Mercurial > dropbear
view tomsfastmath/src/divide/fp_div.c @ 644:ff5cc422ba40 dropbear-tfm tomsfastmath
Somehow Makefile.in went missing
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 23 Nov 2011 18:11:51 +0700 |
parents | a362b62d38b2 |
children |
line wrap: on
line source
/* TomsFastMath, a fast ISO C bignum library. * * This project is meant to fill in where LibTomMath * falls short. That is speed ;-) * * This project is public domain and free for all purposes. * * Tom St Denis, [email protected] */ #include <tfm.h> /* a/b => cb + d == a */ int fp_div(fp_int *a, fp_int *b, fp_int *c, fp_int *d) { fp_int q, x, y, t1, t2; int n, t, i, norm, neg; /* is divisor zero ? */ if (fp_iszero (b) == 1) { return FP_VAL; } /* if a < b then q=0, r = a */ if (fp_cmp_mag (a, b) == FP_LT) { if (d != NULL) { fp_copy (a, d); } if (c != NULL) { fp_zero (c); } return FP_OKAY; } fp_init(&q); q.used = a->used + 2; fp_init(&t1); fp_init(&t2); fp_init_copy(&x, a); fp_init_copy(&y, b); /* fix the sign */ neg = (a->sign == b->sign) ? FP_ZPOS : FP_NEG; x.sign = y.sign = FP_ZPOS; /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ norm = fp_count_bits(&y) % DIGIT_BIT; if (norm < (int)(DIGIT_BIT-1)) { norm = (DIGIT_BIT-1) - norm; fp_mul_2d (&x, norm, &x); fp_mul_2d (&y, norm, &y); } else { norm = 0; } /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ n = x.used - 1; t = y.used - 1; /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ fp_lshd (&y, n - t); /* y = y*b**{n-t} */ while (fp_cmp (&x, &y) != FP_LT) { ++(q.dp[n - t]); fp_sub (&x, &y, &x); } /* reset y by shifting it back down */ fp_rshd (&y, n - t); /* step 3. for i from n down to (t + 1) */ for (i = n; i >= (t + 1); i--) { if (i > x.used) { continue; } /* step 3.1 if xi == yt then set q{i-t-1} to b-1, * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ if (x.dp[i] == y.dp[t]) { q.dp[i - t - 1] = ((((fp_word)1) << DIGIT_BIT) - 1); } else { fp_word tmp; tmp = ((fp_word) x.dp[i]) << ((fp_word) DIGIT_BIT); tmp |= ((fp_word) x.dp[i - 1]); tmp /= ((fp_word) y.dp[t]); q.dp[i - t - 1] = (fp_digit) (tmp); } /* while (q{i-t-1} * (yt * b + y{t-1})) > xi * b**2 + xi-1 * b + xi-2 do q{i-t-1} -= 1; */ q.dp[i - t - 1] = (q.dp[i - t - 1] + 1); do { q.dp[i - t - 1] = (q.dp[i - t - 1] - 1); /* find left hand */ fp_zero (&t1); t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; t1.dp[1] = y.dp[t]; t1.used = 2; fp_mul_d (&t1, q.dp[i - t - 1], &t1); /* find right hand */ t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; t2.dp[2] = x.dp[i]; t2.used = 3; } while (fp_cmp_mag(&t1, &t2) == FP_GT); /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ fp_mul_d (&y, q.dp[i - t - 1], &t1); fp_lshd (&t1, i - t - 1); fp_sub (&x, &t1, &x); /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ if (x.sign == FP_NEG) { fp_copy (&y, &t1); fp_lshd (&t1, i - t - 1); fp_add (&x, &t1, &x); q.dp[i - t - 1] = q.dp[i - t - 1] - 1; } } /* now q is the quotient and x is the remainder * [which we have to normalize] */ /* get sign before writing to c */ x.sign = x.used == 0 ? FP_ZPOS : a->sign; if (c != NULL) { fp_clamp (&q); fp_copy (&q, c); c->sign = neg; } if (d != NULL) { fp_div_2d (&x, norm, &x, NULL); /* the following is a kludge, essentially we were seeing the right remainder but with excess digits that should have been zero */ for (i = b->used; i < x.used; i++) { x.dp[i] = 0; } fp_clamp(&x); fp_copy (&x, d); } return FP_OKAY; } /* $Source$ */ /* $Revision$ */ /* $Date$ */