Mercurial > dropbear
view libtommath/bn_mp_dr_reduce.c @ 1938:77bc00dcc19f default tip main master
Bump version to 2022.82
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Fri, 01 Apr 2022 14:43:27 +0800 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_MP_DR_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* reduce "x" in place modulo "n" using the Diminished Radix algorithm. * * Based on algorithm from the paper * * "Generating Efficient Primes for Discrete Log Cryptosystems" * Chae Hoon Lim, Pil Joong Lee, * POSTECH Information Research Laboratories * * The modulus must be of a special format [see manual] * * Has been modified to use algorithm 7.10 from the LTM book instead * * Input x must be in the range 0 <= x <= (n-1)**2 */ mp_err mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k) { mp_err err; int i, m; mp_word r; mp_digit mu, *tmpx1, *tmpx2; /* m = digits in modulus */ m = n->used; /* ensure that "x" has at least 2m digits */ if (x->alloc < (m + m)) { if ((err = mp_grow(x, m + m)) != MP_OKAY) { return err; } } /* top of loop, this is where the code resumes if * another reduction pass is required. */ top: /* aliases for digits */ /* alias for lower half of x */ tmpx1 = x->dp; /* alias for upper half of x, or x/B**m */ tmpx2 = x->dp + m; /* set carry to zero */ mu = 0; /* compute (x mod B**m) + k * [x/B**m] inline and inplace */ for (i = 0; i < m; i++) { r = ((mp_word)*tmpx2++ * (mp_word)k) + *tmpx1 + mu; *tmpx1++ = (mp_digit)(r & MP_MASK); mu = (mp_digit)(r >> ((mp_word)MP_DIGIT_BIT)); } /* set final carry */ *tmpx1++ = mu; /* zero words above m */ MP_ZERO_DIGITS(tmpx1, (x->used - m) - 1); /* clamp, sub and return */ mp_clamp(x); /* if x >= n then subtract and reduce again * Each successive "recursion" makes the input smaller and smaller. */ if (mp_cmp_mag(x, n) != MP_LT) { if ((err = s_mp_sub(x, n, x)) != MP_OKAY) { return err; } goto top; } return MP_OKAY; } #endif