Mercurial > dropbear
view libtommath/bn_fast_s_mp_sqr.c @ 1659:d32bcb5c557d
Add Ed25519 support (#91)
* Add support for Ed25519 as a public key type
Ed25519 is a elliptic curve signature scheme that offers
better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.
OpenSSH key import and fuzzer are not supported yet.
Initially inspired by Peter Szabo.
* Add curve25519 and ed25519 fuzzers
* Add import and export of Ed25519 keys
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Wed, 11 Mar 2020 21:09:45 +0500 |
parents | f52919ffd3b1 |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_FAST_S_MP_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* the jist of squaring... * you do like mult except the offset of the tmpx [one that * starts closer to zero] can't equal the offset of tmpy. * So basically you set up iy like before then you min it with * (ty-tx) so that it never happens. You double all those * you add in the inner loop After that loop you do the squares and add them in. */ int fast_s_mp_sqr(const mp_int *a, mp_int *b) { int olduse, res, pa, ix, iz; mp_digit W[MP_WARRAY], *tmpx; mp_word W1; /* grow the destination as required */ pa = a->used + a->used; if (b->alloc < pa) { if ((res = mp_grow(b, pa)) != MP_OKAY) { return res; } } /* number of output digits to produce */ W1 = 0; for (ix = 0; ix < pa; ix++) { int tx, ty, iy; mp_word _W; mp_digit *tmpy; /* clear counter */ _W = 0; /* get offsets into the two bignums */ ty = MIN(a->used-1, ix); tx = ix - ty; /* setup temp aliases */ tmpx = a->dp + tx; tmpy = a->dp + ty; /* this is the number of times the loop will iterrate, essentially while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MIN(a->used-tx, ty+1); /* now for squaring tx can never equal ty * we halve the distance since they approach at a rate of 2x * and we have to round because odd cases need to be executed */ iy = MIN(iy, ((ty-tx)+1)>>1); /* execute loop */ for (iz = 0; iz < iy; iz++) { _W += (mp_word)*tmpx++ * (mp_word)*tmpy--; } /* double the inner product and add carry */ _W = _W + _W + W1; /* even columns have the square term in them */ if (((unsigned)ix & 1u) == 0u) { _W += (mp_word)a->dp[ix>>1] * (mp_word)a->dp[ix>>1]; } /* store it */ W[ix] = _W & MP_MASK; /* make next carry */ W1 = _W >> (mp_word)DIGIT_BIT; } /* setup dest */ olduse = b->used; b->used = a->used+a->used; { mp_digit *tmpb; tmpb = b->dp; for (ix = 0; ix < pa; ix++) { *tmpb++ = W[ix] & MP_MASK; } /* clear unused digits [that existed in the old copy of c] */ for (; ix < olduse; ix++) { *tmpb++ = 0; } } mp_clamp(b); return MP_OKAY; } #endif /* ref: HEAD -> master, tag: v1.1.0 */ /* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ /* commit time: 2019-01-28 20:32:32 +0100 */