Mercurial > dropbear
view libtomcrypt/src/pk/dsa/dsa_generate_pqg.c @ 1659:d32bcb5c557d
Add Ed25519 support (#91)
* Add support for Ed25519 as a public key type
Ed25519 is a elliptic curve signature scheme that offers
better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.
OpenSSH key import and fuzzer are not supported yet.
Initially inspired by Peter Szabo.
* Add curve25519 and ed25519 fuzzers
* Add import and export of Ed25519 keys
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Wed, 11 Mar 2020 21:09:45 +0500 |
parents | 6dba84798cd5 |
children | e9dba7abd939 |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ #include "tomcrypt.h" /** @file dsa_generate_pqg.c DSA implementation - generate DSA parameters p, q & g */ #ifdef LTC_MDSA /** Create DSA parameters (INTERNAL ONLY, not part of public API) @param prng An active PRNG state @param wprng The index of the PRNG desired @param group_size Size of the multiplicative group (octets) @param modulus_size Size of the modulus (octets) @param p [out] bignum where generated 'p' is stored (must be initialized by caller) @param q [out] bignum where generated 'q' is stored (must be initialized by caller) @param g [out] bignum where generated 'g' is stored (must be initialized by caller) @return CRYPT_OK if successful, upon error this function will free all allocated memory */ static int _dsa_make_params(prng_state *prng, int wprng, int group_size, int modulus_size, void *p, void *q, void *g) { unsigned long L, N, n, outbytes, seedbytes, counter, j, i; int err, res, mr_tests_q, mr_tests_p, found_p, found_q, hash; unsigned char *wbuf, *sbuf, digest[MAXBLOCKSIZE]; void *t2L1, *t2N1, *t2q, *t2seedlen, *U, *W, *X, *c, *h, *e, *seedinc; /* check size */ if (group_size >= LTC_MDSA_MAX_GROUP || group_size < 1 || group_size >= modulus_size) { return CRYPT_INVALID_ARG; } /* FIPS-186-4 A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function * * L = The desired length of the prime p (in bits e.g. L = 1024) * N = The desired length of the prime q (in bits e.g. N = 160) * seedlen = The desired bit length of the domain parameter seed; seedlen shallbe equal to or greater than N * outlen = The bit length of Hash function * * 1. Check that the (L, N) * 2. If (seedlen <N), then return INVALID. * 3. n = ceil(L / outlen) - 1 * 4. b = L- 1 - (n * outlen) * 5. domain_parameter_seed = an arbitrary sequence of seedlen bits * 6. U = Hash (domain_parameter_seed) mod 2^(N-1) * 7. q = 2^(N-1) + U + 1 - (U mod 2) * 8. Test whether or not q is prime as specified in Appendix C.3 * 9. If qis not a prime, then go to step 5. * 10. offset = 1 * 11. For counter = 0 to (4L- 1) do { * For j=0 to n do { * Vj = Hash ((domain_parameter_seed+ offset + j) mod 2^seedlen * } * W = V0 + (V1 *2^outlen) + ... + (Vn-1 * 2^((n-1) * outlen)) + ((Vn mod 2^b) * 2^(n * outlen)) * X = W + 2^(L-1) Comment: 0 <= W < 2^(L-1); hence 2^(L-1) <= X < 2^L * c = X mod 2*q * p = X - (c - 1) Comment: p ~ 1 (mod 2*q) * If (p >= 2^(L-1)) { * Test whether or not p is prime as specified in Appendix C.3. * If p is determined to be prime, then return VALID and the values of p, qand (optionally) the values of domain_parameter_seed and counter * } * offset = offset + n + 1 Comment: Increment offset * } */ seedbytes = group_size; L = modulus_size * 8; N = group_size * 8; /* XXX-TODO no Lucas test */ #ifdef LTC_MPI_HAS_LUCAS_TEST /* M-R tests (when followed by one Lucas test) according FIPS-186-4 - Appendix C.3 - table C.1 */ mr_tests_p = (L <= 2048) ? 3 : 2; if (N <= 160) { mr_tests_q = 19; } else if (N <= 224) { mr_tests_q = 24; } else { mr_tests_q = 27; } #else /* M-R tests (without Lucas test) according FIPS-186-4 - Appendix C.3 - table C.1 */ if (L <= 1024) { mr_tests_p = 40; } else if (L <= 2048) { mr_tests_p = 56; } else { mr_tests_p = 64; } if (N <= 160) { mr_tests_q = 40; } else if (N <= 224) { mr_tests_q = 56; } else { mr_tests_q = 64; } #endif if (N <= 256) { hash = register_hash(&sha256_desc); } else if (N <= 384) { hash = register_hash(&sha384_desc); } else if (N <= 512) { hash = register_hash(&sha512_desc); } else { return CRYPT_INVALID_ARG; /* group_size too big */ } if ((err = hash_is_valid(hash)) != CRYPT_OK) { return err; } outbytes = hash_descriptor[hash].hashsize; n = ((L + outbytes*8 - 1) / (outbytes*8)) - 1; if ((wbuf = XMALLOC((n+1)*outbytes)) == NULL) { err = CRYPT_MEM; goto cleanup3; } if ((sbuf = XMALLOC(seedbytes)) == NULL) { err = CRYPT_MEM; goto cleanup2; } err = mp_init_multi(&t2L1, &t2N1, &t2q, &t2seedlen, &U, &W, &X, &c, &h, &e, &seedinc, NULL); if (err != CRYPT_OK) { goto cleanup1; } if ((err = mp_2expt(t2L1, L-1)) != CRYPT_OK) { goto cleanup; } /* t2L1 = 2^(L-1) */ if ((err = mp_2expt(t2N1, N-1)) != CRYPT_OK) { goto cleanup; } /* t2N1 = 2^(N-1) */ if ((err = mp_2expt(t2seedlen, seedbytes*8)) != CRYPT_OK) { goto cleanup; } /* t2seedlen = 2^seedlen */ for(found_p=0; !found_p;) { /* q */ for(found_q=0; !found_q;) { if (prng_descriptor[wprng].read(sbuf, seedbytes, prng) != seedbytes) { err = CRYPT_ERROR_READPRNG; goto cleanup; } i = outbytes; if ((err = hash_memory(hash, sbuf, seedbytes, digest, &i)) != CRYPT_OK) { goto cleanup; } if ((err = mp_read_unsigned_bin(U, digest, outbytes)) != CRYPT_OK) { goto cleanup; } if ((err = mp_mod(U, t2N1, U)) != CRYPT_OK) { goto cleanup; } if ((err = mp_add(t2N1, U, q)) != CRYPT_OK) { goto cleanup; } if (!mp_isodd(q)) mp_add_d(q, 1, q); if ((err = mp_prime_is_prime(q, mr_tests_q, &res)) != CRYPT_OK) { goto cleanup; } if (res == LTC_MP_YES) found_q = 1; } /* p */ if ((err = mp_read_unsigned_bin(seedinc, sbuf, seedbytes)) != CRYPT_OK) { goto cleanup; } if ((err = mp_add(q, q, t2q)) != CRYPT_OK) { goto cleanup; } for(counter=0; counter < 4*L && !found_p; counter++) { for(j=0; j<=n; j++) { if ((err = mp_add_d(seedinc, 1, seedinc)) != CRYPT_OK) { goto cleanup; } if ((err = mp_mod(seedinc, t2seedlen, seedinc)) != CRYPT_OK) { goto cleanup; } /* seedinc = (seedinc+1) % 2^seed_bitlen */ if ((i = mp_unsigned_bin_size(seedinc)) > seedbytes) { err = CRYPT_INVALID_ARG; goto cleanup; } zeromem(sbuf, seedbytes); if ((err = mp_to_unsigned_bin(seedinc, sbuf + seedbytes-i)) != CRYPT_OK) { goto cleanup; } i = outbytes; err = hash_memory(hash, sbuf, seedbytes, wbuf+(n-j)*outbytes, &i); if (err != CRYPT_OK) { goto cleanup; } } if ((err = mp_read_unsigned_bin(W, wbuf, (n+1)*outbytes)) != CRYPT_OK) { goto cleanup; } if ((err = mp_mod(W, t2L1, W)) != CRYPT_OK) { goto cleanup; } if ((err = mp_add(W, t2L1, X)) != CRYPT_OK) { goto cleanup; } if ((err = mp_mod(X, t2q, c)) != CRYPT_OK) { goto cleanup; } if ((err = mp_sub_d(c, 1, p)) != CRYPT_OK) { goto cleanup; } if ((err = mp_sub(X, p, p)) != CRYPT_OK) { goto cleanup; } if (mp_cmp(p, t2L1) != LTC_MP_LT) { /* p >= 2^(L-1) */ if ((err = mp_prime_is_prime(p, mr_tests_p, &res)) != CRYPT_OK) { goto cleanup; } if (res == LTC_MP_YES) { found_p = 1; } } } } /* FIPS-186-4 A.2.1 Unverifiable Generation of the Generator g * 1. e = (p - 1)/q * 2. h = any integer satisfying: 1 < h < (p - 1) * h could be obtained from a random number generator or from a counter that changes after each use * 3. g = h^e mod p * 4. if (g == 1), then go to step 2. * */ if ((err = mp_sub_d(p, 1, e)) != CRYPT_OK) { goto cleanup; } if ((err = mp_div(e, q, e, c)) != CRYPT_OK) { goto cleanup; } /* e = (p - 1)/q */ i = mp_count_bits(p); do { do { if ((err = rand_bn_bits(h, i, prng, wprng)) != CRYPT_OK) { goto cleanup; } } while (mp_cmp(h, p) != LTC_MP_LT || mp_cmp_d(h, 2) != LTC_MP_GT); if ((err = mp_sub_d(h, 1, h)) != CRYPT_OK) { goto cleanup; } /* h is randon and 1 < h < (p-1) */ if ((err = mp_exptmod(h, e, p, g)) != CRYPT_OK) { goto cleanup; } } while (mp_cmp_d(g, 1) == LTC_MP_EQ); err = CRYPT_OK; cleanup: mp_clear_multi(t2L1, t2N1, t2q, t2seedlen, U, W, X, c, h, e, seedinc, NULL); cleanup1: XFREE(sbuf); cleanup2: XFREE(wbuf); cleanup3: return err; } /** Generate DSA parameters p, q & g @param prng An active PRNG state @param wprng The index of the PRNG desired @param group_size Size of the multiplicative group (octets) @param modulus_size Size of the modulus (octets) @param key [out] Where to store the created key @return CRYPT_OK if successful. */ int dsa_generate_pqg(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key) { int err; LTC_ARGCHK(key != NULL); LTC_ARGCHK(ltc_mp.name != NULL); /* init mp_ints */ if ((err = mp_init_multi(&key->p, &key->g, &key->q, &key->x, &key->y, NULL)) != CRYPT_OK) { return err; } /* generate params */ err = _dsa_make_params(prng, wprng, group_size, modulus_size, key->p, key->q, key->g); if (err != CRYPT_OK) { goto cleanup; } key->qord = group_size; return CRYPT_OK; cleanup: dsa_free(key); return err; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */