Mercurial > dropbear
view libtomcrypt/src/pk/ecc/ltc_ecc_mulmod_timing.c @ 1659:d32bcb5c557d
Add Ed25519 support (#91)
* Add support for Ed25519 as a public key type
Ed25519 is a elliptic curve signature scheme that offers
better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.
OpenSSH key import and fuzzer are not supported yet.
Initially inspired by Peter Szabo.
* Add curve25519 and ed25519 fuzzers
* Add import and export of Ed25519 keys
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Wed, 11 Mar 2020 21:09:45 +0500 |
parents | 6dba84798cd5 |
children | 1ff2a1034c52 |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ #include "tomcrypt.h" /** @file ltc_ecc_mulmod_timing.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC #ifdef LTC_ECC_TIMING_RESISTANT /** Perform a point multiplication (timing resistant) @param k The scalar to multiply by @param G The base point @param R [out] Destination for kG @param modulus The modulus of the field the ECC curve is in @param map Boolean whether to map back to affine or not (1==map, 0 == leave in projective) @return CRYPT_OK on success */ int ltc_ecc_mulmod(void *k, ecc_point *G, ecc_point *R, void *modulus, int map) { ecc_point *tG, *M[3]; int i, j, err; void *mu, *mp; ltc_mp_digit buf; int bitcnt, mode, digidx; LTC_ARGCHK(k != NULL); LTC_ARGCHK(G != NULL); LTC_ARGCHK(R != NULL); LTC_ARGCHK(modulus != NULL); /* init montgomery reduction */ if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) { return err; } if ((err = mp_init(&mu)) != CRYPT_OK) { mp_montgomery_free(mp); return err; } if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) { mp_clear(mu); mp_montgomery_free(mp); return err; } /* alloc ram for window temps */ for (i = 0; i < 3; i++) { M[i] = ltc_ecc_new_point(); if (M[i] == NULL) { for (j = 0; j < i; j++) { ltc_ecc_del_point(M[j]); } mp_clear(mu); mp_montgomery_free(mp); return CRYPT_MEM; } } /* make a copy of G incase R==G */ tG = ltc_ecc_new_point(); if (tG == NULL) { err = CRYPT_MEM; goto done; } /* tG = G and convert to montgomery */ if ((err = mp_mulmod(G->x, mu, modulus, tG->x)) != CRYPT_OK) { goto done; } if ((err = mp_mulmod(G->y, mu, modulus, tG->y)) != CRYPT_OK) { goto done; } if ((err = mp_mulmod(G->z, mu, modulus, tG->z)) != CRYPT_OK) { goto done; } mp_clear(mu); mu = NULL; /* calc the M tab */ /* M[0] == G */ if ((err = mp_copy(tG->x, M[0]->x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(tG->y, M[0]->y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(tG->z, M[0]->z)) != CRYPT_OK) { goto done; } /* M[1] == 2G */ if ((err = ltc_mp.ecc_ptdbl(tG, M[1], modulus, mp)) != CRYPT_OK) { goto done; } /* setup sliding window */ mode = 0; bitcnt = 1; buf = 0; digidx = mp_get_digit_count(k) - 1; /* perform ops */ for (;;) { /* grab next digit as required */ if (--bitcnt == 0) { if (digidx == -1) { break; } buf = mp_get_digit(k, digidx); bitcnt = (int) MP_DIGIT_BIT; --digidx; } /* grab the next msb from the ltiplicand */ i = (buf >> (MP_DIGIT_BIT - 1)) & 1; buf <<= 1; if (mode == 0 && i == 0) { /* dummy operations */ if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; } if ((err = ltc_mp.ecc_ptdbl(M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; } continue; } if (mode == 0 && i == 1) { mode = 1; /* dummy operations */ if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; } if ((err = ltc_mp.ecc_ptdbl(M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; } continue; } if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[i^1], modulus, mp)) != CRYPT_OK) { goto done; } if ((err = ltc_mp.ecc_ptdbl(M[i], M[i], modulus, mp)) != CRYPT_OK) { goto done; } } /* copy result out */ if ((err = mp_copy(M[0]->x, R->x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(M[0]->y, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(M[0]->z, R->z)) != CRYPT_OK) { goto done; } /* map R back from projective space */ if (map) { err = ltc_ecc_map(R, modulus, mp); } else { err = CRYPT_OK; } done: if (mu != NULL) { mp_clear(mu); } mp_montgomery_free(mp); ltc_ecc_del_point(tG); for (i = 0; i < 3; i++) { ltc_ecc_del_point(M[i]); } return err; } #endif #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */