Mercurial > dropbear
view libtommath/bn_mp_prime_strong_lucas_selfridge.c @ 1659:d32bcb5c557d
Add Ed25519 support (#91)
* Add support for Ed25519 as a public key type
Ed25519 is a elliptic curve signature scheme that offers
better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.
OpenSSH key import and fuzzer are not supported yet.
Initially inspired by Peter Szabo.
* Add curve25519 and ed25519 fuzzers
* Add import and export of Ed25519 keys
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Wed, 11 Mar 2020 21:09:45 +0500 |
parents | f52919ffd3b1 |
children | 1051e4eea25a |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* * See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details */ #ifndef LTM_USE_FIPS_ONLY /* * 8-bit is just too small. You can try the Frobenius test * but that frobenius test can fail, too, for the same reason. */ #ifndef MP_8BIT /* * multiply bigint a with int d and put the result in c * Like mp_mul_d() but with a signed long as the small input */ static int s_mp_mul_si(const mp_int *a, long d, mp_int *c) { mp_int t; int err, neg = 0; if ((err = mp_init(&t)) != MP_OKAY) { return err; } if (d < 0) { neg = 1; d = -d; } /* * mp_digit might be smaller than a long, which excludes * the use of mp_mul_d() here. */ if ((err = mp_set_long(&t, (unsigned long) d)) != MP_OKAY) { goto LBL_MPMULSI_ERR; } if ((err = mp_mul(a, &t, c)) != MP_OKAY) { goto LBL_MPMULSI_ERR; } if (neg == 1) { c->sign = (a->sign == MP_NEG) ? MP_ZPOS: MP_NEG; } LBL_MPMULSI_ERR: mp_clear(&t); return err; } /* Strong Lucas-Selfridge test. returns MP_YES if it is a strong L-S prime, MP_NO if it is composite Code ported from Thomas Ray Nicely's implementation of the BPSW test at http://www.trnicely.net/misc/bpsw.html Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>. Released into the public domain by the author, who disclaims any legal liability arising from its use The multi-line comments are made by Thomas R. Nicely and are copied verbatim. Additional comments marked "CZ" (without the quotes) are by the code-portist. (If that name sounds familiar, he is the guy who found the fdiv bug in the Pentium (P5x, I think) Intel processor) */ int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result) { /* CZ TODO: choose better variable names! */ mp_int Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz; /* CZ TODO: Some of them need the full 32 bit, hence the (temporary) exclusion of MP_8BIT */ int32_t D, Ds, J, sign, P, Q, r, s, u, Nbits; int e; int isset, oddness; *result = MP_NO; /* Find the first element D in the sequence {5, -7, 9, -11, 13, ...} such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory indicates that, if N is not a perfect square, D will "nearly always" be "small." Just in case, an overflow trap for D is included. */ if ((e = mp_init_multi(&Dz, &gcd, &Np1, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz, NULL)) != MP_OKAY) { return e; } D = 5; sign = 1; for (;;) { Ds = sign * D; sign = -sign; if ((e = mp_set_long(&Dz, (unsigned long)D)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_gcd(a, &Dz, &gcd)) != MP_OKAY) { goto LBL_LS_ERR; } /* if 1 < GCD < N then N is composite with factor "D", and Jacobi(D,N) is technically undefined (but often returned as zero). */ if ((mp_cmp_d(&gcd, 1uL) == MP_GT) && (mp_cmp(&gcd, a) == MP_LT)) { goto LBL_LS_ERR; } if (Ds < 0) { Dz.sign = MP_NEG; } if ((e = mp_kronecker(&Dz, a, &J)) != MP_OKAY) { goto LBL_LS_ERR; } if (J == -1) { break; } D += 2; if (D > (INT_MAX - 2)) { e = MP_VAL; goto LBL_LS_ERR; } } P = 1; /* Selfridge's choice */ Q = (1 - Ds) / 4; /* Required so D = P*P - 4*Q */ /* NOTE: The conditions (a) N does not divide Q, and (b) D is square-free or not a perfect square, are included by some authors; e.g., "Prime numbers and computer methods for factorization," Hans Riesel (2nd ed., 1994, Birkhauser, Boston), p. 130. For this particular application of Lucas sequences, these conditions were found to be immaterial. */ /* Now calculate N - Jacobi(D,N) = N + 1 (even), and calculate the odd positive integer d and positive integer s for which N + 1 = 2^s*d (similar to the step for N - 1 in Miller's test). The strong Lucas-Selfridge test then returns N as a strong Lucas probable prime (slprp) if any of the following conditions is met: U_d=0, V_d=0, V_2d=0, V_4d=0, V_8d=0, V_16d=0, ..., etc., ending with V_{2^(s-1)*d}=V_{(N+1)/2}=0 (all equalities mod N). Thus d is the highest index of U that must be computed (since V_2m is independent of U), compared to U_{N+1} for the standard Lucas-Selfridge test; and no index of V beyond (N+1)/2 is required, just as in the standard Lucas-Selfridge test. However, the quantity Q^d must be computed for use (if necessary) in the latter stages of the test. The result is that the strong Lucas-Selfridge test has a running time only slightly greater (order of 10 %) than that of the standard Lucas-Selfridge test, while producing only (roughly) 30 % as many pseudoprimes (and every strong Lucas pseudoprime is also a standard Lucas pseudoprime). Thus the evidence indicates that the strong Lucas-Selfridge test is more effective than the standard Lucas-Selfridge test, and a Baillie-PSW test based on the strong Lucas-Selfridge test should be more reliable. */ if ((e = mp_add_d(a, 1uL, &Np1)) != MP_OKAY) { goto LBL_LS_ERR; } s = mp_cnt_lsb(&Np1); /* CZ * This should round towards zero because * Thomas R. Nicely used GMP's mpz_tdiv_q_2exp() * and mp_div_2d() is equivalent. Additionally: * dividing an even number by two does not produce * any leftovers. */ if ((e = mp_div_2d(&Np1, s, &Dz, NULL)) != MP_OKAY) { goto LBL_LS_ERR; } /* We must now compute U_d and V_d. Since d is odd, the accumulated values U and V are initialized to U_1 and V_1 (if the target index were even, U and V would be initialized instead to U_0=0 and V_0=2). The values of U_2m and V_2m are also initialized to U_1 and V_1; the FOR loop calculates in succession U_2 and V_2, U_4 and V_4, U_8 and V_8, etc. If the corresponding bits (1, 2, 3, ...) of t are on (the zero bit having been accounted for in the initialization of U and V), these values are then combined with the previous totals for U and V, using the composition formulas for addition of indices. */ mp_set(&Uz, 1uL); /* U=U_1 */ mp_set(&Vz, (mp_digit)P); /* V=V_1 */ mp_set(&U2mz, 1uL); /* U_1 */ mp_set(&V2mz, (mp_digit)P); /* V_1 */ if (Q < 0) { Q = -Q; if ((e = mp_set_long(&Qmz, (unsigned long)Q)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) { goto LBL_LS_ERR; } /* Initializes calculation of Q^d */ if ((e = mp_set_long(&Qkdz, (unsigned long)Q)) != MP_OKAY) { goto LBL_LS_ERR; } Qmz.sign = MP_NEG; Q2mz.sign = MP_NEG; Qkdz.sign = MP_NEG; Q = -Q; } else { if ((e = mp_set_long(&Qmz, (unsigned long)Q)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) { goto LBL_LS_ERR; } /* Initializes calculation of Q^d */ if ((e = mp_set_long(&Qkdz, (unsigned long)Q)) != MP_OKAY) { goto LBL_LS_ERR; } } Nbits = mp_count_bits(&Dz); for (u = 1; u < Nbits; u++) { /* zero bit off, already accounted for */ /* Formulas for doubling of indices (carried out mod N). Note that * the indices denoted as "2m" are actually powers of 2, specifically * 2^(ul-1) beginning each loop and 2^ul ending each loop. * * U_2m = U_m*V_m * V_2m = V_m*V_m - 2*Q^m */ if ((e = mp_mul(&U2mz, &V2mz, &U2mz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mod(&U2mz, a, &U2mz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_sqr(&V2mz, &V2mz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_sub(&V2mz, &Q2mz, &V2mz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mod(&V2mz, a, &V2mz)) != MP_OKAY) { goto LBL_LS_ERR; } /* Must calculate powers of Q for use in V_2m, also for Q^d later */ if ((e = mp_sqr(&Qmz, &Qmz)) != MP_OKAY) { goto LBL_LS_ERR; } /* prevents overflow */ /* CZ still necessary without a fixed prealloc'd mem.? */ if ((e = mp_mod(&Qmz, a, &Qmz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((isset = mp_get_bit(&Dz, u)) == MP_VAL) { e = isset; goto LBL_LS_ERR; } if (isset == MP_YES) { /* Formulas for addition of indices (carried out mod N); * * U_(m+n) = (U_m*V_n + U_n*V_m)/2 * V_(m+n) = (V_m*V_n + D*U_m*U_n)/2 * * Be careful with division by 2 (mod N)! */ if ((e = mp_mul(&U2mz, &Vz, &T1z)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mul(&Uz, &V2mz, &T2z)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mul(&V2mz, &Vz, &T3z)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mul(&U2mz, &Uz, &T4z)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = s_mp_mul_si(&T4z, (long)Ds, &T4z)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_add(&T1z, &T2z, &Uz)) != MP_OKAY) { goto LBL_LS_ERR; } if (mp_isodd(&Uz) != MP_NO) { if ((e = mp_add(&Uz, a, &Uz)) != MP_OKAY) { goto LBL_LS_ERR; } } /* CZ * This should round towards negative infinity because * Thomas R. Nicely used GMP's mpz_fdiv_q_2exp(). * But mp_div_2() does not do so, it is truncating instead. */ oddness = mp_isodd(&Uz); if ((e = mp_div_2(&Uz, &Uz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((Uz.sign == MP_NEG) && (oddness != MP_NO)) { if ((e = mp_sub_d(&Uz, 1uL, &Uz)) != MP_OKAY) { goto LBL_LS_ERR; } } if ((e = mp_add(&T3z, &T4z, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } if (mp_isodd(&Vz) != MP_NO) { if ((e = mp_add(&Vz, a, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } } oddness = mp_isodd(&Vz); if ((e = mp_div_2(&Vz, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((Vz.sign == MP_NEG) && (oddness != MP_NO)) { if ((e = mp_sub_d(&Vz, 1uL, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } } if ((e = mp_mod(&Uz, a, &Uz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } /* Calculating Q^d for later use */ if ((e = mp_mul(&Qkdz, &Qmz, &Qkdz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) { goto LBL_LS_ERR; } } } /* If U_d or V_d is congruent to 0 mod N, then N is a prime or a strong Lucas pseudoprime. */ if ((mp_iszero(&Uz) != MP_NO) || (mp_iszero(&Vz) != MP_NO)) { *result = MP_YES; goto LBL_LS_ERR; } /* NOTE: Ribenboim ("The new book of prime number records," 3rd ed., 1995/6) omits the condition V0 on p.142, but includes it on p. 130. The condition is NECESSARY; otherwise the test will return false negatives---e.g., the primes 29 and 2000029 will be returned as composite. */ /* Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d} by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of these are congruent to 0 mod N, then N is a prime or a strong Lucas pseudoprime. */ /* Initialize 2*Q^(d*2^r) for V_2m */ if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) { goto LBL_LS_ERR; } for (r = 1; r < s; r++) { if ((e = mp_sqr(&Vz, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_sub(&Vz, &Q2kdz, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } if (mp_iszero(&Vz) != MP_NO) { *result = MP_YES; goto LBL_LS_ERR; } /* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */ if (r < (s - 1)) { if ((e = mp_sqr(&Qkdz, &Qkdz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) { goto LBL_LS_ERR; } } } LBL_LS_ERR: mp_clear_multi(&Q2kdz, &T4z, &T3z, &T2z, &T1z, &Qkdz, &Q2mz, &Qmz, &V2mz, &U2mz, &Vz, &Uz, &Np1, &gcd, &Dz, NULL); return e; } #endif #endif #endif /* ref: HEAD -> master, tag: v1.1.0 */ /* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ /* commit time: 2019-01-28 20:32:32 +0100 */