Mercurial > dropbear
changeset 1692:1051e4eea25a
Update LibTomMath to 1.2.0 (#84)
* update C files
* update other files
* update headers
* update makefiles
* remove mp_set/get_double()
* use ltm 1.2.0 API
* update ltm_desc
* use bundled tommath if system-tommath is too old
* XMALLOC etc. were changed to MP_MALLOC etc.
line wrap: on
line diff
--- a/bignum.c Tue May 26 23:27:26 2020 +0800 +++ b/bignum.c Tue May 26 17:36:47 2020 +0200 @@ -86,7 +86,7 @@ void bytes_to_mp(mp_int *mp, const unsigned char* bytes, unsigned int len) { - if (mp_read_unsigned_bin(mp, (unsigned char*)bytes, len) != MP_OKAY) { + if (mp_from_ubin(mp, (unsigned char*)bytes, len) != MP_OKAY) { dropbear_exit("Mem alloc error"); } }
--- a/buffer.c Tue May 26 23:27:26 2020 +0800 +++ b/buffer.c Tue May 26 17:36:47 2020 +0200 @@ -307,18 +307,18 @@ /* for our purposes we only need positive (or 0) numbers, so will * fail if we get negative numbers */ void buf_putmpint(buffer* buf, mp_int * mp) { - + size_t written; unsigned int len, pad = 0; TRACE2(("enter buf_putmpint")) dropbear_assert(mp != NULL); - if (SIGN(mp) == MP_NEG) { + if (mp_isneg(mp)) { dropbear_exit("negative bignum"); } /* zero check */ - if (USED(mp) == 1 && DIGIT(mp, 0) == 0) { + if (mp_iszero(mp)) { len = 0; } else { /* SSH spec requires padding for mpints with the MSB set, this code @@ -339,10 +339,10 @@ if (pad) { buf_putbyte(buf, 0x00); } - if (mp_to_unsigned_bin(mp, buf_getwriteptr(buf, len-pad)) != MP_OKAY) { + if (mp_to_ubin(mp, buf_getwriteptr(buf, len-pad), len-pad, &written) != MP_OKAY) { dropbear_exit("mpint error"); } - buf_incrwritepos(buf, len-pad); + buf_incrwritepos(buf, written); } TRACE2(("leave buf_putmpint")) @@ -370,7 +370,7 @@ return DROPBEAR_FAILURE; } - if (mp_read_unsigned_bin(mp, buf_getptr(buf, len), len) != MP_OKAY) { + if (mp_from_ubin(mp, buf_getptr(buf, len), len) != MP_OKAY) { return DROPBEAR_FAILURE; }
--- a/common-kex.c Tue May 26 23:27:26 2020 +0800 +++ b/common-kex.c Tue May 26 17:36:47 2020 +0200 @@ -570,9 +570,7 @@ /* read the prime and generator*/ load_dh_p(&dh_p); - if (mp_set_int(&dh_g, DH_G_VAL) != MP_OKAY) { - dropbear_exit("Diffie-Hellman error"); - } + mp_set_ul(&dh_g, DH_G_VAL); /* calculate q = (p-1)/2 */ /* dh_priv is just a temp var here */
--- a/configure.ac Tue May 26 23:27:26 2020 +0800 +++ b/configure.ac Tue May 26 17:36:47 2020 +0200 @@ -538,7 +538,7 @@ AC_MSG_NOTICE(Forcing bundled libtom*) else BUNDLED_LIBTOM=0 - AC_CHECK_LIB(tommath, mp_exptmod, LIBTOM_LIBS="-ltommath $LIBTOM_LIBS", + AC_CHECK_LIB(tommath, mp_to_ubin, LIBTOM_LIBS="-ltommath $LIBTOM_LIBS", [AC_MSG_ERROR([Missing system libtommath and --disable-bundled-libtom was specified])] ) AC_CHECK_LIB(tomcrypt, register_cipher, LIBTOM_LIBS="-ltomcrypt $LIBTOM_LIBS", [AC_MSG_ERROR([Missing system libtomcrypt and --disable-bundled-libtom was specified])] ) @@ -546,7 +546,7 @@ ], [ BUNDLED_LIBTOM=0 - AC_CHECK_LIB(tommath, mp_exptmod, LIBTOM_LIBS="-ltommath $LIBTOM_LIBS", BUNDLED_LIBTOM=1) + AC_CHECK_LIB(tommath, mp_to_ubin, LIBTOM_LIBS="-ltommath $LIBTOM_LIBS", BUNDLED_LIBTOM=1) AC_CHECK_LIB(tomcrypt, register_cipher, LIBTOM_LIBS="-ltomcrypt $LIBTOM_LIBS", BUNDLED_LIBTOM=1) ] )
--- a/dbmalloc.c Tue May 26 23:27:26 2020 +0800 +++ b/dbmalloc.c Tue May 26 17:36:47 2020 +0200 @@ -180,3 +180,13 @@ } #endif /* DROPBEAR_TRACKING_MALLOC */ + +void * m_realloc_ltm(void* ptr, size_t oldsize, size_t newsize) { + (void)oldsize; + return m_realloc(ptr, newsize); +} + +void m_free_ltm(void *mem, size_t size) { + (void)size; + m_free_direct(mem); +}
--- a/dss.c Tue May 26 23:27:26 2020 +0800 +++ b/dss.c Tue May 26 17:36:47 2020 +0200 @@ -284,6 +284,7 @@ unsigned char msghash[SHA1_HASH_SIZE]; unsigned int writelen; unsigned int i; + size_t written; DEF_MP_INT(dss_k); DEF_MP_INT(dss_m); DEF_MP_INT(dss_temp1); @@ -340,31 +341,31 @@ buf_putstring(buf, SSH_SIGNKEY_DSS, SSH_SIGNKEY_DSS_LEN); buf_putint(buf, 2*SHA1_HASH_SIZE); - writelen = mp_unsigned_bin_size(&dss_r); + writelen = mp_ubin_size(&dss_r); dropbear_assert(writelen <= SHA1_HASH_SIZE); /* need to pad to 160 bits with leading zeros */ for (i = 0; i < SHA1_HASH_SIZE - writelen; i++) { buf_putbyte(buf, 0); } - if (mp_to_unsigned_bin(&dss_r, buf_getwriteptr(buf, writelen)) + if (mp_to_ubin(&dss_r, buf_getwriteptr(buf, writelen), writelen, &written) != MP_OKAY) { dropbear_exit("DSS error"); } mp_clear(&dss_r); - buf_incrwritepos(buf, writelen); + buf_incrwritepos(buf, written); - writelen = mp_unsigned_bin_size(&dss_s); + writelen = mp_ubin_size(&dss_s); dropbear_assert(writelen <= SHA1_HASH_SIZE); /* need to pad to 160 bits with leading zeros */ for (i = 0; i < SHA1_HASH_SIZE - writelen; i++) { buf_putbyte(buf, 0); } - if (mp_to_unsigned_bin(&dss_s, buf_getwriteptr(buf, writelen)) + if (mp_to_ubin(&dss_s, buf_getwriteptr(buf, writelen), writelen, &written) != MP_OKAY) { dropbear_exit("DSS error"); } mp_clear(&dss_s); - buf_incrwritepos(buf, writelen); + buf_incrwritepos(buf, written); mp_clear_multi(&dss_k, &dss_temp1, &dss_temp2, &dss_r, &dss_s, &dss_m, NULL);
--- a/ecc.c Tue May 26 23:27:26 2020 +0800 +++ b/ecc.c Tue May 26 17:36:47 2020 +0200 @@ -166,13 +166,13 @@ key = new_ecc_key(); key->dp = curve->dp; - if (mp_read_unsigned_bin(key->pubkey.x, buf_getptr(buf, size), size) != MP_OKAY) { + if (mp_from_ubin(key->pubkey.x, buf_getptr(buf, size), size) != MP_OKAY) { TRACE(("failed to read x")) goto out; } buf_incrpos(buf, size); - if (mp_read_unsigned_bin(key->pubkey.y, buf_getptr(buf, size), size) != MP_OKAY) { + if (mp_from_ubin(key->pubkey.y, buf_getptr(buf, size), size) != MP_OKAY) { TRACE(("failed to read y")) goto out; }
--- a/fuzz-common.c Tue May 26 23:27:26 2020 +0800 +++ b/fuzz-common.c Tue May 26 17:36:47 2020 +0200 @@ -147,7 +147,7 @@ void fuzz_fake_send_kexdh_reply(void) { assert(!ses.dh_K); m_mp_alloc_init_multi(&ses.dh_K, NULL); - mp_set_int(ses.dh_K, 12345678); + mp_set_ul(ses.dh_K, 12345678uL); finish_kexhashbuf(); }
--- a/genrsa.c Tue May 26 23:27:26 2020 +0800 +++ b/genrsa.c Tue May 26 17:36:47 2020 +0200 @@ -53,10 +53,7 @@ m_mp_alloc_init_multi(&key->e, &key->n, &key->d, &key->p, &key->q, NULL); m_mp_init_multi(&pminus, &lcm, &qminus, NULL); - if (mp_set_int(key->e, RSA_E) != MP_OKAY) { - fprintf(stderr, "RSA generation failed\n"); - exit(1); - } + mp_set_ul(key->e, RSA_E); while (1) { getrsaprime(key->p, &pminus, key->e, size/16);
--- a/keyimport.c Tue May 26 23:27:26 2020 +0800 +++ b/keyimport.c Tue May 26 17:36:47 2020 +0200 @@ -867,7 +867,7 @@ goto error; } m_mp_alloc_init_multi((mp_int**)&ecc->k, NULL); - if (mp_read_unsigned_bin(ecc->k, private_key_bytes, private_key_len) + if (mp_from_ubin(ecc->k, private_key_bytes, private_key_len) != MP_OKAY) { errmsg = "Error parsing ECC key"; goto error; @@ -1142,6 +1142,7 @@ unsigned long pubkey_size = 2*curve_size+1; int k_size; int err = 0; + size_t written; /* version. less than 10 bytes */ buf_incrwritepos(seq_buf, @@ -1149,12 +1150,14 @@ buf_putbyte(seq_buf, 1); /* privateKey */ - k_size = mp_unsigned_bin_size((*eck)->k); + k_size = mp_ubin_size((*eck)->k); dropbear_assert(k_size <= curve_size); buf_incrwritepos(seq_buf, ber_write_id_len(buf_getwriteptr(seq_buf, 10), 4, k_size, 0)); - mp_to_unsigned_bin((*eck)->k, buf_getwriteptr(seq_buf, k_size)); - buf_incrwritepos(seq_buf, k_size); + if (mp_to_ubin((*eck)->k, buf_getwriteptr(seq_buf, k_size), k_size, &written) != MP_OKAY) { + dropbear_exit("ECC error"); + } + buf_incrwritepos(seq_buf, written); /* SECGCurveNames */ switch (key->type)
--- a/libtomcrypt/src/math/ltm_desc.c Tue May 26 23:27:26 2020 +0800 +++ b/libtomcrypt/src/math/ltm_desc.c Tue May 26 17:36:47 2020 +0200 @@ -15,11 +15,14 @@ #include <tommath.h> static const struct { - int mpi_code, ltc_code; + mp_err mpi_code; + int ltc_code; } mpi_to_ltc_codes[] = { { MP_OKAY , CRYPT_OK}, { MP_MEM , CRYPT_MEM}, { MP_VAL , CRYPT_INVALID_ARG}, + { MP_ITER , CRYPT_INVALID_PACKET}, + { MP_BUF , CRYPT_BUFFER_OVERFLOW}, }; /** @@ -27,11 +30,11 @@ @param err The error to convert @return The equivalent LTC error code or CRYPT_ERROR if none found */ -static int mpi_to_ltc_error(int err) +static int mpi_to_ltc_error(mp_err err) { - int x; + size_t x; - for (x = 0; x < (int)(sizeof(mpi_to_ltc_codes)/sizeof(mpi_to_ltc_codes[0])); x++) { + for (x = 0; x < sizeof(mpi_to_ltc_codes)/sizeof(mpi_to_ltc_codes[0]); x++) { if (err == mpi_to_ltc_codes[x].mpi_code) { return mpi_to_ltc_codes[x].ltc_code; } @@ -39,17 +42,27 @@ return CRYPT_ERROR; } +static int init_mpi(void **a) +{ + LTC_ARGCHK(a != NULL); + + *a = XCALLOC(1, sizeof(mp_int)); + if (*a == NULL) { + return CRYPT_MEM; + } else { + return CRYPT_OK; + } +} + static int init(void **a) { int err; LTC_ARGCHK(a != NULL); - *a = XCALLOC(1, sizeof(mp_int)); - if (*a == NULL) { - return CRYPT_MEM; + if ((err = init_mpi(a)) != CRYPT_OK) { + return err; } - if ((err = mpi_to_ltc_error(mp_init(*a))) != CRYPT_OK) { XFREE(*a); } @@ -79,23 +92,25 @@ static int init_copy(void **a, void *b) { - if (init(a) != CRYPT_OK) { - return CRYPT_MEM; - } - return copy(b, *a); + int err; + LTC_ARGCHK(a != NULL); + LTC_ARGCHK(b != NULL); + if ((err = init_mpi(a)) != CRYPT_OK) return err; + return mpi_to_ltc_error(mp_init_copy(*a, b)); } /* ---- trivial ---- */ static int set_int(void *a, ltc_mp_digit b) { LTC_ARGCHK(a != NULL); - return mpi_to_ltc_error(mp_set_int(a, b)); + mp_set_u32(a, b); + return CRYPT_OK; } static unsigned long get_int(void *a) { LTC_ARGCHK(a != NULL); - return mp_get_int(a); + return mp_get_ul(a); } static ltc_mp_digit get_digit(void *a, int n) @@ -116,11 +131,9 @@ static int compare(void *a, void *b) { - int ret; LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); - ret = mp_cmp(a, b); - switch (ret) { + switch (mp_cmp(a, b)) { case MP_LT: return LTC_MP_LT; case MP_EQ: return LTC_MP_EQ; case MP_GT: return LTC_MP_GT; @@ -130,10 +143,8 @@ static int compare_d(void *a, ltc_mp_digit b) { - int ret; LTC_ARGCHK(a != NULL); - ret = mp_cmp_d(a, b); - switch (ret) { + switch (mp_cmp_d(a, b)) { case MP_LT: return LTC_MP_LT; case MP_EQ: return LTC_MP_EQ; case MP_GT: return LTC_MP_GT; @@ -175,14 +186,14 @@ { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); - return mpi_to_ltc_error(mp_toradix(a, b, radix)); + return mpi_to_ltc_error(mp_to_radix(a, b, SIZE_MAX, NULL, radix)); } /* get size as unsigned char string */ static unsigned long unsigned_size(void *a) { LTC_ARGCHK(a != NULL); - return mp_unsigned_bin_size(a); + return (unsigned long)mp_ubin_size(a); } /* store */ @@ -190,7 +201,7 @@ { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); - return mpi_to_ltc_error(mp_to_unsigned_bin(a, b)); + return mpi_to_ltc_error(mp_to_ubin(a, b, SIZE_MAX, NULL)); } /* read */ @@ -198,7 +209,7 @@ { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); - return mpi_to_ltc_error(mp_read_unsigned_bin(a, b, len)); + return mpi_to_ltc_error(mp_from_ubin(a, b, (size_t)len)); } /* add */ @@ -403,9 +414,7 @@ int err; LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); - if (b == 0) { - b = LTC_MILLER_RABIN_REPS; - } /* if */ + b = mp_prime_rabin_miller_trials(mp_count_bits(a)); err = mpi_to_ltc_error(mp_prime_is_prime(a, b, c)); *c = (*c == MP_YES) ? LTC_MP_YES : LTC_MP_NO; return err; @@ -420,7 +429,7 @@ const ltc_math_descriptor ltm_desc = { "LibTomMath", - (int)DIGIT_BIT, + (int)MP_DIGIT_BIT, &init, &init_copy,
