view libtommath/bn_mp_dr_reduce.c @ 1659:d32bcb5c557d

Add Ed25519 support (#91) * Add support for Ed25519 as a public key type Ed25519 is a elliptic curve signature scheme that offers better security than ECDSA and DSA and good performance. It may be used for both user and host keys. OpenSSH key import and fuzzer are not supported yet. Initially inspired by Peter Szabo. * Add curve25519 and ed25519 fuzzers * Add import and export of Ed25519 keys
author Vladislav Grishenko <themiron@users.noreply.github.com>
date Wed, 11 Mar 2020 21:09:45 +0500
parents f52919ffd3b1
children 1051e4eea25a
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_MP_DR_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
 *
 * Based on algorithm from the paper
 *
 * "Generating Efficient Primes for Discrete Log Cryptosystems"
 *                 Chae Hoon Lim, Pil Joong Lee,
 *          POSTECH Information Research Laboratories
 *
 * The modulus must be of a special format [see manual]
 *
 * Has been modified to use algorithm 7.10 from the LTM book instead
 *
 * Input x must be in the range 0 <= x <= (n-1)**2
 */
int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k)
{
   int      err, i, m;
   mp_word  r;
   mp_digit mu, *tmpx1, *tmpx2;

   /* m = digits in modulus */
   m = n->used;

   /* ensure that "x" has at least 2m digits */
   if (x->alloc < (m + m)) {
      if ((err = mp_grow(x, m + m)) != MP_OKAY) {
         return err;
      }
   }

   /* top of loop, this is where the code resumes if
    * another reduction pass is required.
    */
top:
   /* aliases for digits */
   /* alias for lower half of x */
   tmpx1 = x->dp;

   /* alias for upper half of x, or x/B**m */
   tmpx2 = x->dp + m;

   /* set carry to zero */
   mu = 0;

   /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
   for (i = 0; i < m; i++) {
      r         = ((mp_word)*tmpx2++ * (mp_word)k) + *tmpx1 + mu;
      *tmpx1++  = (mp_digit)(r & MP_MASK);
      mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
   }

   /* set final carry */
   *tmpx1++ = mu;

   /* zero words above m */
   for (i = m + 1; i < x->used; i++) {
      *tmpx1++ = 0;
   }

   /* clamp, sub and return */
   mp_clamp(x);

   /* if x >= n then subtract and reduce again
    * Each successive "recursion" makes the input smaller and smaller.
    */
   if (mp_cmp_mag(x, n) != MP_LT) {
      if ((err = s_mp_sub(x, n, x)) != MP_OKAY) {
         return err;
      }
      goto top;
   }
   return MP_OKAY;
}
#endif

/* ref:         HEAD -> master, tag: v1.1.0 */
/* git commit:  08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
/* commit time: 2019-01-28 20:32:32 +0100 */