Mercurial > dropbear
view pkcs_1_pss_encode.c @ 211:f01f0400314d libtomcrypt
disapproval of revision 6a39eb8b36778460fca83b8149df2a8b6d3327fd
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 06 Jul 2005 13:23:45 +0000 |
parents | 6362d3854bb4 |
children | 5d99163f7e32 |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtomcrypt.org */ #include "mycrypt.h" /* PKCS #1 PSS Signature Padding -- Tom St Denis */ #ifdef PKCS_1 int pkcs_1_pss_encode(const unsigned char *msghash, unsigned long msghashlen, unsigned long saltlen, prng_state *prng, int prng_idx, int hash_idx, unsigned long modulus_bitlen, unsigned char *out, unsigned long *outlen) { unsigned char DB[1024], mask[sizeof(DB)], salt[sizeof(DB)], hash[sizeof(DB)]; unsigned long x, y, hLen, modulus_len; int err; hash_state md; _ARGCHK(msghash != NULL); _ARGCHK(out != NULL); _ARGCHK(outlen != NULL); /* ensure hash and PRNG are valid */ if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } if ((err = prng_is_valid(prng_idx)) != CRYPT_OK) { return err; } hLen = hash_descriptor[hash_idx].hashsize; modulus_len = (modulus_bitlen>>3) + (modulus_bitlen & 7 ? 1 : 0); /* check sizes */ if ((saltlen > sizeof(salt)) || (modulus_len > sizeof(DB)) || (modulus_len < hLen + saltlen + 2)) { return CRYPT_INVALID_ARG; } /* generate random salt */ if (saltlen > 0) { if (prng_descriptor[prng_idx].read(salt, saltlen, prng) != saltlen) { return CRYPT_ERROR_READPRNG; } } /* M = (eight) 0x00 || msghash || salt, hash = H(M) */ hash_descriptor[hash_idx].init(&md); zeromem(DB, 8); if ((err = hash_descriptor[hash_idx].process(&md, DB, 8)) != CRYPT_OK) { return err; } if ((err = hash_descriptor[hash_idx].process(&md, msghash, msghashlen)) != CRYPT_OK) { return err; } if ((err = hash_descriptor[hash_idx].process(&md, salt, saltlen)) != CRYPT_OK) { return err; } if ((err = hash_descriptor[hash_idx].done(&md, hash)) != CRYPT_OK) { return err; } /* generate DB = PS || 0x01 || salt, PS == modulus_len - saltlen - hLen - 2 zero bytes */ for (x = 0; x < (modulus_len - saltlen - hLen - 2); x++) { DB[x] = 0x00; } DB[x++] = 0x01; for (y = 0; y < saltlen; y++) { DB[x++] = salt[y]; } /* generate mask of length modulus_len - hLen - 1 from hash */ if ((err = pkcs_1_mgf1(hash, hLen, hash_idx, mask, modulus_len - hLen - 1)) != CRYPT_OK) { return err; } /* xor against DB */ for (y = 0; y < (modulus_len - hLen - 1); y++) { DB[y] ^= mask[y]; } /* output is DB || hash || 0xBC */ if (*outlen < modulus_len) { return CRYPT_BUFFER_OVERFLOW; } /* DB */ for (y = x = 0; x < modulus_len - hLen - 1; x++) { out[y++] = DB[x]; } /* hash */ for (x = 0; x < hLen; x++) { out[y++] = hash[x]; } /* 0xBC */ out[y] = 0xBC; /* now clear the 8*modulus_len - modulus_bitlen most significant bits */ out[0] &= 0xFF >> ((modulus_len<<3) - (modulus_bitlen-1)); /* store output size */ *outlen = modulus_len; #ifdef CLEAN_STACK zeromem(DB, sizeof(DB)); zeromem(mask, sizeof(mask)); zeromem(salt, sizeof(salt)); zeromem(hash, sizeof(hash)); #endif return CRYPT_OK; } #endif /* PKCS_1 */