--- a/libtommath/Makefile.in Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/Makefile.in Tue May 26 17:36:47 2020 +0200 @@ -7,6 +7,9 @@ # So that libtommath can include Dropbear headers for options and m_burn() CFLAGS += -I$(srcdir) -I../libtomcrypt/src/headers/ -I$(srcdir)/../libtomcrypt/src/headers/ -I../ -I$(srcdir)/../ +CFLAGS += -Wno-deprecated + +V = 1 ifeq ($V,1) silent= @@ -23,46 +26,46 @@ include $(srcdir)/makefile_include.mk -%.o: %.c +%.o: %.c $(HEADERS) ifneq ($V,1) @echo " * ${CC} [email protected]" endif - ${silent} ${CC} -c ${CFLAGS} $< -o [email protected] + ${silent} ${CC} -c ${LTM_CFLAGS} $< -o [email protected] LCOV_ARGS=--directory . #START_INS -OBJECTS=bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \ -bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \ -bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \ -bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div.o \ -bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o \ -bn_mp_dr_setup.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o \ -bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_bit.o \ -bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o bn_mp_init.o \ -bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \ -bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o bn_mp_jacobi.o bn_mp_karatsuba_mul.o \ -bn_mp_karatsuba_sqr.o bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \ -bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \ -bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_neg.o \ -bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_divisible.o \ +OBJECTS=bn_cutoffs.o bn_deprecated.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o bn_mp_addmod.o \ +bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o bn_mp_cmp_mag.o \ +bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_decr.o bn_mp_div.o bn_mp_div_2.o \ +bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o \ +bn_mp_error_to_string.o bn_mp_exch.o bn_mp_expt_u32.o bn_mp_exptmod.o bn_mp_exteuclid.o bn_mp_fread.o \ +bn_mp_from_sbin.o bn_mp_from_ubin.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_i32.o bn_mp_get_i64.o \ +bn_mp_get_l.o bn_mp_get_ll.o bn_mp_get_mag_u32.o bn_mp_get_mag_u64.o bn_mp_get_mag_ul.o \ +bn_mp_get_mag_ull.o bn_mp_grow.o bn_mp_incr.o bn_mp_init.o bn_mp_init_copy.o bn_mp_init_i32.o \ +bn_mp_init_i64.o bn_mp_init_l.o bn_mp_init_ll.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_size.o \ +bn_mp_init_u32.o bn_mp_init_u64.o bn_mp_init_ul.o bn_mp_init_ull.o bn_mp_invmod.o bn_mp_is_square.o \ +bn_mp_iseven.o bn_mp_isodd.o bn_mp_kronecker.o bn_mp_lcm.o bn_mp_log_u32.o bn_mp_lshd.o bn_mp_mod.o \ +bn_mp_mod_2d.o bn_mp_mod_d.o bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o \ +bn_mp_montgomery_setup.o bn_mp_mul.o bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_neg.o \ +bn_mp_or.o bn_mp_pack.o bn_mp_pack_count.o bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o \ bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \ -bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_prime_strong_lucas_selfridge.o \ -bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o \ -bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o \ -bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o \ -bn_mp_set.o bn_mp_set_int.o bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o bn_mp_signed_bin_size.o \ -bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o \ -bn_mp_tc_and.o bn_mp_tc_div_2d.o bn_mp_tc_or.o bn_mp_tc_xor.o bn_mp_to_signed_bin.o \ -bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_toom_mul.o \ -bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o \ -bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o bn_s_mp_mul_high_digs.o \ -bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o +bn_mp_prime_rabin_miller_trials.o bn_mp_prime_rand.o bn_mp_prime_strong_lucas_selfridge.o \ +bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o bn_mp_reduce.o bn_mp_reduce_2k.o \ +bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o \ +bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_root_u32.o bn_mp_rshd.o bn_mp_sbin_size.o bn_mp_set.o \ +bn_mp_set_i32.o bn_mp_set_i64.o bn_mp_set_l.o bn_mp_set_ll.o bn_mp_set_u32.o bn_mp_set_u64.o \ +bn_mp_set_ul.o bn_mp_set_ull.o bn_mp_shrink.o bn_mp_signed_rsh.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o \ +bn_mp_sqrtmod_prime.o bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_to_radix.o bn_mp_to_sbin.o \ +bn_mp_to_ubin.o bn_mp_ubin_size.o bn_mp_unpack.o bn_mp_xor.o bn_mp_zero.o bn_prime_tab.o bn_s_mp_add.o \ +bn_s_mp_balance_mul.o bn_s_mp_exptmod.o bn_s_mp_exptmod_fast.o bn_s_mp_get_bit.o bn_s_mp_invmod_fast.o \ +bn_s_mp_invmod_slow.o bn_s_mp_karatsuba_mul.o bn_s_mp_karatsuba_sqr.o bn_s_mp_montgomery_reduce_fast.o \ +bn_s_mp_mul_digs.o bn_s_mp_mul_digs_fast.o bn_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs_fast.o \ +bn_s_mp_prime_is_divisible.o bn_s_mp_rand_jenkins.o bn_s_mp_rand_platform.o bn_s_mp_reverse.o \ +bn_s_mp_sqr.o bn_s_mp_sqr_fast.o bn_s_mp_sub.o bn_s_mp_toom_mul.o bn_s_mp_toom_sqr.o #END_INS -$(OBJECTS): $(HEADERS) - $(LIBNAME): $(OBJECTS) $(AR) $(ARFLAGS) [email protected] $(OBJECTS) $(RANLIB) [email protected] @@ -82,11 +85,11 @@ #make a single object profiled library profiled_single: perl gen.pl - $(CC) $(CFLAGS) -fprofile-arcs -DTESTING -c mpi.c -o mpi.o - $(CC) $(CFLAGS) -DTESTING -DTIMER demo/timing.c mpi.o -lgcov -o timing + $(CC) $(LTM_CFLAGS) -fprofile-arcs -DTESTING -c mpi.c -o mpi.o + $(CC) $(LTM_CFLAGS) -DTESTING -DTIMER demo/timing.c mpi.o -lgcov -o timing ./timing rm -f *.o timing - $(CC) $(CFLAGS) -fbranch-probabilities -DTESTING -c mpi.c -o mpi.o + $(CC) $(LTM_CFLAGS) -fbranch-probabilities -DTESTING -c mpi.c -o mpi.o $(AR) $(ARFLAGS) $(LIBNAME) mpi.o ranlib $(LIBNAME) @@ -100,30 +103,37 @@ rm $(DESTDIR)$(LIBPATH)/$(LIBNAME) rm $(HEADERS_PUB:%=$(DESTDIR)$(INCPATH)/%) -test: $(LIBNAME) demo/demo.o - $(CC) $(CFLAGS) demo/demo.o $(LIBNAME) $(LFLAGS) -o test +test_standalone: test + @echo "test_standalone is deprecated, please use make-target 'test'" + +DEMOS=test mtest_opponent -test_standalone: $(LIBNAME) demo/demo.o - $(CC) $(CFLAGS) demo/demo.o $(LIBNAME) $(LFLAGS) -o test +define DEMO_template +$(1): demo/$(1).o demo/shared.o $$(LIBNAME) + $$(CC) $$(LTM_CFLAGS) $$(LTM_LFLAGS) $$^ -o [email protected] +endef + +$(foreach demo, $(strip $(DEMOS)), $(eval $(call DEMO_template,$(demo)))) .PHONY: mtest mtest: - cd mtest ; $(CC) $(CFLAGS) -O0 mtest.c $(LFLAGS) -o mtest + cd mtest ; $(CC) $(LTM_CFLAGS) -O0 mtest.c $(LTM_LFLAGS) -o mtest timing: $(LIBNAME) demo/timing.c - $(CC) $(CFLAGS) -DTIMER demo/timing.c $(LIBNAME) $(LFLAGS) -o timing + $(CC) $(LTM_CFLAGS) -DTIMER demo/timing.c $(LIBNAME) $(LTM_LFLAGS) -o timing + +tune: $(LIBNAME) + $(MAKE) -C etc tune CFLAGS="$(LTM_CFLAGS)" + $(MAKE) # You have to create a file .coveralls.yml with the content "repo_token: <the token>" # in the base folder to be able to submit to coveralls coveralls: lcov coveralls-lcov -docdvi poster docs mandvi manual: +docs manual: $(MAKE) -C doc/ [email protected] V=$(V) -pretty: - perl pretty.build - .PHONY: pre_gen pre_gen: mkdir -p pre_gen @@ -131,7 +141,7 @@ sed -e 's/[[:blank:]]*$$//' mpi.c > pre_gen/mpi.c rm mpi.c -zipup: clean astyle new_file manual poster docs +zipup: clean astyle new_file docs @# Update the index, so diff-index won't fail in case the pdf has been created. @# As the pdf creation modifies the tex files, git sometimes detects the @# modified files, but misses that it's put back to its original version. @@ -143,22 +153,21 @@ @echo 'fixme check' [email protected](find libtommath-$(VERSION)/ -type f | xargs grep 'FIXM[E]') && echo '############## BEWARE: the "fixme" marker was found !!! ##############' || true mkdir -p libtommath-$(VERSION)/doc - cp doc/bn.pdf doc/tommath.pdf doc/poster.pdf libtommath-$(VERSION)/doc/ + cp doc/bn.pdf libtommath-$(VERSION)/doc/ $(MAKE) -C libtommath-$(VERSION)/ pre_gen tar -c libtommath-$(VERSION)/ | xz -6e -c - > ltm-$(VERSION).tar.xz zip -9rq ltm-$(VERSION).zip libtommath-$(VERSION) cp doc/bn.pdf bn-$(VERSION).pdf - cp doc/tommath.pdf tommath-$(VERSION).pdf rm -rf libtommath-$(VERSION) gpg -b -a ltm-$(VERSION).tar.xz gpg -b -a ltm-$(VERSION).zip new_file: - bash updatemakes.sh - perl dep.pl + perl helper.pl --update-files perlcritic: perlcritic *.pl doc/*.pl astyle: - astyle --options=astylerc $(OBJECTS:.o=.c) tommath*.h demo/*.c etc/*.c mtest/mtest.c + @echo " * run astyle on all sources" + @astyle --options=astylerc --formatted $(OBJECTS:.o=.c) tommath*.h demo/*.c etc/*.c mtest/mtest.c
--- a/libtommath/README.md Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/README.md Tue May 26 17:36:47 2020 +0200 @@ -4,22 +4,41 @@ ## Build Status +### Travis CI + master: [](https://travis-ci.org/libtom/libtommath) develop: [](https://travis-ci.org/libtom/libtommath) +### AppVeyor + +master: [](https://ci.appveyor.com/project/libtom/libtommath/branch/master) + +develop: [](https://ci.appveyor.com/project/libtom/libtommath/branch/develop) + +### ABI Laboratory + API/ABI changes: [check here](https://abi-laboratory.pro/tracker/timeline/libtommath/) ## Summary The `develop` branch contains the in-development version. Stable releases are tagged. -Documentation is built from the LaTeX file `bn.tex`. There is also limited documentation in `tommath.h`. There is also a document, `tommath.pdf`, which describes the goals of the project and many of the algorithms used. +Documentation is built from the LaTeX file `bn.tex`. There is also limited documentation in `tommath.h`. +There is also a document, `tommath.pdf`, which describes the goals of the project and many of the algorithms used. -The project can be build by using `make`. Along with the usual `make`, `make clean` and `make install`, there are several other build targets, see the makefile for details. There are also makefiles for certain specific platforms. +The project can be build by using `make`. Along with the usual `make`, `make clean` and `make install`, +there are several other build targets, see the makefile for details. +There are also makefiles for certain specific platforms. ## Testing Tests are located in `demo/` and can be built in two flavors. -* `make test` creates a test binary that is intended to be run against `mtest`. `mtest` can be built with `make mtest` and test execution is done like `./mtest/mtest | ./test`. `mtest` is creating test vectors using an alternative MPI library and `test` is consuming these vectors to verify correct behavior of ltm -* `make test_standalone` creates a stand-alone test binary that executes several test routines. +* `make test` creates a stand-alone test binary that executes several test routines. +* `make mtest_opponent` creates a test binary that is intended to be run against `mtest`. + `mtest` can be built with `make mtest` and test execution is done like `./mtest/mtest | ./mtest_opponent`. + `mtest` is creating test vectors using an alternative MPI library and `test` is consuming these vectors to verify correct behavior of ltm + +## Building and Installing + +Building is straightforward for GNU Linux only, the section "Building LibTomMath" in the documentation in `doc/bn.pdf` has the details.
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/astylerc Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,30 @@ +# Artistic Style, see http://astyle.sourceforge.net/ +# full documentation, see: http://astyle.sourceforge.net/astyle.html +# +# usage: +# astyle --options=astylerc *.[ch] + +# Do not create backup, annonying in the times of git +suffix=none + +## Bracket Style Options +style=kr + +## Tab Options +indent=spaces=3 + +## Bracket Modify Options + +## Indentation Options +min-conditional-indent=0 + +## Padding Options +pad-header +unpad-paren +align-pointer=name + +## Formatting Options +break-after-logical +max-code-length=120 +convert-tabs +mode=c
--- a/libtommath/bn.tex Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1913 +0,0 @@ -\documentclass[synpaper]{book} -\usepackage{hyperref} -\usepackage{makeidx} -\usepackage{amssymb} -\usepackage{color} -\usepackage{alltt} -\usepackage{graphicx} -\usepackage{layout} -\def\union{\cup} -\def\intersect{\cap} -\def\getsrandom{\stackrel{\rm R}{\gets}} -\def\cross{\times} -\def\cat{\hspace{0.5em} \| \hspace{0.5em}} -\def\catn{$\|$} -\def\divides{\hspace{0.3em} | \hspace{0.3em}} -\def\nequiv{\not\equiv} -\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}} -\def\lcm{{\rm lcm}} -\def\gcd{{\rm gcd}} -\def\log{{\rm log}} -\def\ord{{\rm ord}} -\def\abs{{\mathit abs}} -\def\rep{{\mathit rep}} -\def\mod{{\mathit\ mod\ }} -\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})} -\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor} -\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil} -\def\Or{{\rm\ or\ }} -\def\And{{\rm\ and\ }} -\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}} -\def\implies{\Rightarrow} -\def\undefined{{\rm ``undefined"}} -\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}} -\let\oldphi\phi -\def\phi{\varphi} -\def\Pr{{\rm Pr}} -\newcommand{\str}[1]{{\mathbf{#1}}} -\def\F{{\mathbb F}} -\def\N{{\mathbb N}} -\def\Z{{\mathbb Z}} -\def\R{{\mathbb R}} -\def\C{{\mathbb C}} -\def\Q{{\mathbb Q}} -\definecolor{DGray}{gray}{0.5} -\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}} -\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}} -\def\gap{\vspace{0.5ex}} -\makeindex -\begin{document} -\frontmatter -\pagestyle{empty} -\title{LibTomMath User Manual \\ v1.0} -\author{Tom St Denis \\ [email protected]} -\maketitle -This text, the library and the accompanying textbook are all hereby placed in the public domain. This book has been -formatted for B5 [176x250] paper using the \LaTeX{} {\em book} macro package. - -\vspace{10cm} - -\begin{flushright}Open Source. Open Academia. Open Minds. - -\mbox{ } - -Tom St Denis, - -Ontario, Canada -\end{flushright} - -\tableofcontents -\listoffigures -\mainmatter -\pagestyle{headings} -\chapter{Introduction} -\section{What is LibTomMath?} -LibTomMath is a library of source code which provides a series of efficient and carefully written functions for manipulating -large integer numbers. It was written in portable ISO C source code so that it will build on any platform with a conforming -C compiler. - -In a nutshell the library was written from scratch with verbose comments to help instruct computer science students how -to implement ``bignum'' math. However, the resulting code has proven to be very useful. It has been used by numerous -universities, commercial and open source software developers. It has been used on a variety of platforms ranging from -Linux and Windows based x86 to ARM based Gameboys and PPC based MacOS machines. - -\section{License} -As of the v0.25 the library source code has been placed in the public domain with every new release. As of the v0.28 -release the textbook ``Implementing Multiple Precision Arithmetic'' has been placed in the public domain with every new -release as well. This textbook is meant to compliment the project by providing a more solid walkthrough of the development -algorithms used in the library. - -Since both\footnote{Note that the MPI files under mtest/ are copyrighted by Michael Fromberger. They are not required to use LibTomMath.} are in the -public domain everyone is entitled to do with them as they see fit. - -\section{Building LibTomMath} - -LibTomMath is meant to be very ``GCC friendly'' as it comes with a makefile well suited for GCC. However, the library will -also build in MSVC, Borland C out of the box. For any other ISO C compiler a makefile will have to be made by the end -developer. - -\subsection{Static Libraries} -To build as a static library for GCC issue the following -\begin{alltt} -make -\end{alltt} - -command. This will build the library and archive the object files in ``libtommath.a''. Now you link against -that and include ``tommath.h'' within your programs. Alternatively to build with MSVC issue the following -\begin{alltt} -nmake -f makefile.msvc -\end{alltt} - -This will build the library and archive the object files in ``tommath.lib''. This has been tested with MSVC -version 6.00 with service pack 5. - -\subsection{Shared Libraries} -To build as a shared library for GCC issue the following -\begin{alltt} -make -f makefile.shared -\end{alltt} -This requires the ``libtool'' package (common on most Linux/BSD systems). It will build LibTomMath as both shared -and static then install (by default) into /usr/lib as well as install the header files in /usr/include. The shared -library (resource) will be called ``libtommath.la'' while the static library called ``libtommath.a''. Generally -you use libtool to link your application against the shared object. - -There is limited support for making a ``DLL'' in windows via the ``makefile.cygwin\_dll'' makefile. It requires -Cygwin to work with since it requires the auto-export/import functionality. The resulting DLL and import library -``libtommath.dll.a'' can be used to link LibTomMath dynamically to any Windows program using Cygwin. - -\subsection{Testing} -To build the library and the test harness type - -\begin{alltt} -make test -\end{alltt} - -This will build the library, ``test'' and ``mtest/mtest''. The ``test'' program will accept test vectors and verify the -results. ``mtest/mtest'' will generate test vectors using the MPI library by Michael Fromberger\footnote{A copy of MPI -is included in the package}. Simply pipe mtest into test using - -\begin{alltt} -mtest/mtest | test -\end{alltt} - -If you do not have a ``/dev/urandom'' style RNG source you will have to write your own PRNG and simply pipe that into -mtest. For example, if your PRNG program is called ``myprng'' simply invoke - -\begin{alltt} -myprng | mtest/mtest | test -\end{alltt} - -This will output a row of numbers that are increasing. Each column is a different test (such as addition, multiplication, etc) -that is being performed. The numbers represent how many times the test was invoked. If an error is detected the program -will exit with a dump of the relevent numbers it was working with. - -\section{Build Configuration} -LibTomMath can configured at build time in three phases we shall call ``depends'', ``tweaks'' and ``trims''. -Each phase changes how the library is built and they are applied one after another respectively. - -To make the system more powerful you can tweak the build process. Classes are defined in the file -``tommath\_superclass.h''. By default, the symbol ``LTM\_ALL'' shall be defined which simply -instructs the system to build all of the functions. This is how LibTomMath used to be packaged. This will give you -access to every function LibTomMath offers. - -However, there are cases where such a build is not optional. For instance, you want to perform RSA operations. You -don't need the vast majority of the library to perform these operations. Aside from LTM\_ALL there is -another pre--defined class ``SC\_RSA\_1'' which works in conjunction with the RSA from LibTomCrypt. Additional -classes can be defined base on the need of the user. - -\subsection{Build Depends} -In the file tommath\_class.h you will see a large list of C ``defines'' followed by a series of ``ifdefs'' -which further define symbols. All of the symbols (technically they're macros $\ldots$) represent a given C source -file. For instance, BN\_MP\_ADD\_C represents the file ``bn\_mp\_add.c''. When a define has been enabled the -function in the respective file will be compiled and linked into the library. Accordingly when the define -is absent the file will not be compiled and not contribute any size to the library. - -You will also note that the header tommath\_class.h is actually recursively included (it includes itself twice). -This is to help resolve as many dependencies as possible. In the last pass the symbol LTM\_LAST will be defined. -This is useful for ``trims''. - -\subsection{Build Tweaks} -A tweak is an algorithm ``alternative''. For example, to provide tradeoffs (usually between size and space). -They can be enabled at any pass of the configuration phase. - -\begin{small} -\begin{center} -\begin{tabular}{|l|l|} -\hline \textbf{Define} & \textbf{Purpose} \\ -\hline BN\_MP\_DIV\_SMALL & Enables a slower, smaller and equally \\ - & functional mp\_div() function \\ -\hline -\end{tabular} -\end{center} -\end{small} - -\subsection{Build Trims} -A trim is a manner of removing functionality from a function that is not required. For instance, to perform -RSA cryptography you only require exponentiation with odd moduli so even moduli support can be safely removed. -Build trims are meant to be defined on the last pass of the configuration which means they are to be defined -only if LTM\_LAST has been defined. - -\subsubsection{Moduli Related} -\begin{small} -\begin{center} -\begin{tabular}{|l|l|} -\hline \textbf{Restriction} & \textbf{Undefine} \\ -\hline Exponentiation with odd moduli only & BN\_S\_MP\_EXPTMOD\_C \\ - & BN\_MP\_REDUCE\_C \\ - & BN\_MP\_REDUCE\_SETUP\_C \\ - & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\ - & BN\_FAST\_S\_MP\_MUL\_HIGH\_DIGS\_C \\ -\hline Exponentiation with random odd moduli & (The above plus the following) \\ - & BN\_MP\_REDUCE\_2K\_C \\ - & BN\_MP\_REDUCE\_2K\_SETUP\_C \\ - & BN\_MP\_REDUCE\_IS\_2K\_C \\ - & BN\_MP\_DR\_IS\_MODULUS\_C \\ - & BN\_MP\_DR\_REDUCE\_C \\ - & BN\_MP\_DR\_SETUP\_C \\ -\hline Modular inverse odd moduli only & BN\_MP\_INVMOD\_SLOW\_C \\ -\hline Modular inverse (both, smaller/slower) & BN\_FAST\_MP\_INVMOD\_C \\ -\hline -\end{tabular} -\end{center} -\end{small} - -\subsubsection{Operand Size Related} -\begin{small} -\begin{center} -\begin{tabular}{|l|l|} -\hline \textbf{Restriction} & \textbf{Undefine} \\ -\hline Moduli $\le 2560$ bits & BN\_MP\_MONTGOMERY\_REDUCE\_C \\ - & BN\_S\_MP\_MUL\_DIGS\_C \\ - & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\ - & BN\_S\_MP\_SQR\_C \\ -\hline Polynomial Schmolynomial & BN\_MP\_KARATSUBA\_MUL\_C \\ - & BN\_MP\_KARATSUBA\_SQR\_C \\ - & BN\_MP\_TOOM\_MUL\_C \\ - & BN\_MP\_TOOM\_SQR\_C \\ - -\hline -\end{tabular} -\end{center} -\end{small} - - -\section{Purpose of LibTomMath} -Unlike GNU MP (GMP) Library, LIP, OpenSSL or various other commercial kits (Miracl), LibTomMath was not written with -bleeding edge performance in mind. First and foremost LibTomMath was written to be entirely open. Not only is the -source code public domain (unlike various other GPL/etc licensed code), not only is the code freely downloadable but the -source code is also accessible for computer science students attempting to learn ``BigNum'' or multiple precision -arithmetic techniques. - -LibTomMath was written to be an instructive collection of source code. This is why there are many comments, only one -function per source file and often I use a ``middle-road'' approach where I don't cut corners for an extra 2\% speed -increase. - -Source code alone cannot really teach how the algorithms work which is why I also wrote a textbook that accompanies -the library (beat that!). - -So you may be thinking ``should I use LibTomMath?'' and the answer is a definite maybe. Let me tabulate what I think -are the pros and cons of LibTomMath by comparing it to the math routines from GnuPG\footnote{GnuPG v1.2.3 versus LibTomMath v0.28}. - -\newpage\begin{figure}[here] -\begin{small} -\begin{center} -\begin{tabular}{|l|c|c|l|} -\hline \textbf{Criteria} & \textbf{Pro} & \textbf{Con} & \textbf{Notes} \\ -\hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath $ = 71.97$ \\ -\hline Commented function prototypes & X && GnuPG function names are cryptic. \\ -\hline Speed && X & LibTomMath is slower. \\ -\hline Totally free & X & & GPL has unfavourable restrictions.\\ -\hline Large function base & X & & GnuPG is barebones. \\ -\hline Five modular reduction algorithms & X & & Faster modular exponentiation for a variety of moduli. \\ -\hline Portable & X & & GnuPG requires configuration to build. \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{LibTomMath Valuation} -\end{figure} - -It may seem odd to compare LibTomMath to GnuPG since the math in GnuPG is only a small portion of the entire application. -However, LibTomMath was written with cryptography in mind. It provides essentially all of the functions a cryptosystem -would require when working with large integers. - -So it may feel tempting to just rip the math code out of GnuPG (or GnuMP where it was taken from originally) in your -own application but I think there are reasons not to. While LibTomMath is slower than libraries such as GnuMP it is -not normally significantly slower. On x86 machines the difference is normally a factor of two when performing modular -exponentiations. It depends largely on the processor, compiler and the moduli being used. - -Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern. However, -on the other side of the coin LibTomMath offers you a totally free (public domain) well structured math library -that is very flexible, complete and performs well in resource contrained environments. Fast RSA for example can -be performed with as little as 8KB of ram for data (again depending on build options). - -\chapter{Getting Started with LibTomMath} -\section{Building Programs} -In order to use LibTomMath you must include ``tommath.h'' and link against the appropriate library file (typically -libtommath.a). There is no library initialization required and the entire library is thread safe. - -\section{Return Codes} -There are three possible return codes a function may return. - -\index{MP\_OKAY}\index{MP\_YES}\index{MP\_NO}\index{MP\_VAL}\index{MP\_MEM} -\begin{figure}[here!] -\begin{center} -\begin{small} -\begin{tabular}{|l|l|} -\hline \textbf{Code} & \textbf{Meaning} \\ -\hline MP\_OKAY & The function succeeded. \\ -\hline MP\_VAL & The function input was invalid. \\ -\hline MP\_MEM & Heap memory exhausted. \\ -\hline &\\ -\hline MP\_YES & Response is yes. \\ -\hline MP\_NO & Response is no. \\ -\hline -\end{tabular} -\end{small} -\end{center} -\caption{Return Codes} -\end{figure} - -The last two codes listed are not actually ``return'ed'' by a function. They are placed in an integer (the caller must -provide the address of an integer it can store to) which the caller can access. To convert one of the three return codes -to a string use the following function. - -\index{mp\_error\_to\_string} -\begin{alltt} -char *mp_error_to_string(int code); -\end{alltt} - -This will return a pointer to a string which describes the given error code. It will not work for the return codes -MP\_YES and MP\_NO. - -\section{Data Types} -The basic ``multiple precision integer'' type is known as the ``mp\_int'' within LibTomMath. This data type is used to -organize all of the data required to manipulate the integer it represents. Within LibTomMath it has been prototyped -as the following. - -\index{mp\_int} -\begin{alltt} -typedef struct \{ - int used, alloc, sign; - mp_digit *dp; -\} mp_int; -\end{alltt} - -Where ``mp\_digit'' is a data type that represents individual digits of the integer. By default, an mp\_digit is the -ISO C ``unsigned long'' data type and each digit is $28-$bits long. The mp\_digit type can be configured to suit other -platforms by defining the appropriate macros. - -All LTM functions that use the mp\_int type will expect a pointer to mp\_int structure. You must allocate memory to -hold the structure itself by yourself (whether off stack or heap it doesn't matter). The very first thing that must be -done to use an mp\_int is that it must be initialized. - -\section{Function Organization} - -The arithmetic functions of the library are all organized to have the same style prototype. That is source operands -are passed on the left and the destination is on the right. For instance, - -\begin{alltt} -mp_add(&a, &b, &c); /* c = a + b */ -mp_mul(&a, &a, &c); /* c = a * a */ -mp_div(&a, &b, &c, &d); /* c = [a/b], d = a mod b */ -\end{alltt} - -Another feature of the way the functions have been implemented is that source operands can be destination operands as well. -For instance, - -\begin{alltt} -mp_add(&a, &b, &b); /* b = a + b */ -mp_div(&a, &b, &a, &c); /* a = [a/b], c = a mod b */ -\end{alltt} - -This allows operands to be re-used which can make programming simpler. - -\section{Initialization} -\subsection{Single Initialization} -A single mp\_int can be initialized with the ``mp\_init'' function. - -\index{mp\_init} -\begin{alltt} -int mp_init (mp_int * a); -\end{alltt} - -This function expects a pointer to an mp\_int structure and will initialize the members of the structure so the mp\_int -represents the default integer which is zero. If the functions returns MP\_OKAY then the mp\_int is ready to be used -by the other LibTomMath functions. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - if ((result = mp_init(&number)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* use the number */ - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -\subsection{Single Free} -When you are finished with an mp\_int it is ideal to return the heap it used back to the system. The following function -provides this functionality. - -\index{mp\_clear} -\begin{alltt} -void mp_clear (mp_int * a); -\end{alltt} - -The function expects a pointer to a previously initialized mp\_int structure and frees the heap it uses. It sets the -pointer\footnote{The ``dp'' member.} within the mp\_int to \textbf{NULL} which is used to prevent double free situations. -Is is legal to call mp\_clear() twice on the same mp\_int in a row. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - if ((result = mp_init(&number)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* use the number */ - - /* We're done with it. */ - mp_clear(&number); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -\subsection{Multiple Initializations} -Certain algorithms require more than one large integer. In these instances it is ideal to initialize all of the mp\_int -variables in an ``all or nothing'' fashion. That is, they are either all initialized successfully or they are all -not initialized. - -The mp\_init\_multi() function provides this functionality. - -\index{mp\_init\_multi} \index{mp\_clear\_multi} -\begin{alltt} -int mp_init_multi(mp_int *mp, ...); -\end{alltt} - -It accepts a \textbf{NULL} terminated list of pointers to mp\_int structures. It will attempt to initialize them all -at once. If the function returns MP\_OKAY then all of the mp\_int variables are ready to use, otherwise none of them -are available for use. A complementary mp\_clear\_multi() function allows multiple mp\_int variables to be free'd -from the heap at the same time. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int num1, num2, num3; - int result; - - if ((result = mp_init_multi(&num1, - &num2, - &num3, NULL)) != MP\_OKAY) \{ - printf("Error initializing the numbers. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* use the numbers */ - - /* We're done with them. */ - mp_clear_multi(&num1, &num2, &num3, NULL); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -\subsection{Other Initializers} -To initialized and make a copy of an mp\_int the mp\_init\_copy() function has been provided. - -\index{mp\_init\_copy} -\begin{alltt} -int mp_init_copy (mp_int * a, mp_int * b); -\end{alltt} - -This function will initialize $a$ and make it a copy of $b$ if all goes well. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int num1, num2; - int result; - - /* initialize and do work on num1 ... */ - - /* We want a copy of num1 in num2 now */ - if ((result = mp_init_copy(&num2, &num1)) != MP_OKAY) \{ - printf("Error initializing the copy. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* now num2 is ready and contains a copy of num1 */ - - /* We're done with them. */ - mp_clear_multi(&num1, &num2, NULL); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -Another less common initializer is mp\_init\_size() which allows the user to initialize an mp\_int with a given -default number of digits. By default, all initializers allocate \textbf{MP\_PREC} digits. This function lets -you override this behaviour. - -\index{mp\_init\_size} -\begin{alltt} -int mp_init_size (mp_int * a, int size); -\end{alltt} - -The $size$ parameter must be greater than zero. If the function succeeds the mp\_int $a$ will be initialized -to have $size$ digits (which are all initially zero). - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - /* we need a 60-digit number */ - if ((result = mp_init_size(&number, 60)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* use the number */ - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -\section{Maintenance Functions} - -\subsection{Reducing Memory Usage} -When an mp\_int is in a state where it won't be changed again\footnote{A Diffie-Hellman modulus for instance.} excess -digits can be removed to return memory to the heap with the mp\_shrink() function. - -\index{mp\_shrink} -\begin{alltt} -int mp_shrink (mp_int * a); -\end{alltt} - -This will remove excess digits of the mp\_int $a$. If the operation fails the mp\_int should be intact without the -excess digits being removed. Note that you can use a shrunk mp\_int in further computations, however, such operations -will require heap operations which can be slow. It is not ideal to shrink mp\_int variables that you will further -modify in the system (unless you are seriously low on memory). - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - if ((result = mp_init(&number)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* use the number [e.g. pre-computation] */ - - /* We're done with it for now. */ - if ((result = mp_shrink(&number)) != MP_OKAY) \{ - printf("Error shrinking the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* use it .... */ - - - /* we're done with it. */ - mp_clear(&number); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -\subsection{Adding additional digits} - -Within the mp\_int structure are two parameters which control the limitations of the array of digits that represent -the integer the mp\_int is meant to equal. The \textit{used} parameter dictates how many digits are significant, that is, -contribute to the value of the mp\_int. The \textit{alloc} parameter dictates how many digits are currently available in -the array. If you need to perform an operation that requires more digits you will have to mp\_grow() the mp\_int to -your desired size. - -\index{mp\_grow} -\begin{alltt} -int mp_grow (mp_int * a, int size); -\end{alltt} - -This will grow the array of digits of $a$ to $size$. If the \textit{alloc} parameter is already bigger than -$size$ the function will not do anything. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - if ((result = mp_init(&number)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* use the number */ - - /* We need to add 20 digits to the number */ - if ((result = mp_grow(&number, number.alloc + 20)) != MP_OKAY) \{ - printf("Error growing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - - /* use the number */ - - /* we're done with it. */ - mp_clear(&number); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -\chapter{Basic Operations} -\section{Small Constants} -Setting mp\_ints to small constants is a relatively common operation. To accomodate these instances there are two -small constant assignment functions. The first function is used to set a single digit constant while the second sets -an ISO C style ``unsigned long'' constant. The reason for both functions is efficiency. Setting a single digit is quick but the -domain of a digit can change (it's always at least $0 \ldots 127$). - -\subsection{Single Digit} - -Setting a single digit can be accomplished with the following function. - -\index{mp\_set} -\begin{alltt} -void mp_set (mp_int * a, mp_digit b); -\end{alltt} - -This will zero the contents of $a$ and make it represent an integer equal to the value of $b$. Note that this -function has a return type of \textbf{void}. It cannot cause an error so it is safe to assume the function -succeeded. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - if ((result = mp_init(&number)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* set the number to 5 */ - mp_set(&number, 5); - - /* we're done with it. */ - mp_clear(&number); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -\subsection{Long Constants} - -To set a constant that is the size of an ISO C ``unsigned long'' and larger than a single digit the following function -can be used. - -\index{mp\_set\_int} -\begin{alltt} -int mp_set_int (mp_int * a, unsigned long b); -\end{alltt} - -This will assign the value of the 32-bit variable $b$ to the mp\_int $a$. Unlike mp\_set() this function will always -accept a 32-bit input regardless of the size of a single digit. However, since the value may span several digits -this function can fail if it runs out of heap memory. - -To get the ``unsigned long'' copy of an mp\_int the following function can be used. - -\index{mp\_get\_int} -\begin{alltt} -unsigned long mp_get_int (mp_int * a); -\end{alltt} - -This will return the 32 least significant bits of the mp\_int $a$. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - if ((result = mp_init(&number)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* set the number to 654321 (note this is bigger than 127) */ - if ((result = mp_set_int(&number, 654321)) != MP_OKAY) \{ - printf("Error setting the value of the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - printf("number == \%lu", mp_get_int(&number)); - - /* we're done with it. */ - mp_clear(&number); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -This should output the following if the program succeeds. - -\begin{alltt} -number == 654321 -\end{alltt} - -\subsection{Long Constants - platform dependant} - -\index{mp\_set\_long} -\begin{alltt} -int mp_set_long (mp_int * a, unsigned long b); -\end{alltt} - -This will assign the value of the platform-dependant sized variable $b$ to the mp\_int $a$. - -To get the ``unsigned long'' copy of an mp\_int the following function can be used. - -\index{mp\_get\_long} -\begin{alltt} -unsigned long mp_get_long (mp_int * a); -\end{alltt} - -This will return the least significant bits of the mp\_int $a$ that fit into an ``unsigned long''. - -\subsection{Long Long Constants} - -\index{mp\_set\_long\_long} -\begin{alltt} -int mp_set_long_long (mp_int * a, unsigned long long b); -\end{alltt} - -This will assign the value of the 64-bit variable $b$ to the mp\_int $a$. - -To get the ``unsigned long long'' copy of an mp\_int the following function can be used. - -\index{mp\_get\_long\_long} -\begin{alltt} -unsigned long long mp_get_long_long (mp_int * a); -\end{alltt} - -This will return the 64 least significant bits of the mp\_int $a$. - -\subsection{Initialize and Setting Constants} -To both initialize and set small constants the following two functions are available. -\index{mp\_init\_set} \index{mp\_init\_set\_int} -\begin{alltt} -int mp_init_set (mp_int * a, mp_digit b); -int mp_init_set_int (mp_int * a, unsigned long b); -\end{alltt} - -Both functions work like the previous counterparts except they first mp\_init $a$ before setting the values. - -\begin{alltt} -int main(void) -\{ - mp_int number1, number2; - int result; - - /* initialize and set a single digit */ - if ((result = mp_init_set(&number1, 100)) != MP_OKAY) \{ - printf("Error setting number1: \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* initialize and set a long */ - if ((result = mp_init_set_int(&number2, 1023)) != MP_OKAY) \{ - printf("Error setting number2: \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* display */ - printf("Number1, Number2 == \%lu, \%lu", - mp_get_int(&number1), mp_get_int(&number2)); - - /* clear */ - mp_clear_multi(&number1, &number2, NULL); - - return EXIT_SUCCESS; -\} -\end{alltt} - -If this program succeeds it shall output. -\begin{alltt} -Number1, Number2 == 100, 1023 -\end{alltt} - -\section{Comparisons} - -Comparisons in LibTomMath are always performed in a ``left to right'' fashion. There are three possible return codes -for any comparison. - -\index{MP\_GT} \index{MP\_EQ} \index{MP\_LT} -\begin{figure}[here] -\begin{center} -\begin{tabular}{|c|c|} -\hline \textbf{Result Code} & \textbf{Meaning} \\ -\hline MP\_GT & $a > b$ \\ -\hline MP\_EQ & $a = b$ \\ -\hline MP\_LT & $a < b$ \\ -\hline -\end{tabular} -\end{center} -\caption{Comparison Codes for $a, b$} -\label{fig:CMP} -\end{figure} - -In figure \ref{fig:CMP} two integers $a$ and $b$ are being compared. In this case $a$ is said to be ``to the left'' of -$b$. - -\subsection{Unsigned comparison} - -An unsigned comparison considers only the digits themselves and not the associated \textit{sign} flag of the -mp\_int structures. This is analogous to an absolute comparison. The function mp\_cmp\_mag() will compare two -mp\_int variables based on their digits only. - -\index{mp\_cmp\_mag} -\begin{alltt} -int mp_cmp_mag(mp_int * a, mp_int * b); -\end{alltt} -This will compare $a$ to $b$ placing $a$ to the left of $b$. This function cannot fail and will return one of the -three compare codes listed in figure \ref{fig:CMP}. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number1, number2; - int result; - - if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{ - printf("Error initializing the numbers. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* set the number1 to 5 */ - mp_set(&number1, 5); - - /* set the number2 to -6 */ - mp_set(&number2, 6); - if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{ - printf("Error negating number2. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - switch(mp_cmp_mag(&number1, &number2)) \{ - case MP_GT: printf("|number1| > |number2|"); break; - case MP_EQ: printf("|number1| = |number2|"); break; - case MP_LT: printf("|number1| < |number2|"); break; - \} - - /* we're done with it. */ - mp_clear_multi(&number1, &number2, NULL); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes -successfully it should print the following. - -\begin{alltt} -|number1| < |number2| -\end{alltt} - -This is because $\vert -6 \vert = 6$ and obviously $5 < 6$. - -\subsection{Signed comparison} - -To compare two mp\_int variables based on their signed value the mp\_cmp() function is provided. - -\index{mp\_cmp} -\begin{alltt} -int mp_cmp(mp_int * a, mp_int * b); -\end{alltt} - -This will compare $a$ to the left of $b$. It will first compare the signs of the two mp\_int variables. If they -differ it will return immediately based on their signs. If the signs are equal then it will compare the digits -individually. This function will return one of the compare conditions codes listed in figure \ref{fig:CMP}. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number1, number2; - int result; - - if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{ - printf("Error initializing the numbers. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* set the number1 to 5 */ - mp_set(&number1, 5); - - /* set the number2 to -6 */ - mp_set(&number2, 6); - if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{ - printf("Error negating number2. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - switch(mp_cmp(&number1, &number2)) \{ - case MP_GT: printf("number1 > number2"); break; - case MP_EQ: printf("number1 = number2"); break; - case MP_LT: printf("number1 < number2"); break; - \} - - /* we're done with it. */ - mp_clear_multi(&number1, &number2, NULL); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes -successfully it should print the following. - -\begin{alltt} -number1 > number2 -\end{alltt} - -\subsection{Single Digit} - -To compare a single digit against an mp\_int the following function has been provided. - -\index{mp\_cmp\_d} -\begin{alltt} -int mp_cmp_d(mp_int * a, mp_digit b); -\end{alltt} - -This will compare $a$ to the left of $b$ using a signed comparison. Note that it will always treat $b$ as -positive. This function is rather handy when you have to compare against small values such as $1$ (which often -comes up in cryptography). The function cannot fail and will return one of the tree compare condition codes -listed in figure \ref{fig:CMP}. - - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - if ((result = mp_init(&number)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* set the number to 5 */ - mp_set(&number, 5); - - switch(mp_cmp_d(&number, 7)) \{ - case MP_GT: printf("number > 7"); break; - case MP_EQ: printf("number = 7"); break; - case MP_LT: printf("number < 7"); break; - \} - - /* we're done with it. */ - mp_clear(&number); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -If this program functions properly it will print out the following. - -\begin{alltt} -number < 7 -\end{alltt} - -\section{Logical Operations} - -Logical operations are operations that can be performed either with simple shifts or boolean operators such as -AND, XOR and OR directly. These operations are very quick. - -\subsection{Multiplication by two} - -Multiplications and divisions by any power of two can be performed with quick logical shifts either left or -right depending on the operation. - -When multiplying or dividing by two a special case routine can be used which are as follows. -\index{mp\_mul\_2} \index{mp\_div\_2} -\begin{alltt} -int mp_mul_2(mp_int * a, mp_int * b); -int mp_div_2(mp_int * a, mp_int * b); -\end{alltt} - -The former will assign twice $a$ to $b$ while the latter will assign half $a$ to $b$. These functions are fast -since the shift counts and maskes are hardcoded into the routines. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - if ((result = mp_init(&number)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* set the number to 5 */ - mp_set(&number, 5); - - /* multiply by two */ - if ((result = mp\_mul\_2(&number, &number)) != MP_OKAY) \{ - printf("Error multiplying the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - switch(mp_cmp_d(&number, 7)) \{ - case MP_GT: printf("2*number > 7"); break; - case MP_EQ: printf("2*number = 7"); break; - case MP_LT: printf("2*number < 7"); break; - \} - - /* now divide by two */ - if ((result = mp\_div\_2(&number, &number)) != MP_OKAY) \{ - printf("Error dividing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - switch(mp_cmp_d(&number, 7)) \{ - case MP_GT: printf("2*number/2 > 7"); break; - case MP_EQ: printf("2*number/2 = 7"); break; - case MP_LT: printf("2*number/2 < 7"); break; - \} - - /* we're done with it. */ - mp_clear(&number); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -If this program is successful it will print out the following text. - -\begin{alltt} -2*number > 7 -2*number/2 < 7 -\end{alltt} - -Since $10 > 7$ and $5 < 7$. - -To multiply by a power of two the following function can be used. - -\index{mp\_mul\_2d} -\begin{alltt} -int mp_mul_2d(mp_int * a, int b, mp_int * c); -\end{alltt} - -This will multiply $a$ by $2^b$ and store the result in ``c''. If the value of $b$ is less than or equal to -zero the function will copy $a$ to ``c'' without performing any further actions. The multiplication itself -is implemented as a right-shift operation of $a$ by $b$ bits. - -To divide by a power of two use the following. - -\index{mp\_div\_2d} -\begin{alltt} -int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d); -\end{alltt} -Which will divide $a$ by $2^b$, store the quotient in ``c'' and the remainder in ``d'. If $b \le 0$ then the -function simply copies $a$ over to ``c'' and zeroes $d$. The variable $d$ may be passed as a \textbf{NULL} -value to signal that the remainder is not desired. The division itself is implemented as a left-shift -operation of $a$ by $b$ bits. - -\subsection{Polynomial Basis Operations} - -Strictly speaking the organization of the integers within the mp\_int structures is what is known as a -``polynomial basis''. This simply means a field element is stored by divisions of a radix. For example, if -$f(x) = \sum_{i=0}^{k} y_ix^k$ for any vector $\vec y$ then the array of digits in $\vec y$ are said to be -the polynomial basis representation of $z$ if $f(\beta) = z$ for a given radix $\beta$. - -To multiply by the polynomial $g(x) = x$ all you have todo is shift the digits of the basis left one place. The -following function provides this operation. - -\index{mp\_lshd} -\begin{alltt} -int mp_lshd (mp_int * a, int b); -\end{alltt} - -This will multiply $a$ in place by $x^b$ which is equivalent to shifting the digits left $b$ places and inserting zeroes -in the least significant digits. Similarly to divide by a power of $x$ the following function is provided. - -\index{mp\_rshd} -\begin{alltt} -void mp_rshd (mp_int * a, int b) -\end{alltt} -This will divide $a$ in place by $x^b$ and discard the remainder. This function cannot fail as it performs the operations -in place and no new digits are required to complete it. - -\subsection{AND, OR and XOR Operations} - -While AND, OR and XOR operations are not typical ``bignum functions'' they can be useful in several instances. The -three functions are prototyped as follows. - -\index{mp\_or} \index{mp\_and} \index{mp\_xor} -\begin{alltt} -int mp_or (mp_int * a, mp_int * b, mp_int * c); -int mp_and (mp_int * a, mp_int * b, mp_int * c); -int mp_xor (mp_int * a, mp_int * b, mp_int * c); -\end{alltt} - -Which compute $c = a \odot b$ where $\odot$ is one of OR, AND or XOR. - -\section{Addition and Subtraction} - -To compute an addition or subtraction the following two functions can be used. - -\index{mp\_add} \index{mp\_sub} -\begin{alltt} -int mp_add (mp_int * a, mp_int * b, mp_int * c); -int mp_sub (mp_int * a, mp_int * b, mp_int * c) -\end{alltt} - -Which perform $c = a \odot b$ where $\odot$ is one of signed addition or subtraction. The operations are fully sign -aware. - -\section{Sign Manipulation} -\subsection{Negation} -\label{sec:NEG} -Simple integer negation can be performed with the following. - -\index{mp\_neg} -\begin{alltt} -int mp_neg (mp_int * a, mp_int * b); -\end{alltt} - -Which assigns $-a$ to $b$. - -\subsection{Absolute} -Simple integer absolutes can be performed with the following. - -\index{mp\_neg} -\begin{alltt} -int mp_abs (mp_int * a, mp_int * b); -\end{alltt} - -Which assigns $\vert a \vert$ to $b$. - -\section{Integer Division and Remainder} -To perform a complete and general integer division with remainder use the following function. - -\index{mp\_div} -\begin{alltt} -int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d); -\end{alltt} - -This divides $a$ by $b$ and stores the quotient in $c$ and $d$. The signed quotient is computed such that -$bc + d = a$. Note that either of $c$ or $d$ can be set to \textbf{NULL} if their value is not required. If -$b$ is zero the function returns \textbf{MP\_VAL}. - - -\chapter{Multiplication and Squaring} -\section{Multiplication} -A full signed integer multiplication can be performed with the following. -\index{mp\_mul} -\begin{alltt} -int mp_mul (mp_int * a, mp_int * b, mp_int * c); -\end{alltt} -Which assigns the full signed product $ab$ to $c$. This function actually breaks into one of four cases which are -specific multiplication routines optimized for given parameters. First there are the Toom-Cook multiplications which -should only be used with very large inputs. This is followed by the Karatsuba multiplications which are for moderate -sized inputs. Then followed by the Comba and baseline multipliers. - -Fortunately for the developer you don't really need to know this unless you really want to fine tune the system. mp\_mul() -will determine on its own\footnote{Some tweaking may be required.} what routine to use automatically when it is called. - -\begin{alltt} -int main(void) -\{ - mp_int number1, number2; - int result; - - /* Initialize the numbers */ - if ((result = mp_init_multi(&number1, - &number2, NULL)) != MP_OKAY) \{ - printf("Error initializing the numbers. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* set the terms */ - if ((result = mp_set_int(&number, 257)) != MP_OKAY) \{ - printf("Error setting number1. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - if ((result = mp_set_int(&number2, 1023)) != MP_OKAY) \{ - printf("Error setting number2. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* multiply them */ - if ((result = mp_mul(&number1, &number2, - &number1)) != MP_OKAY) \{ - printf("Error multiplying terms. