view libtommath/bn_fast_s_mp_mul_digs.c @ 1659:d32bcb5c557d

Add Ed25519 support (#91) * Add support for Ed25519 as a public key type Ed25519 is a elliptic curve signature scheme that offers better security than ECDSA and DSA and good performance. It may be used for both user and host keys. OpenSSH key import and fuzzer are not supported yet. Initially inspired by Peter Szabo. * Add curve25519 and ed25519 fuzzers * Add import and export of Ed25519 keys
author Vladislav Grishenko <themiron@users.noreply.github.com>
date Wed, 11 Mar 2020 21:09:45 +0500
parents f52919ffd3b1
children
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_FAST_S_MP_MUL_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* Fast (comba) multiplier
 *
 * This is the fast column-array [comba] multiplier.  It is
 * designed to compute the columns of the product first
 * then handle the carries afterwards.  This has the effect
 * of making the nested loops that compute the columns very
 * simple and schedulable on super-scalar processors.
 *
 * This has been modified to produce a variable number of
 * digits of output so if say only a half-product is required
 * you don't have to compute the upper half (a feature
 * required for fast Barrett reduction).
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 *
 */
int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   int     olduse, res, pa, ix, iz;
   mp_digit W[MP_WARRAY];
   mp_word  _W;

   /* grow the destination as required */
   if (c->alloc < digs) {
      if ((res = mp_grow(c, digs)) != MP_OKAY) {
         return res;
      }
   }

   /* number of output digits to produce */
   pa = MIN(digs, a->used + b->used);

   /* clear the carry */
   _W = 0;
   for (ix = 0; ix < pa; ix++) {
      int      tx, ty;
      int      iy;
      mp_digit *tmpx, *tmpy;

      /* get offsets into the two bignums */
      ty = MIN(b->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = b->dp + ty;

      /* this is the number of times the loop will iterrate, essentially
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; ++iz) {
         _W += (mp_word)*tmpx++ * (mp_word)*tmpy--;

      }

      /* store term */
      W[ix] = (mp_digit)_W & MP_MASK;

      /* make next carry */
      _W = _W >> (mp_word)DIGIT_BIT;
   }

   /* setup dest */
   olduse  = c->used;
   c->used = pa;

   {
      mp_digit *tmpc;
      tmpc = c->dp;
      for (ix = 0; ix < pa; ix++) {
         /* now extract the previous digit [below the carry] */
         *tmpc++ = W[ix];
      }

      /* clear unused digits [that existed in the old copy of c] */
      for (; ix < olduse; ix++) {
         *tmpc++ = 0;
      }
   }
   mp_clamp(c);
   return MP_OKAY;
}
#endif

/* ref:         HEAD -> master, tag: v1.1.0 */
/* git commit:  08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
/* commit time: 2019-01-28 20:32:32 +0100 */