Mercurial > dropbear
view libtomcrypt/src/ciphers/noekeon.c @ 921:f2dd12444e37 coverity
Fix the right build line
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sat, 08 Mar 2014 18:16:11 +0800 (2014-03-08) |
parents | 0cbe8f6dbf9e |
children | f849a5ca2efc |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com */ /** @file noekeon.c Implementation of the Noekeon block cipher by Tom St Denis */ #include "tomcrypt.h" #ifdef NOEKEON const struct ltc_cipher_descriptor noekeon_desc = { "noekeon", 16, 16, 16, 16, 16, &noekeon_setup, &noekeon_ecb_encrypt, &noekeon_ecb_decrypt, &noekeon_test, &noekeon_done, &noekeon_keysize, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; static const ulong32 RC[] = { 0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL, 0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL, 0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL, 0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL, 0x000000d4UL }; #define kTHETA(a, b, c, d) \ temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \ b ^= temp; d ^= temp; \ temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \ a ^= temp; c ^= temp; #define THETA(k, a, b, c, d) \ temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \ b ^= temp ^ k[1]; d ^= temp ^ k[3]; \ temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \ a ^= temp ^ k[0]; c ^= temp ^ k[2]; #define GAMMA(a, b, c, d) \ b ^= ~(d|c); \ a ^= c&b; \ temp = d; d = a; a = temp;\ c ^= a ^ b ^ d; \ b ^= ~(d|c); \ a ^= c&b; #define PI1(a, b, c, d) \ a = ROLc(a, 1); c = ROLc(c, 5); d = ROLc(d, 2); #define PI2(a, b, c, d) \ a = RORc(a, 1); c = RORc(c, 5); d = RORc(d, 2); /** Initialize the Noekeon block cipher @param key The symmetric key you wish to pass @param keylen The key length in bytes @param num_rounds The number of rounds desired (0 for default) @param skey The key in as scheduled by this function. @return CRYPT_OK if successful */ int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) { ulong32 temp; LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); if (keylen != 16) { return CRYPT_INVALID_KEYSIZE; } if (num_rounds != 16 && num_rounds != 0) { return CRYPT_INVALID_ROUNDS; } LOAD32H(skey->noekeon.K[0],&key[0]); LOAD32H(skey->noekeon.K[1],&key[4]); LOAD32H(skey->noekeon.K[2],&key[8]); LOAD32H(skey->noekeon.K[3],&key[12]); LOAD32H(skey->noekeon.dK[0],&key[0]); LOAD32H(skey->noekeon.dK[1],&key[4]); LOAD32H(skey->noekeon.dK[2],&key[8]); LOAD32H(skey->noekeon.dK[3],&key[12]); kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]); return CRYPT_OK; } /** Encrypts a block of text with Noekeon @param pt The input plaintext (16 bytes) @param ct The output ciphertext (16 bytes) @param skey The key as scheduled @return CRYPT_OK if successful */ #ifdef LTC_CLEAN_STACK static int _noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) #else int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) #endif { ulong32 a,b,c,d,temp; int r; LTC_ARGCHK(skey != NULL); LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]); LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]); #define ROUND(i) \ a ^= RC[i]; \ THETA(skey->noekeon.K, a,b,c,d); \ PI1(a,b,c,d); \ GAMMA(a,b,c,d); \ PI2(a,b,c,d); for (r = 0; r < 16; ++r) { ROUND(r); } #undef ROUND a ^= RC[16]; THETA(skey->noekeon.K, a, b, c, d); STORE32H(a,&ct[0]); STORE32H(b,&ct[4]); STORE32H(c,&ct[8]); STORE32H(d,&ct[12]); return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) { int err = _noekeon_ecb_encrypt(pt, ct, skey); burn_stack(sizeof(ulong32) * 5 + sizeof(int)); return CRYPT_OK; } #endif /** Decrypts a block of text with Noekeon @param ct The input ciphertext (16 bytes) @param pt The output plaintext (16 bytes) @param skey The key as scheduled @return CRYPT_OK if successful */ #ifdef LTC_CLEAN_STACK static int _noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) #else int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) #endif { ulong32 a,b,c,d, temp; int r; LTC_ARGCHK(skey != NULL); LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]); LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]); #define ROUND(i) \ THETA(skey->noekeon.dK, a,b,c,d); \ a ^= RC[i]; \ PI1(a,b,c,d); \ GAMMA(a,b,c,d); \ PI2(a,b,c,d); for (r = 16; r > 0; --r) { ROUND(r); } #undef ROUND THETA(skey->noekeon.dK, a,b,c,d); a ^= RC[0]; STORE32H(a,&pt[0]); STORE32H(b, &pt[4]); STORE32H(c,&pt[8]); STORE32H(d, &pt[12]); return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) { int err = _noekeon_ecb_decrypt(ct, pt, skey); burn_stack(sizeof(ulong32) * 5 + sizeof(int)); return err; } #endif /** Performs a self-test of the Noekeon block cipher @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled */ int noekeon_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const struct { int keylen; unsigned char key[16], pt[16], ct[16]; } tests[] = { { 16, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 0x18, 0xa6, 0xec, 0xe5, 0x28, 0xaa, 0x79, 0x73, 0x28, 0xb2, 0xc0, 0x91, 0xa0, 0x2f, 0x54, 0xc5} } }; symmetric_key key; unsigned char tmp[2][16]; int err, i, y; for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { zeromem(&key, sizeof(key)); if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) { return err; } noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key); noekeon_ecb_decrypt(tmp[0], tmp[1], &key); if (XMEMCMP(tmp[0], tests[i].ct, 16) || XMEMCMP(tmp[1], tests[i].pt, 16)) { #if 0 printf("\n\nTest %d failed\n", i); if (XMEMCMP(tmp[0], tests[i].ct, 16)) { printf("CT: "); for (i = 0; i < 16; i++) { printf("%02x ", tmp[0][i]); } printf("\n"); } else { printf("PT: "); for (i = 0; i < 16; i++) { printf("%02x ", tmp[1][i]); } printf("\n"); } #endif return CRYPT_FAIL_TESTVECTOR; } /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ for (y = 0; y < 16; y++) tmp[0][y] = 0; for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key); for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key); for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; } return CRYPT_OK; #endif } /** Terminate the context @param skey The scheduled key */ void noekeon_done(symmetric_key *skey) { } /** Gets suitable key size @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. @return CRYPT_OK if the input key size is acceptable. */ int noekeon_keysize(int *keysize) { LTC_ARGCHK(keysize != NULL); if (*keysize < 16) { return CRYPT_INVALID_KEYSIZE; } else { *keysize = 16; return CRYPT_OK; } } #endif /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/noekeon.c,v $ */ /* $Revision: 1.12 $ */ /* $Date: 2006/11/08 23:01:06 $ */