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* display */ - printf("number1 * number2 == \%lu", mp_get_int(&number1)); - - /* free terms and return */ - mp_clear_multi(&number1, &number2, NULL); - - return EXIT_SUCCESS; -\} -\end{alltt} - -If this program succeeds it shall output the following. - -\begin{alltt} -number1 * number2 == 262911 -\end{alltt} - -\section{Squaring} -Since squaring can be performed faster than multiplication it is performed it's own function instead of just using -mp\_mul(). - -\index{mp\_sqr} -\begin{alltt} -int mp_sqr (mp_int * a, mp_int * b); -\end{alltt} - -Will square $a$ and store it in $b$. Like the case of multiplication there are four different squaring -algorithms all which can be called from mp\_sqr(). It is ideal to use mp\_sqr over mp\_mul when squaring terms because -of the speed difference. - -\section{Tuning Polynomial Basis Routines} - -Both of the Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that -the Comba and baseline algorithms use. At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectively they require -considerably less work. For example, a 10000-digit multiplication would take roughly 724,000 single precision -multiplications with Toom-Cook or 100,000,000 single precision multiplications with the standard Comba (a factor -of 138). - -So why not always use Karatsuba or Toom-Cook? The simple answer is that they have so much overhead that they're not -actually faster than Comba until you hit distinct ``cutoff'' points. For Karatsuba with the default configuration, -GCC 3.3.1 and an Athlon XP processor the cutoff point is roughly 110 digits (about 70 for the Intel P4). That is, at -110 digits Karatsuba and Comba multiplications just about break even and for 110+ digits Karatsuba is faster. - -Toom-Cook has incredible overhead and is probably only useful for very large inputs. So far no known cutoff points -exist and for the most part I just set the cutoff points very high to make sure they're not called. - -A demo program in the ``etc/'' directory of the project called ``tune.c'' can be used to find the cutoff points. This -can be built with GCC as follows - -\begin{alltt} -make XXX -\end{alltt} -Where ``XXX'' is one of the following entries from the table \ref{fig:tuning}. - -\begin{figure}[here] -\begin{center} -\begin{small} -\begin{tabular}{|l|l|} -\hline \textbf{Value of XXX} & \textbf{Meaning} \\ -\hline tune & Builds portable tuning application \\ -\hline tune86 & Builds x86 (pentium and up) program for COFF \\ -\hline tune86c & Builds x86 program for Cygwin \\ -\hline tune86l & Builds x86 program for Linux (ELF format) \\ -\hline -\end{tabular} -\end{small} -\end{center} -\caption{Build Names for Tuning Programs} -\label{fig:tuning} -\end{figure} - -When the program is running it will output a series of measurements for different cutoff points. It will first find -good Karatsuba squaring and multiplication points. Then it proceeds to find Toom-Cook points. Note that the Toom-Cook -tuning takes a very long time as the cutoff points are likely to be very high. - -\chapter{Modular Reduction} - -Modular reduction is process of taking the remainder of one quantity divided by another. Expressed -as (\ref{eqn:mod}) the modular reduction is equivalent to the remainder of $b$ divided by $c$. - -\begin{equation} -a \equiv b \mbox{ (mod }c\mbox{)} -\label{eqn:mod} -\end{equation} - -Of particular interest to cryptography are reductions where $b$ is limited to the range $0 \le b < c^2$ since particularly -fast reduction algorithms can be written for the limited range. - -Note that one of the four optimized reduction algorithms are automatically chosen in the modular exponentiation -algorithm mp\_exptmod when an appropriate modulus is detected. - -\section{Straight Division} -In order to effect an arbitrary modular reduction the following algorithm is provided. - -\index{mp\_mod} -\begin{alltt} -int mp_mod(mp_int *a, mp_int *b, mp_int *c); -\end{alltt} - -This reduces $a$ modulo $b$ and stores the result in $c$. The sign of $c$ shall agree with the sign -of $b$. This algorithm accepts an input $a$ of any range and is not limited by $0 \le a < b^2$. - -\section{Barrett Reduction} - -Barrett reduction is a generic optimized reduction algorithm that requires pre--computation to achieve -a decent speedup over straight division. First a $\mu$ value must be precomputed with the following function. - -\index{mp\_reduce\_setup} -\begin{alltt} -int mp_reduce_setup(mp_int *a, mp_int *b); -\end{alltt} - -Given a modulus in $b$ this produces the required $\mu$ value in $a$. For any given modulus this only has to -be computed once. Modular reduction can now be performed with the following. - -\index{mp\_reduce} -\begin{alltt} -int mp_reduce(mp_int *a, mp_int *b, mp_int *c); -\end{alltt} - -This will reduce $a$ in place modulo $b$ with the precomputed $\mu$ value in $c$. $a$ must be in the range -$0 \le a < b^2$. - -\begin{alltt} -int main(void) -\{ - mp_int a, b, c, mu; - int result; - - /* initialize a,b to desired values, mp_init mu, - * c and set c to 1...we want to compute a^3 mod b - */ - - /* get mu value */ - if ((result = mp_reduce_setup(&mu, b)) != MP_OKAY) \{ - printf("Error getting mu. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* square a to get c = a^2 */ - if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{ - printf("Error squaring. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* now reduce `c' modulo b */ - if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{ - printf("Error reducing. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* multiply a to get c = a^3 */ - if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{ - printf("Error reducing. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* now reduce `c' modulo b */ - if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{ - printf("Error reducing. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* c now equals a^3 mod b */ - - return EXIT_SUCCESS; -\} -\end{alltt} - -This program will calculate $a^3 \mbox{ mod }b$ if all the functions succeed. - -\section{Montgomery Reduction} - -Montgomery is a specialized reduction algorithm for any odd moduli. Like Barrett reduction a pre--computation -step is required. This is accomplished with the following. - -\index{mp\_montgomery\_setup} -\begin{alltt} -int mp_montgomery_setup(mp_int *a, mp_digit *mp); -\end{alltt} - -For the given odd moduli $a$ the precomputation value is placed in $mp$. The reduction is computed with the -following. - -\index{mp\_montgomery\_reduce} -\begin{alltt} -int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); -\end{alltt} -This reduces $a$ in place modulo $m$ with the pre--computed value $mp$. $a$ must be in the range -$0 \le a < b^2$. - -Montgomery reduction is faster than Barrett reduction for moduli smaller than the ``comba'' limit. With the default -setup for instance, the limit is $127$ digits ($3556$--bits). Note that this function is not limited to -$127$ digits just that it falls back to a baseline algorithm after that point. - -An important observation is that this reduction does not return $a \mbox{ mod }m$ but $aR^{-1} \mbox{ mod }m$ -where $R = \beta^n$, $n$ is the n number of digits in $m$ and $\beta$ is radix used (default is $2^{28}$). - -To quickly calculate $R$ the following function was provided. - -\index{mp\_montgomery\_calc\_normalization} -\begin{alltt} -int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); -\end{alltt} -Which calculates $a = R$ for the odd moduli $b$ without using multiplication or division. - -The normal modus operandi for Montgomery reductions is to normalize the integers before entering the system. For -example, to calculate $a^3 \mbox { mod }b$ using Montgomery reduction the value of $a$ can be normalized by -multiplying it by $R$. Consider the following code snippet. - -\begin{alltt} -int main(void) -\{ - mp_int a, b, c, R; - mp_digit mp; - int result; - - /* initialize a,b to desired values, - * mp_init R, c and set c to 1.... - */ - - /* get normalization */ - if ((result = mp_montgomery_calc_normalization(&R, b)) != MP_OKAY) \{ - printf("Error getting norm. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* get mp value */ - if ((result = mp_montgomery_setup(&c, &mp)) != MP_OKAY) \{ - printf("Error setting up montgomery. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* normalize `a' so now a is equal to aR */ - if ((result = mp_mulmod(&a, &R, &b, &a)) != MP_OKAY) \{ - printf("Error computing aR. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* square a to get c = a^2R^2 */ - if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{ - printf("Error squaring. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* now reduce `c' back down to c = a^2R^2 * R^-1 == a^2R */ - if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{ - printf("Error reducing. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* multiply a to get c = a^3R^2 */ - if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{ - printf("Error reducing. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* now reduce `c' back down to c = a^3R^2 * R^-1 == a^3R */ - if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{ - printf("Error reducing. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* now reduce (again) `c' back down to c = a^3R * R^-1 == a^3 */ - if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{ - printf("Error reducing. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* c now equals a^3 mod b */ - - return EXIT_SUCCESS; -\} -\end{alltt} - -This particular example does not look too efficient but it demonstrates the point of the algorithm. By -normalizing the inputs the reduced results are always of the form $aR$ for some variable $a$. This allows -a single final reduction to correct for the normalization and the fast reduction used within the algorithm. - -For more details consider examining the file \textit{bn\_mp\_exptmod\_fast.c}. - -\section{Restricted Dimminished Radix} - -``Dimminished Radix'' reduction refers to reduction with respect to moduli that are ameniable to simple -digit shifting and small multiplications. In this case the ``restricted'' variant refers to moduli of the -form $\beta^k - p$ for some $k \ge 0$ and $0 < p < \beta$ where $\beta$ is the radix (default to $2^{28}$). - -As in the case of Montgomery reduction there is a pre--computation phase required for a given modulus. - -\index{mp\_dr\_setup} -\begin{alltt} -void mp_dr_setup(mp_int *a, mp_digit *d); -\end{alltt} - -This computes the value required for the modulus $a$ and stores it in $d$. This function cannot fail -and does not return any error codes. After the pre--computation a reduction can be performed with the -following. - -\index{mp\_dr\_reduce} -\begin{alltt} -int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp); -\end{alltt} - -This reduces $a$ in place modulo $b$ with the pre--computed value $mp$. $b$ must be of a restricted -dimminished radix form and $a$ must be in the range $0 \le a < b^2$. Dimminished radix reductions are -much faster than both Barrett and Montgomery reductions as they have a much lower asymtotic running time. - -Since the moduli are restricted this algorithm is not particularly useful for something like Rabin, RSA or -BBS cryptographic purposes. This reduction algorithm is useful for Diffie-Hellman and ECC where fixed -primes are acceptable. - -Note that unlike Montgomery reduction there is no normalization process. The result of this function is -equal to the correct residue. - -\section{Unrestricted Dimminshed Radix} - -Unrestricted reductions work much like the restricted counterparts except in this case the moduli is of the -form $2^k - p$ for $0 < p < \beta$. In this sense the unrestricted reductions are more flexible as they -can be applied to a wider range of numbers. - -\index{mp\_reduce\_2k\_setup} -\begin{alltt} -int mp_reduce_2k_setup(mp_int *a, mp_digit *d); -\end{alltt} - -This will compute the required $d$ value for the given moduli $a$. - -\index{mp\_reduce\_2k} -\begin{alltt} -int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); -\end{alltt} - -This will reduce $a$ in place modulo $n$ with the pre--computed value $d$. From my experience this routine is -slower than mp\_dr\_reduce but faster for most moduli sizes than the Montgomery reduction. - -\chapter{Exponentiation} -\section{Single Digit Exponentiation} -\index{mp\_expt\_d\_ex} -\begin{alltt} -int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast) -\end{alltt} -This function computes $c = a^b$. - -With parameter \textit{fast} set to $0$ the old version of the algorithm is used, -when \textit{fast} is $1$, a faster but not statically timed version of the algorithm is used. - -The old version uses a simple binary left-to-right algorithm. -It is faster than repeated multiplications by $a$ for all values of $b$ greater than three. - -The new version uses a binary right-to-left algorithm. - -The difference between the old and the new version is that the old version always -executes $DIGIT\_BIT$ iterations. The new algorithm executes only $n$ iterations -where $n$ is equal to the position of the highest bit that is set in $b$. - -\index{mp\_expt\_d} -\begin{alltt} -int mp_expt_d (mp_int * a, mp_digit b, mp_int * c) -\end{alltt} -mp\_expt\_d(a, b, c) is a wrapper function to mp\_expt\_d\_ex(a, b, c, 0). - -\section{Modular Exponentiation} -\index{mp\_exptmod} -\begin{alltt} -int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) -\end{alltt} -This computes $Y \equiv G^X \mbox{ (mod }P\mbox{)}$ using a variable width sliding window algorithm. This function -will automatically detect the fastest modular reduction technique to use during the operation. For negative values of -$X$ the operation is performed as $Y \equiv (G^{-1} \mbox{ mod }P)^{\vert X \vert} \mbox{ (mod }P\mbox{)}$ provided that -$gcd(G, P) = 1$. - -This function is actually a shell around the two internal exponentiation functions. This routine will automatically -detect when Barrett, Montgomery, Restricted and Unrestricted Dimminished Radix based exponentiation can be used. Generally -moduli of the a ``restricted dimminished radix'' form lead to the fastest modular exponentiations. Followed by Montgomery -and the other two algorithms. - -\section{Root Finding} -\index{mp\_n\_root} -\begin{alltt} -int mp_n_root (mp_int * a, mp_digit b, mp_int * c) -\end{alltt} -This computes $c = a^{1/b}$ such that $c^b \le a$ and $(c+1)^b > a$. The implementation of this function is not -ideal for values of $b$ greater than three. It will work but become very slow. So unless you are working with very small -numbers (less than 1000 bits) I'd avoid $b > 3$ situations. Will return a positive root only for even roots and return -a root with the sign of the input for odd roots. For example, performing $4^{1/2}$ will return $2$ whereas $(-8)^{1/3}$ -will return $-2$. - -This algorithm uses the ``Newton Approximation'' method and will converge on the correct root fairly quickly. Since -the algorithm requires raising $a$ to the power of $b$ it is not ideal to attempt to find roots for large -values of $b$. If particularly large roots are required then a factor method could be used instead. For example, -$a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$ or simply -$\left ( \left ( \left ( a^{1/2} \right )^{1/2} \right )^{1/2} \right )^{1/2}$ - -\chapter{Prime Numbers} -\section{Trial Division} -\index{mp\_prime\_is\_divisible} -\begin{alltt} -int mp_prime_is_divisible (mp_int * a, int *result) -\end{alltt} -This will attempt to evenly divide $a$ by a list of primes\footnote{Default is the first 256 primes.