view libtommath/bn_mp_prime_miller_rabin.c @ 1659:d32bcb5c557d

Add Ed25519 support (#91) * Add support for Ed25519 as a public key type Ed25519 is a elliptic curve signature scheme that offers better security than ECDSA and DSA and good performance. It may be used for both user and host keys. OpenSSH key import and fuzzer are not supported yet. Initially inspired by Peter Szabo. * Add curve25519 and ed25519 fuzzers * Add import and export of Ed25519 keys
author Vladislav Grishenko <themiron@users.noreply.github.com>
date Wed, 11 Mar 2020 21:09:45 +0500
parents f52919ffd3b1
children 1051e4eea25a
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_MP_PRIME_MILLER_RABIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* Miller-Rabin test of "a" to the base of "b" as described in
 * HAC pp. 139 Algorithm 4.24
 *
 * Sets result to 0 if definitely composite or 1 if probably prime.
 * Randomly the chance of error is no more than 1/4 and often
 * very much lower.
 */
int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result)
{
   mp_int  n1, y, r;
   int     s, j, err;

   /* default */
   *result = MP_NO;

   /* ensure b > 1 */
   if (mp_cmp_d(b, 1uL) != MP_GT) {
      return MP_VAL;
   }

   /* get n1 = a - 1 */
   if ((err = mp_init_copy(&n1, a)) != MP_OKAY) {
      return err;
   }
   if ((err = mp_sub_d(&n1, 1uL, &n1)) != MP_OKAY) {
      goto LBL_N1;
   }

   /* set 2**s * r = n1 */
   if ((err = mp_init_copy(&r, &n1)) != MP_OKAY) {
      goto LBL_N1;
   }

   /* count the number of least significant bits
    * which are zero
    */
   s = mp_cnt_lsb(&r);

   /* now divide n - 1 by 2**s */
   if ((err = mp_div_2d(&r, s, &r, NULL)) != MP_OKAY) {
      goto LBL_R;
   }

   /* compute y = b**r mod a */
   if ((err = mp_init(&y)) != MP_OKAY) {
      goto LBL_R;
   }
   if ((err = mp_exptmod(b, &r, a, &y)) != MP_OKAY) {
      goto LBL_Y;
   }

   /* if y != 1 and y != n1 do */
   if ((mp_cmp_d(&y, 1uL) != MP_EQ) && (mp_cmp(&y, &n1) != MP_EQ)) {
      j = 1;
      /* while j <= s-1 and y != n1 */
      while ((j <= (s - 1)) && (mp_cmp(&y, &n1) != MP_EQ)) {
         if ((err = mp_sqrmod(&y, a, &y)) != MP_OKAY) {
            goto LBL_Y;
         }

         /* if y == 1 then composite */
         if (mp_cmp_d(&y, 1uL) == MP_EQ) {
            goto LBL_Y;
         }

         ++j;
      }

      /* if y != n1 then composite */
      if (mp_cmp(&y, &n1) != MP_EQ) {
         goto LBL_Y;
      }
   }

   /* probably prime now */
   *result = MP_YES;
LBL_Y:
   mp_clear(&y);
LBL_R:
   mp_clear(&r);
LBL_N1:
   mp_clear(&n1);
   return err;
}
#endif

/* ref:         HEAD -> master, tag: v1.1.0 */
/* git commit:  08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
/* commit time: 2019-01-28 20:32:32 +0100 */