Mercurial > dropbear
view libtommath/bn_fast_mp_montgomery_reduce.c @ 1659:d32bcb5c557d
Add Ed25519 support (#91)
* Add support for Ed25519 as a public key type
Ed25519 is a elliptic curve signature scheme that offers
better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.
OpenSSH key import and fuzzer are not supported yet.
Initially inspired by Peter Szabo.
* Add curve25519 and ed25519 fuzzers
* Add import and export of Ed25519 keys
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Wed, 11 Mar 2020 21:09:45 +0500 |
parents | f52919ffd3b1 |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* computes xR**-1 == x (mod N) via Montgomery Reduction * * This is an optimized implementation of montgomery_reduce * which uses the comba method to quickly calculate the columns of the * reduction. * * Based on Algorithm 14.32 on pp.601 of HAC. */ int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho) { int ix, res, olduse; mp_word W[MP_WARRAY]; if (x->used > (int)MP_WARRAY) { return MP_VAL; } /* get old used count */ olduse = x->used; /* grow a as required */ if (x->alloc < (n->used + 1)) { if ((res = mp_grow(x, n->used + 1)) != MP_OKAY) { return res; } } /* first we have to get the digits of the input into * an array of double precision words W[...] */ { mp_word *_W; mp_digit *tmpx; /* alias for the W[] array */ _W = W; /* alias for the digits of x*/ tmpx = x->dp; /* copy the digits of a into W[0..a->used-1] */ for (ix = 0; ix < x->used; ix++) { *_W++ = *tmpx++; } /* zero the high words of W[a->used..m->used*2] */ for (; ix < ((n->used * 2) + 1); ix++) { *_W++ = 0; } } /* now we proceed to zero successive digits * from the least significant upwards */ for (ix = 0; ix < n->used; ix++) { /* mu = ai * m' mod b * * We avoid a double precision multiplication (which isn't required) * by casting the value down to a mp_digit. Note this requires * that W[ix-1] have the carry cleared (see after the inner loop) */ mp_digit mu; mu = ((W[ix] & MP_MASK) * rho) & MP_MASK; /* a = a + mu * m * b**i * * This is computed in place and on the fly. The multiplication * by b**i is handled by offseting which columns the results * are added to. * * Note the comba method normally doesn't handle carries in the * inner loop In this case we fix the carry from the previous * column since the Montgomery reduction requires digits of the * result (so far) [see above] to work. This is * handled by fixing up one carry after the inner loop. The * carry fixups are done in order so after these loops the * first m->used words of W[] have the carries fixed */ { int iy; mp_digit *tmpn; mp_word *_W; /* alias for the digits of the modulus */ tmpn = n->dp; /* Alias for the columns set by an offset of ix */ _W = W + ix; /* inner loop */ for (iy = 0; iy < n->used; iy++) { *_W++ += (mp_word)mu * (mp_word)*tmpn++; } } /* now fix carry for next digit, W[ix+1] */ W[ix + 1] += W[ix] >> (mp_word)DIGIT_BIT; } /* now we have to propagate the carries and * shift the words downward [all those least * significant digits we zeroed]. */ { mp_digit *tmpx; mp_word *_W, *_W1; /* nox fix rest of carries */ /* alias for current word */ _W1 = W + ix; /* alias for next word, where the carry goes */ _W = W + ++ix; for (; ix <= ((n->used * 2) + 1); ix++) { *_W++ += *_W1++ >> (mp_word)DIGIT_BIT; } /* copy out, A = A/b**n * * The result is A/b**n but instead of converting from an * array of mp_word to mp_digit than calling mp_rshd * we just copy them in the right order */ /* alias for destination word */ tmpx = x->dp; /* alias for shifted double precision result */ _W = W + n->used; for (ix = 0; ix < (n->used + 1); ix++) { *tmpx++ = *_W++ & (mp_word)MP_MASK; } /* zero oldused digits, if the input a was larger than * m->used+1 we'll have to clear the digits */ for (; ix < olduse; ix++) { *tmpx++ = 0; } } /* set the max used and clamp */ x->used = n->used + 1; mp_clamp(x); /* if A >= m then A = A - m */ if (mp_cmp_mag(x, n) != MP_LT) { return s_mp_sub(x, n, x); } return MP_OKAY; } #endif /* ref: HEAD -> master, tag: v1.1.0 */ /* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ /* commit time: 2019-01-28 20:32:32 +0100 */