} and store the -outcome in ``result''. That is if $result = 0$ then $a$ is not divisible by the primes, otherwise it is. Note that -if the function does not return \textbf{MP\_OKAY} the value in ``result'' should be considered undefined\footnote{Currently -the default is to set it to zero first.}. - -\section{Fermat Test} -\index{mp\_prime\_fermat} -\begin{alltt} -int mp_prime_fermat (mp_int * a, mp_int * b, int *result) -\end{alltt} -Performs a Fermat primality test to the base $b$. That is it computes $b^a \mbox{ mod }a$ and tests whether the value is -equal to $b$ or not. If the values are equal then $a$ is probably prime and $result$ is set to one. Otherwise $result$ -is set to zero. - -\section{Miller-Rabin Test} -\index{mp\_prime\_miller\_rabin} -\begin{alltt} -int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result) -\end{alltt} -Performs a Miller-Rabin test to the base $b$ of $a$. This test is much stronger than the Fermat test and is very hard to -fool (besides with Carmichael numbers). If $a$ passes the test (therefore is probably prime) $result$ is set to one. -Otherwise $result$ is set to zero. - -Note that is suggested that you use the Miller-Rabin test instead of the Fermat test since all of the failures of -Miller-Rabin are a subset of the failures of the Fermat test. - -\subsection{Required Number of Tests} -Generally to ensure a number is very likely to be prime you have to perform the Miller-Rabin with at least a half-dozen -or so unique bases. However, it has been proven that the probability of failure goes down as the size of the input goes up. -This is why a simple function has been provided to help out. - -\index{mp\_prime\_rabin\_miller\_trials} -\begin{alltt} -int mp_prime_rabin_miller_trials(int size) -\end{alltt} -This returns the number of trials required for a $2^{-96}$ (or lower) probability of failure for a given ``size'' expressed -in bits. This comes in handy specially since larger numbers are slower to test. For example, a 512-bit number would -require ten tests whereas a 1024-bit number would only require four tests. - -You should always still perform a trial division before a Miller-Rabin test though. - -\section{Primality Testing} -\index{mp\_prime\_is\_prime} -\begin{alltt} -int mp_prime_is_prime (mp_int * a, int t, int *result) -\end{alltt} -This will perform a trial division followed by $t$ rounds of Miller-Rabin tests on $a$ and store the result in $result$. -If $a$ passes all of the tests $result$ is set to one, otherwise it is set to zero. Note that $t$ is bounded by -$1 \le t < PRIME\_SIZE$ where $PRIME\_SIZE$ is the number of primes in the prime number table (by default this is $256$). - -\section{Next Prime} -\index{mp\_prime\_next\_prime} -\begin{alltt} -int mp_prime_next_prime(mp_int *a, int t, int bbs_style) -\end{alltt} -This finds the next prime after $a$ that passes mp\_prime\_is\_prime() with $t$ tests. Set $bbs\_style$ to one if you -want only the next prime congruent to $3 \mbox{ mod } 4$, otherwise set it to zero to find any next prime. - -\section{Random Primes} -\index{mp\_prime\_random} -\begin{alltt} -int mp_prime_random(mp_int *a, int t, int size, int bbs, - ltm_prime_callback cb, void *dat) -\end{alltt} -This will find a prime greater than $256^{size}$ which can be ``bbs\_style'' or not depending on $bbs$ and must pass -$t$ rounds of tests. The ``ltm\_prime\_callback'' is a typedef for - -\begin{alltt} -typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); -\end{alltt} - -Which is a function that must read $len$ bytes (and return the amount stored) into $dst$. The $dat$ variable is simply -copied from the original input. It can be used to pass RNG context data to the callback. The function -mp\_prime\_random() is more suitable for generating primes which must be secret (as in the case of RSA) since there -is no skew on the least significant bits. - -\textit{Note:} As of v0.30 of the LibTomMath library this function has been deprecated. It is still available -but users are encouraged to use the new mp\_prime\_random\_ex() function instead. - -\subsection{Extended Generation} -\index{mp\_prime\_random\_ex} -\begin{alltt} -int mp_prime_random_ex(mp_int *a, int t, - int size, int flags, - ltm_prime_callback cb, void *dat); -\end{alltt} -This will generate a prime in $a$ using $t$ tests of the primality testing algorithms. The variable $size$ -specifies the bit length of the prime desired. The variable $flags$ specifies one of several options available -(see fig. \ref{fig:primeopts}) which can be OR'ed together. The callback parameters are used as in -mp\_prime\_random(). - -\begin{figure}[here] -\begin{center} -\begin{small} -\begin{tabular}{|r|l|} -\hline \textbf{Flag} & \textbf{Meaning} \\ -\hline LTM\_PRIME\_BBS & Make the prime congruent to $3$ modulo $4$ \\ -\hline LTM\_PRIME\_SAFE & Make a prime $p$ such that $(p - 1)/2$ is also prime. \\ - & This option implies LTM\_PRIME\_BBS as well. \\ -\hline LTM\_PRIME\_2MSB\_OFF & Makes sure that the bit adjacent to the most significant bit \\ - & Is forced to zero. \\ -\hline LTM\_PRIME\_2MSB\_ON & Makes sure that the bit adjacent to the most significant bit \\ - & Is forced to one. \\ -\hline -\end{tabular} -\end{small} -\end{center} -\caption{Primality Generation Options} -\label{fig:primeopts} -\end{figure} - -\chapter{Input and Output} -\section{ASCII Conversions} -\subsection{To ASCII} -\index{mp\_toradix} -\begin{alltt} -int mp_toradix (mp_int * a, char *str, int radix); -\end{alltt} -This still store $a$ in ``str'' as a base-``radix'' string of ASCII chars. This function appends a NUL character -to terminate the string. Valid values of ``radix'' line in the range $[2, 64]$. To determine the size (exact) required -by the conversion before storing any data use the following function. - -\index{mp\_radix\_size} -\begin{alltt} -int mp_radix_size (mp_int * a, int radix, int *size) -\end{alltt} -This stores in ``size'' the number of characters (including space for the NUL terminator) required. Upon error this -function returns an error code and ``size'' will be zero. - -\subsection{From ASCII} -\index{mp\_read\_radix} -\begin{alltt} -int mp_read_radix (mp_int * a, char *str, int radix); -\end{alltt} -This will read the base-``radix'' NUL terminated string from ``str'' into $a$. It will stop reading when it reads a -character it does not recognize (which happens to include th NUL char... imagine that...). A single leading $-$ sign -can be used to denote a negative number. - -\section{Binary Conversions} - -Converting an mp\_int to and from binary is another keen idea. - -\index{mp\_unsigned\_bin\_size} -\begin{alltt} -int mp_unsigned_bin_size(mp_int *a); -\end{alltt} - -This will return the number of bytes (octets) required to store the unsigned copy of the integer $a$. - -\index{mp\_to\_unsigned\_bin} -\begin{alltt} -int mp_to_unsigned_bin(mp_int *a, unsigned char *b); -\end{alltt} -This will store $a$ into the buffer $b$ in big--endian format. Fortunately this is exactly what DER (or is it ASN?) -requires. It does not store the sign of the integer. - -\index{mp\_read\_unsigned\_bin} -\begin{alltt} -int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c); -\end{alltt} -This will read in an unsigned big--endian array of bytes (octets) from $b$ of length $c$ into $a$. The resulting -integer $a$ will always be positive. - -For those who acknowledge the existence of negative numbers (heretic!) there are ``signed'' versions of the -previous functions. - -\begin{alltt} -int mp_signed_bin_size(mp_int *a); -int mp_read_signed_bin(mp_int *a, unsigned char *b, int c); -int mp_to_signed_bin(mp_int *a, unsigned char *b); -\end{alltt} -They operate essentially the same as the unsigned copies except they prefix the data with zero or non--zero -byte depending on the sign. If the sign is zpos (e.g. not negative) the prefix is zero, otherwise the prefix -is non--zero. - -\chapter{Algebraic Functions} -\section{Extended Euclidean Algorithm} -\index{mp\_exteuclid} -\begin{alltt} -int mp_exteuclid(mp_int *a, mp_int *b, - mp_int *U1, mp_int *U2, mp_int *U3); -\end{alltt} - -This finds the triple U1/U2/U3 using the Extended Euclidean algorithm such that the following equation holds. - -\begin{equation} -a \cdot U1 + b \cdot U2 = U3 -\end{equation} - -Any of the U1/U2/U3 paramters can be set to \textbf{NULL} if they are not desired. - -\section{Greatest Common Divisor} -\index{mp\_gcd} -\begin{alltt} -int mp_gcd (mp_int * a, mp_int * b, mp_int * c) -\end{alltt} -This will compute the greatest common divisor of $a$ and $b$ and store it in $c$. - -\section{Least Common Multiple} -\index{mp\_lcm} -\begin{alltt} -int mp_lcm (mp_int * a, mp_int * b, mp_int * c) -\end{alltt} -This will compute the least common multiple of $a$ and $b$ and store it in $c$. - -\section{Jacobi Symbol} -\index{mp\_jacobi} -\begin{alltt} -int mp_jacobi (mp_int * a, mp_int * p, int *c) -\end{alltt} -This will compute the Jacobi symbol for $a$ with respect to $p$. If $p$ is prime this essentially computes the Legendre -symbol. The result is stored in $c$ and can take on one of three values $\lbrace -1, 0, 1 \rbrace$. If $p$ is prime -then the result will be $-1$ when $a$ is not a quadratic residue modulo $p$. The result will be $0$ if $a$ divides $p$ -and the result will be $1$ if $a$ is a quadratic residue modulo $p$. - -\section{Modular square root} -\index{mp\_sqrtmod\_prime} -\begin{alltt} -int mp_sqrtmod_prime(mp_int *n, mp_int *p, mp_int *r) -\end{alltt} - -This will solve the modular equatioon $r^2 = n \mod p$ where $p$ is a prime number greater than 2 (odd prime). -The result is returned in the third argument $r$, the function returns \textbf{MP\_OKAY} on success, -other return values indicate failure. - -The implementation is split for two different cases: - -1. if $p \mod 4 == 3$ we apply \href{http://cacr.uwaterloo.ca/hac/}{Handbook of Applied Cryptography algorithm 3.36} and compute $r$ directly as -$r = n^{(p+1)/4} \mod p$ - -2. otherwise we use \href{https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm}{Tonelli-Shanks algorithm} - -The function does not check the primality of parameter $p$ thus it is up to the caller to assure that this parameter -is a prime number. When $p$ is a composite the function behaviour is undefined, it may even return a false-positive -\textbf{MP\_OKAY}. - -\section{Modular Inverse} -\index{mp\_invmod} -\begin{alltt} -int mp_invmod (mp_int * a, mp_int * b, mp_int * c) -\end{alltt} -Computes the multiplicative inverse of $a$ modulo $b$ and stores the result in $c$ such that $ac \equiv 1 \mbox{ (mod }b\mbox{)}$. - -\section{Single Digit Functions} - -For those using small numbers (\textit{snicker snicker}) there are several ``helper'' functions - -\index{mp\_add\_d} \index{mp\_sub\_d} \index{mp\_mul\_d} \index{mp\_div\_d} \index{mp\_mod\_d} -\begin{alltt} -int mp_add_d(mp_int *a, mp_digit b, mp_int *c); -int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); -int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); -int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); -int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); -\end{alltt} - -These work like the full mp\_int capable variants except the second parameter $b$ is a mp\_digit. These -functions fairly handy if you have to work with relatively small numbers since you will not have to allocate -an entire mp\_int to store a number like $1$ or $2$. - -\input{bn.ind} - -\end{document}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_cutoffs.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,14 @@ +#include "tommath_private.h" +#ifdef BN_CUTOFFS_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +#ifndef MP_FIXED_CUTOFFS +#include "tommath_cutoffs.h" +int KARATSUBA_MUL_CUTOFF = MP_DEFAULT_KARATSUBA_MUL_CUTOFF, + KARATSUBA_SQR_CUTOFF = MP_DEFAULT_KARATSUBA_SQR_CUTOFF, + TOOM_MUL_CUTOFF = MP_DEFAULT_TOOM_MUL_CUTOFF, + TOOM_SQR_CUTOFF = MP_DEFAULT_TOOM_SQR_CUTOFF; +#endif + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_deprecated.