view libtommath/bn_s_mp_mul_high_digs.c @ 1659:d32bcb5c557d

Add Ed25519 support (#91) * Add support for Ed25519 as a public key type Ed25519 is a elliptic curve signature scheme that offers better security than ECDSA and DSA and good performance. It may be used for both user and host keys. OpenSSH key import and fuzzer are not supported yet. Initially inspired by Peter Szabo. * Add curve25519 and ed25519 fuzzers * Add import and export of Ed25519 keys
author Vladislav Grishenko <themiron@users.noreply.github.com>
date Wed, 11 Mar 2020 21:09:45 +0500
parents f52919ffd3b1
children 1051e4eea25a
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* multiplies |a| * |b| and does not compute the lower digs digits
 * [meant to get the higher part of the product]
 */
int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   mp_int  t;
   int     res, pa, pb, ix, iy;
   mp_digit u;
   mp_word r;
   mp_digit tmpx, *tmpt, *tmpy;

   /* can we use the fast multiplier? */
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
   if (((a->used + b->used + 1) < (int)MP_WARRAY)
       && (MIN(a->used, b->used) < (int)(1u << (((size_t)CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)DIGIT_BIT))))) {
      return fast_s_mp_mul_high_digs(a, b, c, digs);
   }
#endif

   if ((res = mp_init_size(&t, a->used + b->used + 1)) != MP_OKAY) {
      return res;
   }
   t.used = a->used + b->used + 1;

   pa = a->used;
   pb = b->used;
   for (ix = 0; ix < pa; ix++) {
      /* clear the carry */
      u = 0;

      /* left hand side of A[ix] * B[iy] */
      tmpx = a->dp[ix];

      /* alias to the address of where the digits will be stored */
      tmpt = &(t.dp[digs]);

      /* alias for where to read the right hand side from */
      tmpy = b->dp + (digs - ix);

      for (iy = digs - ix; iy < pb; iy++) {
         /* calculate the double precision result */
         r       = (mp_word)*tmpt +
                   ((mp_word)tmpx * (mp_word)*tmpy++) +
                   (mp_word)u;

         /* get the lower part */
         *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK);

         /* carry the carry */
         u       = (mp_digit)(r >> (mp_word)DIGIT_BIT);
      }
      *tmpt = u;
   }
   mp_clamp(&t);
   mp_exch(&t, c);
   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         HEAD -> master, tag: v1.1.0 */
/* git commit:  08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
/* commit time: 2019-01-28 20:32:32 +0100 */