view libtommath/bn_s_mp_sqr.c @ 1659:d32bcb5c557d

Add Ed25519 support (#91) * Add support for Ed25519 as a public key type Ed25519 is a elliptic curve signature scheme that offers better security than ECDSA and DSA and good performance. It may be used for both user and host keys. OpenSSH key import and fuzzer are not supported yet. Initially inspired by Peter Szabo. * Add curve25519 and ed25519 fuzzers * Add import and export of Ed25519 keys
author Vladislav Grishenko <themiron@users.noreply.github.com>
date Wed, 11 Mar 2020 21:09:45 +0500
parents f52919ffd3b1
children 1051e4eea25a
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_S_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
int s_mp_sqr(const mp_int *a, mp_int *b)
{
   mp_int  t;
   int     res, ix, iy, pa;
   mp_word r;
   mp_digit u, tmpx, *tmpt;

   pa = a->used;
   if ((res = mp_init_size(&t, (2 * pa) + 1)) != MP_OKAY) {
      return res;
   }

   /* default used is maximum possible size */
   t.used = (2 * pa) + 1;

   for (ix = 0; ix < pa; ix++) {
      /* first calculate the digit at 2*ix */
      /* calculate double precision result */
      r = (mp_word)t.dp[2*ix] +
          ((mp_word)a->dp[ix] * (mp_word)a->dp[ix]);

      /* store lower part in result */
      t.dp[ix+ix] = (mp_digit)(r & (mp_word)MP_MASK);

      /* get the carry */
      u           = (mp_digit)(r >> (mp_word)DIGIT_BIT);

      /* left hand side of A[ix] * A[iy] */
      tmpx        = a->dp[ix];

      /* alias for where to store the results */
      tmpt        = t.dp + ((2 * ix) + 1);

      for (iy = ix + 1; iy < pa; iy++) {
         /* first calculate the product */
         r       = (mp_word)tmpx * (mp_word)a->dp[iy];

         /* now calculate the double precision result, note we use
          * addition instead of *2 since it's easier to optimize
          */
         r       = (mp_word)*tmpt + r + r + (mp_word)u;

         /* store lower part */
         *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK);

         /* get carry */
         u       = (mp_digit)(r >> (mp_word)DIGIT_BIT);
      }
      /* propagate upwards */
      while (u != 0uL) {
         r       = (mp_word)*tmpt + (mp_word)u;
         *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK);
         u       = (mp_digit)(r >> (mp_word)DIGIT_BIT);
      }
   }

   mp_clamp(&t);
   mp_exch(&t, b);
   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         HEAD -> master, tag: v1.1.0 */
/* git commit:  08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
/* commit time: 2019-01-28 20:32:32 +0100 */