Mercurial > dropbear
view libtommath/bn_fast_mp_invmod.c @ 1659:d32bcb5c557d
Add Ed25519 support (#91)
* Add support for Ed25519 as a public key type
Ed25519 is a elliptic curve signature scheme that offers
better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.
OpenSSH key import and fuzzer are not supported yet.
Initially inspired by Peter Szabo.
* Add curve25519 and ed25519 fuzzers
* Add import and export of Ed25519 keys
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Wed, 11 Mar 2020 21:09:45 +0500 |
parents | f52919ffd3b1 |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_FAST_MP_INVMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* computes the modular inverse via binary extended euclidean algorithm, * that is c = 1/a mod b * * Based on slow invmod except this is optimized for the case where b is * odd as per HAC Note 14.64 on pp. 610 */ int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c) { mp_int x, y, u, v, B, D; int res, neg; /* 2. [modified] b must be odd */ if (mp_iseven(b) == MP_YES) { return MP_VAL; } /* init all our temps */ if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { return res; } /* x == modulus, y == value to invert */ if ((res = mp_copy(b, &x)) != MP_OKAY) { goto LBL_ERR; } /* we need y = |a| */ if ((res = mp_mod(a, b, &y)) != MP_OKAY) { goto LBL_ERR; } /* if one of x,y is zero return an error! */ if ((mp_iszero(&x) == MP_YES) || (mp_iszero(&y) == MP_YES)) { res = MP_VAL; goto LBL_ERR; } /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ if ((res = mp_copy(&x, &u)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy(&y, &v)) != MP_OKAY) { goto LBL_ERR; } mp_set(&D, 1uL); top: /* 4. while u is even do */ while (mp_iseven(&u) == MP_YES) { /* 4.1 u = u/2 */ if ((res = mp_div_2(&u, &u)) != MP_OKAY) { goto LBL_ERR; } /* 4.2 if B is odd then */ if (mp_isodd(&B) == MP_YES) { if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) { goto LBL_ERR; } } /* B = B/2 */ if ((res = mp_div_2(&B, &B)) != MP_OKAY) { goto LBL_ERR; } } /* 5. while v is even do */ while (mp_iseven(&v) == MP_YES) { /* 5.1 v = v/2 */ if ((res = mp_div_2(&v, &v)) != MP_OKAY) { goto LBL_ERR; } /* 5.2 if D is odd then */ if (mp_isodd(&D) == MP_YES) { /* D = (D-x)/2 */ if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) { goto LBL_ERR; } } /* D = D/2 */ if ((res = mp_div_2(&D, &D)) != MP_OKAY) { goto LBL_ERR; } } /* 6. if u >= v then */ if (mp_cmp(&u, &v) != MP_LT) { /* u = u - v, B = B - D */ if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) { goto LBL_ERR; } } else { /* v - v - u, D = D - B */ if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) { goto LBL_ERR; } } /* if not zero goto step 4 */ if (mp_iszero(&u) == MP_NO) { goto top; } /* now a = C, b = D, gcd == g*v */ /* if v != 1 then there is no inverse */ if (mp_cmp_d(&v, 1uL) != MP_EQ) { res = MP_VAL; goto LBL_ERR; } /* b is now the inverse */ neg = a->sign; while (D.sign == MP_NEG) { if ((res = mp_add(&D, b, &D)) != MP_OKAY) { goto LBL_ERR; } } /* too big */ while (mp_cmp_mag(&D, b) != MP_LT) { if ((res = mp_sub(&D, b, &D)) != MP_OKAY) { goto LBL_ERR; } } mp_exch(&D, c); c->sign = neg; res = MP_OKAY; LBL_ERR: mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL); return res; } #endif /* ref: HEAD -> master, tag: v1.1.0 */ /* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ /* commit time: 2019-01-28 20:32:32 +0100 */