Mercurial > dropbear
view libtomcrypt/tests/ecc_test.c @ 1659:d32bcb5c557d
Add Ed25519 support (#91)
* Add support for Ed25519 as a public key type
Ed25519 is a elliptic curve signature scheme that offers
better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.
OpenSSH key import and fuzzer are not supported yet.
Initially inspired by Peter Szabo.
* Add curve25519 and ed25519 fuzzers
* Add import and export of Ed25519 keys
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Wed, 11 Mar 2020 21:09:45 +0500 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ #include <tomcrypt_test.h> #if defined(LTC_MECC) && defined(LTC_TEST_MPI) static unsigned int sizes[] = { #ifdef LTC_ECC112 14, #endif #ifdef LTC_ECC128 16, #endif #ifdef LTC_ECC160 20, #endif #ifdef LTC_ECC192 24, #endif #ifdef LTC_ECC224 28, #endif #ifdef LTC_ECC256 32, #endif #ifdef LTC_ECC384 48, #endif #ifdef LTC_ECC521 65 #endif }; #ifdef LTC_ECC_SHAMIR int ecc_test_shamir(void) { void *modulus, *mp, *kA, *kB, *rA, *rB; ecc_point *G, *A, *B, *C1, *C2; int x, y, z; unsigned char buf[ECC_BUF_SIZE]; DO(mp_init_multi(&kA, &kB, &rA, &rB, &modulus, NULL)); LTC_ARGCHK((G = ltc_ecc_new_point()) != NULL); LTC_ARGCHK((A = ltc_ecc_new_point()) != NULL); LTC_ARGCHK((B = ltc_ecc_new_point()) != NULL); LTC_ARGCHK((C1 = ltc_ecc_new_point()) != NULL); LTC_ARGCHK((C2 = ltc_ecc_new_point()) != NULL); for (x = 0; x < (int)(sizeof(sizes)/sizeof(sizes[0])); x++) { /* get the base point */ for (z = 0; ltc_ecc_sets[z].name; z++) { if (sizes[z] < (unsigned int)ltc_ecc_sets[z].size) break; } LTC_ARGCHK(ltc_ecc_sets[z].name != NULL); /* load it */ DO(mp_read_radix(G->x, ltc_ecc_sets[z].Gx, 16)); DO(mp_read_radix(G->y, ltc_ecc_sets[z].Gy, 16)); DO(mp_set(G->z, 1)); DO(mp_read_radix(modulus, ltc_ecc_sets[z].prime, 16)); DO(mp_montgomery_setup(modulus, &mp)); /* do 100 random tests */ for (y = 0; y < 100; y++) { /* pick a random r1, r2 */ LTC_ARGCHK(yarrow_read(buf, sizes[x], &yarrow_prng) == sizes[x]); DO(mp_read_unsigned_bin(rA, buf, sizes[x])); LTC_ARGCHK(yarrow_read(buf, sizes[x], &yarrow_prng) == sizes[x]); DO(mp_read_unsigned_bin(rB, buf, sizes[x])); /* compute rA * G = A */ DO(ltc_mp.ecc_ptmul(rA, G, A, modulus, 1)); /* compute rB * G = B */ DO(ltc_mp.ecc_ptmul(rB, G, B, modulus, 1)); /* pick a random kA, kB */ LTC_ARGCHK(yarrow_read(buf, sizes[x], &yarrow_prng) == sizes[x]); DO(mp_read_unsigned_bin(kA, buf, sizes[x])); LTC_ARGCHK(yarrow_read(buf, sizes[x], &yarrow_prng) == sizes[x]); DO(mp_read_unsigned_bin(kB, buf, sizes[x])); /* now, compute kA*A + kB*B = C1 using the older method */ DO(ltc_mp.ecc_ptmul(kA, A, C1, modulus, 0)); DO(ltc_mp.ecc_ptmul(kB, B, C2, modulus, 0)); DO(ltc_mp.ecc_ptadd(C1, C2, C1, modulus, mp)); DO(ltc_mp.ecc_map(C1, modulus, mp)); /* now compute using mul2add */ DO(ltc_mp.ecc_mul2add(A, kA, B, kB, C2, modulus)); /* is they the sames? */ if ((mp_cmp(C1->x, C2->x) != LTC_MP_EQ) || (mp_cmp(C1->y, C2->y) != LTC_MP_EQ) || (mp_cmp(C1->z, C2->z) != LTC_MP_EQ)) { fprintf(stderr, "ECC failed shamir test: size=%d, testno=%d\n", sizes[x], y); return 1; } } mp_montgomery_free(mp); } ltc_ecc_del_point(C2); ltc_ecc_del_point(C1); ltc_ecc_del_point(B); ltc_ecc_del_point(A); ltc_ecc_del_point(G); mp_clear_multi(kA, kB, rA, rB, modulus, NULL); return 0; } #endif int ecc_tests (void) { unsigned char buf[4][4096], ch; unsigned long x, y, z, s; int stat, stat2; ecc_key usera, userb, pubKey, privKey; DO(ecc_test ()); for (s = 0; s < (sizeof(sizes)/sizeof(sizes[0])); s++) { /* make up two keys */ DO(ecc_make_key (&yarrow_prng, find_prng ("yarrow"), sizes[s], &usera)); DO(ecc_make_key (&yarrow_prng, find_prng ("yarrow"), sizes[s], &userb)); /* make the shared secret */ x = sizeof(buf[0]); DO(ecc_shared_secret (&usera, &userb, buf[0], &x)); y = sizeof(buf[1]); DO(ecc_shared_secret (&userb, &usera, buf[1], &y)); if (y != x) { fprintf(stderr, "ecc Shared keys are not same size."); return 1; } if (memcmp (buf[0], buf[1], x)) { fprintf(stderr, "ecc Shared keys not same contents."); return 1; } /* now export userb */ y = sizeof(buf[0]); DO(ecc_export (buf[1], &y, PK_PUBLIC, &userb)); ecc_free (&userb); /* import and make the shared secret again */ DO(ecc_import (buf[1], y, &userb)); z = sizeof(buf[0]); DO(ecc_shared_secret (&usera, &userb, buf[2], &z)); if (z != x) { fprintf(stderr, "failed. Size don't match?"); return 1; } if (memcmp (buf[0], buf[2], x)) { fprintf(stderr, "Failed. Contents didn't match."); return 1; } /* export with ANSI X9.63 */ y = sizeof(buf[1]); DO(ecc_ansi_x963_export(&userb, buf[1], &y)); ecc_free (&userb); /* now import the ANSI key */ DO(ecc_ansi_x963_import(buf[1], y, &userb)); /* shared secret */ z = sizeof(buf[0]); DO(ecc_shared_secret (&usera, &userb, buf[2], &z)); if (z != x) { fprintf(stderr, "failed. Size don't match?"); return 1; } if (memcmp (buf[0], buf[2], x)) { fprintf(stderr, "Failed. Contents didn't match."); return 1; } ecc_free (&usera); ecc_free (&userb); /* test encrypt_key */ DO(ecc_make_key (&yarrow_prng, find_prng ("yarrow"), sizes[s], &usera)); /* export key */ x = sizeof(buf[0]); DO(ecc_export(buf[0], &x, PK_PUBLIC, &usera)); DO(ecc_import(buf[0], x, &pubKey)); x = sizeof(buf[0]); DO(ecc_export(buf[0], &x, PK_PRIVATE, &usera)); DO(ecc_import(buf[0], x, &privKey)); for (ch = 0; ch < 32; ch++) { buf[0][ch] = ch; } y = sizeof (buf[1]); DO(ecc_encrypt_key (buf[0], 32, buf[1], &y, &yarrow_prng, find_prng ("yarrow"), find_hash ("sha256"), &pubKey)); zeromem (buf[0], sizeof (buf[0])); x = sizeof (buf[0]); DO(ecc_decrypt_key (buf[1], y, buf[0], &x, &privKey)); if (x != 32) { fprintf(stderr, "Failed (length)"); return 1; } for (ch = 0; ch < 32; ch++) { if (buf[0][ch] != ch) { fprintf(stderr, "Failed (contents)"); return 1; } } /* test sign_hash */ for (ch = 0; ch < 16; ch++) { buf[0][ch] = ch; } x = sizeof (buf[1]); DO(ecc_sign_hash (buf[0], 16, buf[1], &x, &yarrow_prng, find_prng ("yarrow"), &privKey)); DO(ecc_verify_hash (buf[1], x, buf[0], 16, &stat, &pubKey)); buf[0][0] ^= 1; DO(ecc_verify_hash (buf[1], x, buf[0], 16, &stat2, &privKey)); if (!(stat == 1 && stat2 == 0)) { fprintf(stderr, "ecc_verify_hash failed %d, %d, ", stat, stat2); return 1; } /* test sign_hash_rfc7518 */ for (ch = 0; ch < 16; ch++) { buf[0][ch] = ch; } x = sizeof (buf[1]); DO(ecc_sign_hash_rfc7518(buf[0], 16, buf[1], &x, &yarrow_prng, find_prng ("yarrow"), &privKey)); DO(ecc_verify_hash_rfc7518(buf[1], x, buf[0], 16, &stat, &pubKey)); buf[0][0] ^= 1; DO(ecc_verify_hash_rfc7518(buf[1], x, buf[0], 16, &stat2, &privKey)); if (!(stat == 1 && stat2 == 0)) { fprintf(stderr, "ecc_verify_hash_rfc7518 failed %d, %d, ", stat, stat2); return 1; } ecc_free (&usera); ecc_free (&pubKey); ecc_free (&privKey); } #ifdef LTC_ECC_SHAMIR return ecc_test_shamir(); #else return 0; #endif } #else int ecc_tests(void) { return CRYPT_NOP; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */