Mercurial > dropbear
view libtomcrypt/src/pk/ecc/ltc_ecc_mul2add.c @ 1659:d32bcb5c557d
Add Ed25519 support (#91)
* Add support for Ed25519 as a public key type
Ed25519 is a elliptic curve signature scheme that offers
better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.
OpenSSH key import and fuzzer are not supported yet.
Initially inspired by Peter Szabo.
* Add curve25519 and ed25519 fuzzers
* Add import and export of Ed25519 keys
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Wed, 11 Mar 2020 21:09:45 +0500 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ #include "tomcrypt.h" /** @file ltc_ecc_mul2add.c ECC Crypto, Shamir's Trick, Tom St Denis */ #ifdef LTC_MECC #ifdef LTC_ECC_SHAMIR /** Computes kA*A + kB*B = C using Shamir's Trick @param A First point to multiply @param kA What to multiple A by @param B Second point to multiply @param kB What to multiple B by @param C [out] Destination point (can overlap with A or B @param modulus Modulus for curve @return CRYPT_OK on success */ int ltc_ecc_mul2add(ecc_point *A, void *kA, ecc_point *B, void *kB, ecc_point *C, void *modulus) { ecc_point *precomp[16]; unsigned bitbufA, bitbufB, lenA, lenB, len, x, y, nA, nB, nibble; unsigned char *tA, *tB; int err, first; void *mp, *mu; /* argchks */ LTC_ARGCHK(A != NULL); LTC_ARGCHK(B != NULL); LTC_ARGCHK(C != NULL); LTC_ARGCHK(kA != NULL); LTC_ARGCHK(kB != NULL); LTC_ARGCHK(modulus != NULL); /* allocate memory */ tA = XCALLOC(1, ECC_BUF_SIZE); if (tA == NULL) { return CRYPT_MEM; } tB = XCALLOC(1, ECC_BUF_SIZE); if (tB == NULL) { XFREE(tA); return CRYPT_MEM; } /* get sizes */ lenA = mp_unsigned_bin_size(kA); lenB = mp_unsigned_bin_size(kB); len = MAX(lenA, lenB); /* sanity check */ if ((lenA > ECC_BUF_SIZE) || (lenB > ECC_BUF_SIZE)) { err = CRYPT_INVALID_ARG; goto ERR_T; } /* extract and justify kA */ mp_to_unsigned_bin(kA, (len - lenA) + tA); /* extract and justify kB */ mp_to_unsigned_bin(kB, (len - lenB) + tB); /* allocate the table */ for (x = 0; x < 16; x++) { precomp[x] = ltc_ecc_new_point(); if (precomp[x] == NULL) { for (y = 0; y < x; ++y) { ltc_ecc_del_point(precomp[y]); } err = CRYPT_MEM; goto ERR_T; } } /* init montgomery reduction */ if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) { goto ERR_P; } if ((err = mp_init(&mu)) != CRYPT_OK) { goto ERR_MP; } if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) { goto ERR_MU; } /* copy ones ... */ if ((err = mp_mulmod(A->x, mu, modulus, precomp[1]->x)) != CRYPT_OK) { goto ERR_MU; } if ((err = mp_mulmod(A->y, mu, modulus, precomp[1]->y)) != CRYPT_OK) { goto ERR_MU; } if ((err = mp_mulmod(A->z, mu, modulus, precomp[1]->z)) != CRYPT_OK) { goto ERR_MU; } if ((err = mp_mulmod(B->x, mu, modulus, precomp[1<<2]->x)) != CRYPT_OK) { goto ERR_MU; } if ((err = mp_mulmod(B->y, mu, modulus, precomp[1<<2]->y)) != CRYPT_OK) { goto ERR_MU; } if ((err = mp_mulmod(B->z, mu, modulus, precomp[1<<2]->z)) != CRYPT_OK) { goto ERR_MU; } /* precomp [i,0](A + B) table */ if ((err = ltc_mp.ecc_ptdbl(precomp[1], precomp[2], modulus, mp)) != CRYPT_OK) { goto ERR_MU; } if ((err = ltc_mp.ecc_ptadd(precomp[1], precomp[2], precomp[3], modulus, mp)) != CRYPT_OK) { goto ERR_MU; } /* precomp [0,i](A + B) table */ if ((err = ltc_mp.ecc_ptdbl(precomp[1<<2], precomp[2<<2], modulus, mp)) != CRYPT_OK) { goto ERR_MU; } if ((err = ltc_mp.ecc_ptadd(precomp[1<<2], precomp[2<<2], precomp[3<<2], modulus, mp)) != CRYPT_OK) { goto ERR_MU; } /* precomp [i,j](A + B) table (i != 0, j != 0) */ for (x = 1; x < 4; x++) { for (y = 1; y < 4; y++) { if ((err = ltc_mp.ecc_ptadd(precomp[x], precomp[(y<<2)], precomp[x+(y<<2)], modulus, mp)) != CRYPT_OK) { goto ERR_MU; } } } nibble = 3; first = 1; bitbufA = tA[0]; bitbufB = tB[0]; /* for every byte of the multiplicands */ for (x = 0;; ) { /* grab a nibble */ if (++nibble == 4) { if (x == len) break; bitbufA = tA[x]; bitbufB = tB[x]; nibble = 0; ++x; } /* extract two bits from both, shift/update */ nA = (bitbufA >> 6) & 0x03; nB = (bitbufB >> 6) & 0x03; bitbufA = (bitbufA << 2) & 0xFF; bitbufB = (bitbufB << 2) & 0xFF; /* if both zero, if first, continue */ if ((nA == 0) && (nB == 0) && (first == 1)) { continue; } /* double twice, only if this isn't the first */ if (first == 0) { /* double twice */ if ((err = ltc_mp.ecc_ptdbl(C, C, modulus, mp)) != CRYPT_OK) { goto ERR_MU; } if ((err = ltc_mp.ecc_ptdbl(C, C, modulus, mp)) != CRYPT_OK) { goto ERR_MU; } } /* if not both zero */ if ((nA != 0) || (nB != 0)) { if (first == 1) { /* if first, copy from table */ first = 0; if ((err = mp_copy(precomp[nA + (nB<<2)]->x, C->x)) != CRYPT_OK) { goto ERR_MU; } if ((err = mp_copy(precomp[nA + (nB<<2)]->y, C->y)) != CRYPT_OK) { goto ERR_MU; } if ((err = mp_copy(precomp[nA + (nB<<2)]->z, C->z)) != CRYPT_OK) { goto ERR_MU; } } else { /* if not first, add from table */ if ((err = ltc_mp.ecc_ptadd(C, precomp[nA + (nB<<2)], C, modulus, mp)) != CRYPT_OK) { goto ERR_MU; } } } } /* reduce to affine */ err = ltc_ecc_map(C, modulus, mp); /* clean up */ ERR_MU: mp_clear(mu); ERR_MP: mp_montgomery_free(mp); ERR_P: for (x = 0; x < 16; x++) { ltc_ecc_del_point(precomp[x]); } ERR_T: #ifdef LTC_CLEAN_STACK zeromem(tA, ECC_BUF_SIZE); zeromem(tB, ECC_BUF_SIZE); #endif XFREE(tA); XFREE(tB); return err; } #endif #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */