALID_ARG; } #endif /* copy details */ f8->blockcnt = 0; f8->cipher = cipher; f8->blocklen = cipher_descriptor[cipher].block_length; f8->padlen = f8->blocklen; /* now get key ^ salt_key [extend salt_ket with 0x55 as required to match length] */ zeromem(tkey, sizeof(tkey)); for (x = 0; x < keylen && x < (int)sizeof(tkey); x++) { tkey[x] = key[x]; } for (x = 0; x < skeylen && x < (int)sizeof(tkey); x++) { tkey[x] ^= salt_key[x]; } for (; x < keylen && x < (int)sizeof(tkey); x++) { tkey[x] ^= 0x55; } /* now encrypt with tkey[0..keylen-1] the IV and use that as the IV */ if ((err = cipher_descriptor[cipher].setup(tkey, keylen, num_rounds, &f8->key)) != CRYPT_OK) { return err; } /* encrypt IV */ if ((err = cipher_descriptor[f8->cipher].ecb_encrypt(IV, f8->MIV, &f8->key)) != CRYPT_OK) { cipher_descriptor[f8->cipher].done(&f8->key); return err; } zeromem(tkey, sizeof(tkey)); zeromem(f8->IV, sizeof(f8->IV)); /* terminate this cipher */ cipher_descriptor[f8->cipher].done(&f8->key); /* init the cipher */ return cipher_descriptor[cipher].setup(key, keylen, num_rounds, &f8->key); } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */