Mercurial > dropbear
view libtommath/bn_mp_toom_mul.c @ 1659:d32bcb5c557d
Add Ed25519 support (#91)
* Add support for Ed25519 as a public key type
Ed25519 is a elliptic curve signature scheme that offers
better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.
OpenSSH key import and fuzzer are not supported yet.
Initially inspired by Peter Szabo.
* Add curve25519 and ed25519 fuzzers
* Add import and export of Ed25519 keys
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Wed, 11 Mar 2020 21:09:45 +0500 |
parents | f52919ffd3b1 |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_MP_TOOM_MUL_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* multiplication using the Toom-Cook 3-way algorithm * * Much more complicated than Karatsuba but has a lower * asymptotic running time of O(N**1.464). This algorithm is * only particularly useful on VERY large inputs * (we're talking 1000s of digits here...). */ int mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c) { mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2; int res, B; /* init temps */ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &b0, &b1, &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) { return res; } /* B */ B = MIN(a->used, b->used) / 3; /* a = a2 * B**2 + a1 * B + a0 */ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy(a, &a1)) != MP_OKAY) { goto LBL_ERR; } mp_rshd(&a1, B); if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy(a, &a2)) != MP_OKAY) { goto LBL_ERR; } mp_rshd(&a2, B*2); /* b = b2 * B**2 + b1 * B + b0 */ if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy(b, &b1)) != MP_OKAY) { goto LBL_ERR; } mp_rshd(&b1, B); (void)mp_mod_2d(&b1, DIGIT_BIT * B, &b1); if ((res = mp_copy(b, &b2)) != MP_OKAY) { goto LBL_ERR; } mp_rshd(&b2, B*2); /* w0 = a0*b0 */ if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) { goto LBL_ERR; } /* w4 = a2 * b2 */ if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) { goto LBL_ERR; } /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) { goto LBL_ERR; } /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) { goto LBL_ERR; } /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) { goto LBL_ERR; } /* now solve the matrix 0 0 0 0 1 1 2 4 8 16 1 1 1 1 1 16 8 4 2 1 1 0 0 0 0 using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication */ /* r1 - r4 */ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { goto LBL_ERR; } /* r3 - r0 */ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { goto LBL_ERR; } /* r1/2 */ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { goto LBL_ERR; } /* r3/2 */ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { goto LBL_ERR; } /* r2 - r0 - r4 */ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { goto LBL_ERR; } /* r1 - r2 */ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { goto LBL_ERR; } /* r3 - r2 */ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { goto LBL_ERR; } /* r1 - 8r0 */ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { goto LBL_ERR; } /* r3 - 8r4 */ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { goto LBL_ERR; } /* 3r2 - r1 - r3 */ if ((res = mp_mul_d(&w2, 3uL, &w2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { goto LBL_ERR; } /* r1 - r2 */ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { goto LBL_ERR; } /* r3 - r2 */ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { goto LBL_ERR; } /* r1/3 */ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { goto LBL_ERR; } /* r3/3 */ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { goto LBL_ERR; } /* at this point shift W[n] by B*n */ if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) { goto LBL_ERR; } LBL_ERR: mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &b0, &b1, &b2, &tmp1, &tmp2, NULL); return res; } #endif /* ref: HEAD -> master, tag: v1.1.0 */ /* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ /* commit time: 2019-01-28 20:32:32 +0100 */