view libtommath/bn_s_mp_exptmod.c @ 1659:d32bcb5c557d

Add Ed25519 support (#91) * Add support for Ed25519 as a public key type Ed25519 is a elliptic curve signature scheme that offers better security than ECDSA and DSA and good performance. It may be used for both user and host keys. OpenSSH key import and fuzzer are not supported yet. Initially inspired by Peter Szabo. * Add curve25519 and ed25519 fuzzers * Add import and export of Ed25519 keys
author Vladislav Grishenko <themiron@users.noreply.github.com>
date Wed, 11 Mar 2020 21:09:45 +0500
parents f52919ffd3b1
children 1051e4eea25a
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_S_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

#ifdef MP_LOW_MEM
#   define TAB_SIZE 32
#else
#   define TAB_SIZE 256
#endif

int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
   mp_int  M[TAB_SIZE], res, mu;
   mp_digit buf;
   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
   int (*redux)(mp_int *x, const mp_int *m, const mp_int *mu);

   /* find window size */
   x = mp_count_bits(X);
   if (x <= 7) {
      winsize = 2;
   } else if (x <= 36) {
      winsize = 3;
   } else if (x <= 140) {
      winsize = 4;
   } else if (x <= 450) {
      winsize = 5;
   } else if (x <= 1303) {
      winsize = 6;
   } else if (x <= 3529) {
      winsize = 7;
   } else {
      winsize = 8;
   }

#ifdef MP_LOW_MEM
   if (winsize > 5) {
      winsize = 5;
   }
#endif

   /* init M array */
   /* init first cell */
   if ((err = mp_init(&M[1])) != MP_OKAY) {
      return err;
   }

   /* now init the second half of the array */
   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
      if ((err = mp_init(&M[x])) != MP_OKAY) {
         for (y = 1<<(winsize-1); y < x; y++) {
            mp_clear(&M[y]);
         }
         mp_clear(&M[1]);
         return err;
      }
   }

   /* create mu, used for Barrett reduction */
   if ((err = mp_init(&mu)) != MP_OKAY) {
      goto LBL_M;
   }

   if (redmode == 0) {
      if ((err = mp_reduce_setup(&mu, P)) != MP_OKAY) {
         goto LBL_MU;
      }
      redux = mp_reduce;
   } else {
      if ((err = mp_reduce_2k_setup_l(P, &mu)) != MP_OKAY) {
         goto LBL_MU;
      }
      redux = mp_reduce_2k_l;
   }

   /* create M table
    *
    * The M table contains powers of the base,
    * e.g. M[x] = G**x mod P
    *
    * The first half of the table is not
    * computed though accept for M[0] and M[1]
    */
   if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
      goto LBL_MU;
   }

   /* compute the value at M[1<<(winsize-1)] by squaring
    * M[1] (winsize-1) times
    */
   if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) {
      goto LBL_MU;
   }

   for (x = 0; x < (winsize - 1); x++) {
      /* square it */
      if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)],
                        &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) {
         goto LBL_MU;
      }

      /* reduce modulo P */
      if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
         goto LBL_MU;
      }
   }

   /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
    * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
    */
   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
      if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
         goto LBL_MU;
      }
      if ((err = redux(&M[x], P, &mu)) != MP_OKAY) {
         goto LBL_MU;
      }
   }

   /* setup result */
   if ((err = mp_init(&res)) != MP_OKAY) {
      goto LBL_MU;
   }
   mp_set(&res, 1uL);

   /* set initial mode and bit cnt */
   mode   = 0;
   bitcnt = 1;
   buf    = 0;
   digidx = X->used - 1;
   bitcpy = 0;
   bitbuf = 0;

   for (;;) {
      /* grab next digit as required */
      if (--bitcnt == 0) {
         /* if digidx == -1 we are out of digits */
         if (digidx == -1) {
            break;
         }
         /* read next digit and reset the bitcnt */
         buf    = X->dp[digidx--];
         bitcnt = (int)DIGIT_BIT;
      }

      /* grab the next msb from the exponent */
      y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
      buf <<= (mp_digit)1;

      /* if the bit is zero and mode == 0 then we ignore it
       * These represent the leading zero bits before the first 1 bit
       * in the exponent.  Technically this opt is not required but it
       * does lower the # of trivial squaring/reductions used
       */
      if ((mode == 0) && (y == 0)) {
         continue;
      }

      /* if the bit is zero and mode == 1 then we square */
      if ((mode == 1) && (y == 0)) {
         if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
            goto LBL_RES;
         }
         if ((err = redux(&res, P, &mu)) != MP_OKAY) {
            goto LBL_RES;
         }
         continue;
      }

      /* else we add it to the window */
      bitbuf |= (y << (winsize - ++bitcpy));
      mode    = 2;

      if (bitcpy == winsize) {
         /* ok window is filled so square as required and multiply  */
         /* square first */
         for (x = 0; x < winsize; x++) {
            if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
               goto LBL_RES;
            }
            if ((err = redux(&res, P, &mu)) != MP_OKAY) {
               goto LBL_RES;
            }
         }

         /* then multiply */
         if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) {
            goto LBL_RES;
         }
         if ((err = redux(&res, P, &mu)) != MP_OKAY) {
            goto LBL_RES;
         }

         /* empty window and reset */
         bitcpy = 0;
         bitbuf = 0;
         mode   = 1;
      }
   }

   /* if bits remain then square/multiply */
   if ((mode == 2) && (bitcpy > 0)) {
      /* square then multiply if the bit is set */
      for (x = 0; x < bitcpy; x++) {
         if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
            goto LBL_RES;
         }
         if ((err = redux(&res, P, &mu)) != MP_OKAY) {
            goto LBL_RES;
         }

         bitbuf <<= 1;
         if ((bitbuf & (1 << winsize)) != 0) {
            /* then multiply */
            if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) {
               goto LBL_RES;
            }
            if ((err = redux(&res, P, &mu)) != MP_OKAY) {
               goto LBL_RES;
            }
         }
      }
   }

   mp_exch(&res, Y);
   err = MP_OKAY;
LBL_RES:
   mp_clear(&res);
LBL_MU:
   mp_clear(&mu);
LBL_M:
   mp_clear(&M[1]);
   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
      mp_clear(&M[x]);
   }
   return err;
}
#endif

/* ref:         HEAD -> master, tag: v1.1.0 */
/* git commit:  08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
/* commit time: 2019-01-28 20:32:32 +0100 */