view libtomcrypt/src/pk/ecc/ltc_ecc_map.c @ 1659:d32bcb5c557d

Add Ed25519 support (#91) * Add support for Ed25519 as a public key type Ed25519 is a elliptic curve signature scheme that offers better security than ECDSA and DSA and good performance. It may be used for both user and host keys. OpenSSH key import and fuzzer are not supported yet. Initially inspired by Peter Szabo. * Add curve25519 and ed25519 fuzzers * Add import and export of Ed25519 keys
author Vladislav Grishenko <themiron@users.noreply.github.com>
date Wed, 11 Mar 2020 21:09:45 +0500
parents 6dba84798cd5
children
line wrap: on
line source

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 */

/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
 *
 * All curves taken from NIST recommendation paper of July 1999
 * Available at http://csrc.nist.gov/cryptval/dss.htm
 */
#include "tomcrypt.h"

/**
  @file ltc_ecc_map.c
  ECC Crypto, Tom St Denis
*/

#ifdef LTC_MECC

/**
  Map a projective jacbobian point back to affine space
  @param P        [in/out] The point to map
  @param modulus  The modulus of the field the ECC curve is in
  @param mp       The "b" value from montgomery_setup()
  @return CRYPT_OK on success
*/
int ltc_ecc_map(ecc_point *P, void *modulus, void *mp)
{
   void *t1, *t2;
   int   err;

   LTC_ARGCHK(P       != NULL);
   LTC_ARGCHK(modulus != NULL);
   LTC_ARGCHK(mp      != NULL);

   if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) {
      return err;
   }

   /* first map z back to normal */
   if ((err = mp_montgomery_reduce(P->z, modulus, mp)) != CRYPT_OK)           { goto done; }

   /* get 1/z */
   if ((err = mp_invmod(P->z, modulus, t1)) != CRYPT_OK)                      { goto done; }

   /* get 1/z^2 and 1/z^3 */
   if ((err = mp_sqr(t1, t2)) != CRYPT_OK)                                    { goto done; }
   if ((err = mp_mod(t2, modulus, t2)) != CRYPT_OK)                           { goto done; }
   if ((err = mp_mul(t1, t2, t1)) != CRYPT_OK)                                { goto done; }
   if ((err = mp_mod(t1, modulus, t1)) != CRYPT_OK)                           { goto done; }

   /* multiply against x/y */
   if ((err = mp_mul(P->x, t2, P->x)) != CRYPT_OK)                            { goto done; }
   if ((err = mp_montgomery_reduce(P->x, modulus, mp)) != CRYPT_OK)           { goto done; }
   if ((err = mp_mul(P->y, t1, P->y)) != CRYPT_OK)                            { goto done; }
   if ((err = mp_montgomery_reduce(P->y, modulus, mp)) != CRYPT_OK)           { goto done; }
   if ((err = mp_set(P->z, 1)) != CRYPT_OK)                                   { goto done; }

   err = CRYPT_OK;
done:
   mp_clear_multi(t1, t2, NULL);
   return err;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */