view libtommath/bn_mp_prime_next_prime.c @ 1659:d32bcb5c557d

Add Ed25519 support (#91) * Add support for Ed25519 as a public key type Ed25519 is a elliptic curve signature scheme that offers better security than ECDSA and DSA and good performance. It may be used for both user and host keys. OpenSSH key import and fuzzer are not supported yet. Initially inspired by Peter Szabo. * Add curve25519 and ed25519 fuzzers * Add import and export of Ed25519 keys
author Vladislav Grishenko <themiron@users.noreply.github.com>
date Wed, 11 Mar 2020 21:09:45 +0500
parents a36e545fb43d
children 1051e4eea25a
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_MP_PRIME_NEXT_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* finds the next prime after the number "a" using "t" trials
 * of Miller-Rabin.
 *
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 */
int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
{
   int      err, res = MP_NO, x, y, cmp;
   mp_digit res_tab[PRIME_SIZE], step, kstep;
   mp_int   b;

   /* force positive */
   a->sign = MP_ZPOS;

   /* simple algo if a is less than the largest prime in the table */
   if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
      /* find which prime it is bigger than "a" */
      for (x = 0; x < PRIME_SIZE; x++) {
         cmp = mp_cmp_d(a, ltm_prime_tab[x]);
         if (cmp == MP_EQ) {
            continue;
         }
         if (cmp != MP_GT) {
            if ((bbs_style == 1) && ((ltm_prime_tab[x] & 3u) != 3u)) {
               /* try again until we get a prime congruent to 3 mod 4 */
               continue;
            } else {
               mp_set(a, ltm_prime_tab[x]);
               return MP_OKAY;
            }
         }
      }
      /* fall through to the sieve */
   }

   /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
   if (bbs_style == 1) {
      kstep   = 4;
   } else {
      kstep   = 2;
   }

   /* at this point we will use a combination of a sieve and Miller-Rabin */

   if (bbs_style == 1) {
      /* if a mod 4 != 3 subtract the correct value to make it so */
      if ((a->dp[0] & 3u) != 3u) {
         if ((err = mp_sub_d(a, (a->dp[0] & 3u) + 1u, a)) != MP_OKAY) {
            return err;
         }
      }
   } else {
      if (mp_iseven(a) == MP_YES) {
         /* force odd */
         if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) {
            return err;
         }
      }
   }

   /* generate the restable */
   for (x = 1; x < PRIME_SIZE; x++) {
      if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
         return err;
      }
   }

   /* init temp used for Miller-Rabin Testing */
   if ((err = mp_init(&b)) != MP_OKAY) {
      return err;
   }

   for (;;) {
      /* skip to the next non-trivially divisible candidate */
      step = 0;
      do {
         /* y == 1 if any residue was zero [e.g. cannot be prime] */
         y     =  0;

         /* increase step to next candidate */
         step += kstep;

         /* compute the new residue without using division */
         for (x = 1; x < PRIME_SIZE; x++) {
            /* add the step to each residue */
            res_tab[x] += kstep;

            /* subtract the modulus [instead of using division] */
            if (res_tab[x] >= ltm_prime_tab[x]) {
               res_tab[x]  -= ltm_prime_tab[x];
            }

            /* set flag if zero */
            if (res_tab[x] == 0u) {
               y = 1;
            }
         }
      } while ((y == 1) && (step < (((mp_digit)1 << DIGIT_BIT) - kstep)));

      /* add the step */
      if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* if didn't pass sieve and step == MAX then skip test */
      if ((y == 1) && (step >= (((mp_digit)1 << DIGIT_BIT) - kstep))) {
         continue;
      }

      if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if (res == MP_YES) {
         break;
      }
   }

   err = MP_OKAY;
LBL_ERR:
   mp_clear(&b);
   return err;
}

#endif

/* ref:         HEAD -> master, tag: v1.1.0 */
/* git commit:  08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
/* commit time: 2019-01-28 20:32:32 +0100 */