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,321 @@ +#include "tommath_private.h" +#ifdef BN_DEPRECATED_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +#ifdef BN_MP_GET_BIT_C +int mp_get_bit(const mp_int *a, int b) +{ + if (b < 0) { + return MP_VAL; + } + return (s_mp_get_bit(a, (unsigned int)b) == MP_YES) ? MP_YES : MP_NO; +} +#endif +#ifdef BN_MP_JACOBI_C +mp_err mp_jacobi(const mp_int *a, const mp_int *n, int *c) +{ + if (a->sign == MP_NEG) { + return MP_VAL; + } + if (mp_cmp_d(n, 0uL) != MP_GT) { + return MP_VAL; + } + return mp_kronecker(a, n, c); +} +#endif +#ifdef BN_MP_PRIME_RANDOM_EX_C +mp_err mp_prime_random_ex(mp_int *a, int t, int size, int flags, private_mp_prime_callback cb, void *dat) +{ + return s_mp_prime_random_ex(a, t, size, flags, cb, dat); +} +#endif +#ifdef BN_MP_RAND_DIGIT_C +mp_err mp_rand_digit(mp_digit *r) +{ + mp_err err = s_mp_rand_source(r, sizeof(mp_digit)); + *r &= MP_MASK; + return err; +} +#endif +#ifdef BN_FAST_MP_INVMOD_C +mp_err fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c) +{ + return s_mp_invmod_fast(a, b, c); +} +#endif +#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C +mp_err fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho) +{ + return s_mp_montgomery_reduce_fast(x, n, rho); +} +#endif +#ifdef BN_FAST_S_MP_MUL_DIGS_C +mp_err fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) +{ + return s_mp_mul_digs_fast(a, b, c, digs); +} +#endif +#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C +mp_err fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) +{ + return s_mp_mul_high_digs_fast(a, b, c, digs); +} +#endif +#ifdef BN_FAST_S_MP_SQR_C +mp_err fast_s_mp_sqr(const mp_int *a, mp_int *b) +{ + return s_mp_sqr_fast(a, b); +} +#endif +#ifdef BN_MP_BALANCE_MUL_C +mp_err mp_balance_mul(const mp_int *a, const mp_int *b, mp_int *c) +{ + return s_mp_balance_mul(a, b, c); +} +#endif +#ifdef BN_MP_EXPTMOD_FAST_C +mp_err mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) +{ + return s_mp_exptmod_fast(G, X, P, Y, redmode); +} +#endif +#ifdef BN_MP_INVMOD_SLOW_C +mp_err mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c) +{ + return s_mp_invmod_slow(a, b, c); +} +#endif +#ifdef BN_MP_KARATSUBA_MUL_C +mp_err mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c) +{ + return s_mp_karatsuba_mul(a, b, c); +} +#endif +#ifdef BN_MP_KARATSUBA_SQR_C +mp_err mp_karatsuba_sqr(const mp_int *a, mp_int *b) +{ + return s_mp_karatsuba_sqr(a, b); +} +#endif +#ifdef BN_MP_TOOM_MUL_C +mp_err mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c) +{ + return s_mp_toom_mul(a, b, c); +} +#endif +#ifdef BN_MP_TOOM_SQR_C +mp_err mp_toom_sqr(const mp_int *a, mp_int *b) +{ + return s_mp_toom_sqr(a, b); +} +#endif +#ifdef S_MP_REVERSE_C +void bn_reverse(unsigned char *s, int len) +{ + if (len > 0) { + s_mp_reverse(s, (size_t)len); + } +} +#endif +#ifdef BN_MP_TC_AND_C +mp_err mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c) +{ + return mp_and(a, b, c); +} +#endif +#ifdef BN_MP_TC_OR_C +mp_err mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c) +{ + return mp_or(a, b, c); +} +#endif +#ifdef BN_MP_TC_XOR_C +mp_err mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c) +{ + return mp_xor(a, b, c); +} +#endif +#ifdef BN_MP_TC_DIV_2D_C +mp_err mp_tc_div_2d(const mp_int *a, int b, mp_int *c) +{ + return mp_signed_rsh(a, b, c); +} +#endif +#ifdef BN_MP_INIT_SET_INT_C +mp_err mp_init_set_int(mp_int *a, unsigned long b) +{ + return mp_init_u32(a, (uint32_t)b); +} +#endif +#ifdef BN_MP_SET_INT_C +mp_err mp_set_int(mp_int *a, unsigned long b) +{ + mp_set_u32(a, (uint32_t)b); + return MP_OKAY; +} +#endif +#ifdef BN_MP_SET_LONG_C +mp_err mp_set_long(mp_int *a, unsigned long b) +{ + mp_set_u64(a, b); + return MP_OKAY; +} +#endif +#ifdef BN_MP_SET_LONG_LONG_C +mp_err mp_set_long_long(mp_int *a, unsigned long long b) +{ + mp_set_u64(a, b); + return MP_OKAY; +} +#endif +#ifdef BN_MP_GET_INT_C +unsigned long mp_get_int(const mp_int *a) +{ + return (unsigned long)mp_get_mag_u32(a); +} +#endif +#ifdef BN_MP_GET_LONG_C +unsigned long mp_get_long(const mp_int *a) +{ + return (unsigned long)mp_get_mag_ul(a); +} +#endif +#ifdef BN_MP_GET_LONG_LONG_C +unsigned long long mp_get_long_long(const mp_int *a) +{ + return mp_get_mag_ull(a); +} +#endif +#ifdef BN_MP_PRIME_IS_DIVISIBLE_C +mp_err mp_prime_is_divisible(const mp_int *a, mp_bool *result) +{ + return s_mp_prime_is_divisible(a, result); +} +#endif +#ifdef BN_MP_EXPT_D_EX_C +mp_err mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast) +{ + (void)fast; + if (b > MP_MIN(MP_DIGIT_MAX, UINT32_MAX)) { + return MP_VAL; + } + return mp_expt_u32(a, (uint32_t)b, c); +} +#endif +#ifdef BN_MP_EXPT_D_C +mp_err mp_expt_d(const mp_int *a, mp_digit b, mp_int *c) +{ + if (b > MP_MIN(MP_DIGIT_MAX, UINT32_MAX)) { + return MP_VAL; + } + return mp_expt_u32(a, (uint32_t)b, c); +} +#endif +#ifdef BN_MP_N_ROOT_EX_C +mp_err mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast) +{ + (void)fast; + if (b > MP_MIN(MP_DIGIT_MAX, UINT32_MAX)) { + return MP_VAL; + } + return mp_root_u32(a, (uint32_t)b, c); +} +#endif +#ifdef BN_MP_N_ROOT_C +mp_err mp_n_root(const mp_int *a, mp_digit b, mp_int *c) +{ + if (b > MP_MIN(MP_DIGIT_MAX, UINT32_MAX)) { + return MP_VAL; + } + return mp_root_u32(a, (uint32_t)b, c); +} +#endif +#ifdef BN_MP_UNSIGNED_BIN_SIZE_C +int mp_unsigned_bin_size(const mp_int *a) +{ + return (int)mp_ubin_size(a); +} +#endif +#ifdef BN_MP_READ_UNSIGNED_BIN_C +mp_err mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c) +{ + return mp_from_ubin(a, b, (size_t) c); +} +#endif +#ifdef BN_MP_TO_UNSIGNED_BIN_C +mp_err mp_to_unsigned_bin(const mp_int *a, unsigned char *b) +{ + return mp_to_ubin(a, b, SIZE_MAX, NULL); +} +#endif +#ifdef BN_MP_TO_UNSIGNED_BIN_N_C +mp_err mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen) +{ + size_t n = mp_ubin_size(a); + if (*outlen < (unsigned long)n) { + return MP_VAL; + } + *outlen = (unsigned long)n; + return mp_to_ubin(a, b, n, NULL); +} +#endif +#ifdef BN_MP_SIGNED_BIN_SIZE_C +int mp_signed_bin_size(const mp_int *a) +{ + return (int)mp_sbin_size(a); +} +#endif +#ifdef BN_MP_READ_SIGNED_BIN_C +mp_err mp_read_signed_bin(mp_int *a, const unsigned char *b, int c) +{ + return mp_from_sbin(a, b, (size_t) c); +} +#endif +#ifdef BN_MP_TO_SIGNED_BIN_C +mp_err mp_to_signed_bin(const mp_int *a, unsigned char *b) +{ + return mp_to_sbin(a, b, SIZE_MAX, NULL); +} +#endif +#ifdef BN_MP_TO_SIGNED_BIN_N_C +mp_err mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen) +{ + size_t n = mp_sbin_size(a); + if (*outlen < (unsigned long)n) { + return MP_VAL; + } + *outlen = (unsigned long)n; + return mp_to_sbin(a, b, n, NULL); +} +#endif +#ifdef BN_MP_TORADIX_N_C +mp_err mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen) +{ + if (maxlen < 0) { + return MP_VAL; + } + return mp_to_radix(a, str, (size_t)maxlen, NULL, radix); +} +#endif +#ifdef BN_MP_TORADIX_C +mp_err mp_toradix(const mp_int *a, char *str, int radix) +{ + return mp_to_radix(a, str, SIZE_MAX, NULL, radix); +} +#endif +#ifdef BN_MP_IMPORT_C +mp_err mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, + const void *op) +{ + return mp_unpack(rop, count, order, size, endian, nails, op); +} +#endif +#ifdef BN_MP_EXPORT_C +mp_err mp_export(void *rop, size_t *countp, int order, size_t size, + int endian, size_t nails, const mp_int *op) +{ + return mp_pack(rop, SIZE_MAX, countp, order, size, endian, nails, op); +} +#endif +#endif
--- a/libtommath/bn_error.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,44 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_ERROR_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -static const struct { - int code; - const char *msg; -} msgs[] = { - { MP_OKAY, "Successful" }, - { MP_MEM, "Out of heap" }, - { MP_VAL, "Value out of range" } -}; - -/* return a char * string for a given code */ -const char *mp_error_to_string(int code) -{ - size_t x; - - /* scan the lookup table for the given message */ - for (x = 0; x < (sizeof(msgs) / sizeof(msgs[0])); x++) { - if (msgs[x].code == code) { - return msgs[x].msg; - } - } - - /* generic reply for invalid code */ - return "Invalid error code"; -} - -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_fast_mp_invmod.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,160 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_FAST_MP_INVMOD_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* computes the modular inverse via binary extended euclidean algorithm, - * that is c = 1/a mod b - * - * Based on slow invmod except this is optimized for the case where b is - * odd as per HAC Note 14.64 on pp. 610 - */ -int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c) -{ - mp_int x, y, u, v, B, D; - int res, neg; - - /* 2. [modified] b must be odd */ - if (mp_iseven(b) == MP_YES) { - return MP_VAL; - } - - /* init all our temps */ - if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { - return res; - } - - /* x == modulus, y == value to invert */ - if ((res = mp_copy(b, &x)) != MP_OKAY) { - goto LBL_ERR; - } - - /* we need y = |a| */ - if ((res = mp_mod(a, b, &y)) != MP_OKAY) { - goto LBL_ERR; - } - - /* if one of x,y is zero return an error! */ - if ((mp_iszero(&x) == MP_YES) || (mp_iszero(&y) == MP_YES)) { - res = MP_VAL; - goto LBL_ERR; - } - - /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ - if ((res = mp_copy(&x, &u)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_copy(&y, &v)) != MP_OKAY) { - goto LBL_ERR; - } - mp_set(&D, 1uL); - -top: - /* 4. while u is even do */ - while (mp_iseven(&u) == MP_YES) { - /* 4.1 u = u/2 */ - if ((res = mp_div_2(&u, &u)) != MP_OKAY) { - goto LBL_ERR; - } - /* 4.2 if B is odd then */ - if (mp_isodd(&B) == MP_YES) { - if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) { - goto LBL_ERR; - } - } - /* B = B/2 */ - if ((res = mp_div_2(&B, &B)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* 5. while v is even do */ - while (mp_iseven(&v) == MP_YES) { - /* 5.1 v = v/2 */ - if ((res = mp_div_2(&v, &v)) != MP_OKAY) { - goto LBL_ERR; - } - /* 5.2 if D is odd then */ - if (mp_isodd(&D) == MP_YES) { - /* D = (D-x)/2 */ - if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) { - goto LBL_ERR; - } - } - /* D = D/2 */ - if ((res = mp_div_2(&D, &D)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* 6. if u >= v then */ - if (mp_cmp(&u, &v) != MP_LT) { - /* u = u - v, B = B - D */ - if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) { - goto LBL_ERR; - } - - if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) { - goto LBL_ERR; - } - } else { - /* v - v - u, D = D - B */ - if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) { - goto LBL_ERR; - } - - if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* if not zero goto step 4 */ - if (mp_iszero(&u) == MP_NO) { - goto top; - } - - /* now a = C, b = D, gcd == g*v */ - - /* if v != 1 then there is no inverse */ - if (mp_cmp_d(&v, 1uL) != MP_EQ) { - res = MP_VAL; - goto LBL_ERR; - } - - /* b is now the inverse */ - neg = a->sign; - while (D.sign == MP_NEG) { - if ((res = mp_add(&D, b, &D)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* too big */ - while (mp_cmp_mag(&D, b) != MP_LT) { - if ((res = mp_sub(&D, b, &D)) != MP_OKAY) { - goto LBL_ERR; - } - } - - mp_exch(&D, c); - c->sign = neg; - res = MP_OKAY; - -LBL_ERR: - mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL); - return res; -} -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_fast_mp_montgomery_reduce.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,173 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* computes xR**-1 == x (mod N) via Montgomery Reduction - * - * This is an optimized implementation of montgomery_reduce - * which uses the comba method to quickly calculate the columns of the - * reduction. - * - * Based on Algorithm 14.32 on pp.601 of HAC. -*/ -int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho) -{ - int ix, res, olduse; - mp_word W[MP_WARRAY]; - - if (x->used > (int)MP_WARRAY) { - return MP_VAL; - } - - /* get old used count */ - olduse = x->used; - - /* grow a as required */ - if (x->alloc < (n->used + 1)) { - if ((res = mp_grow(x, n->used + 1)) != MP_OKAY) { - return res; - } - } - - /* first we have to get the digits of the input into - * an array of double precision words W[...] - */ - { - mp_word *_W; - mp_digit *tmpx; - - /* alias for the W[] array */ - _W = W; - - /* alias for the digits of x*/ - tmpx = x->dp; - - /* copy the digits of a into W[0..a->used-1] */ - for (ix = 0; ix < x->used; ix++) { - *_W++ = *tmpx++; - } - - /* zero the high words of W[a->used..m->used*2] */ - for (; ix < ((n->used * 2) + 1); ix++) { - *_W++ = 0; - } - } - - /* now we proceed to zero successive digits - * from the least significant upwards - */ - for (ix = 0; ix < n->used; ix++) { - /* mu = ai * m' mod b - * - * We avoid a double precision multiplication (which isn't required) - * by casting the value down to a mp_digit. Note this requires - * that W[ix-1] have the carry cleared (see after the inner loop) - */ - mp_digit mu; - mu = ((W[ix] & MP_MASK) * rho) & MP_MASK; - - /* a = a + mu * m * b**i - * - * This is computed in place and on the fly. The multiplication - * by b**i is handled by offseting which columns the results - * are added to. - * - * Note the comba method normally doesn't handle carries in the - * inner loop In this case we fix the carry from the previous - * column since the Montgomery reduction requires digits of the - * result (so far) [see above] to work. This is - * handled by fixing up one carry after the inner loop. The - * carry fixups are done in order so after these loops the - * first m->used words of W[] have the carries fixed - */ - { - int iy; - mp_digit *tmpn; - mp_word *_W; - - /* alias for the digits of the modulus */ - tmpn = n->dp; - - /* Alias for the columns set by an offset of ix */ - _W = W + ix; - - /* inner loop */ - for (iy = 0; iy < n->used; iy++) { - *_W++ += (mp_word)mu * (mp_word)*tmpn++; - } - } - - /* now fix carry for next digit, W[ix+1] */ - W[ix + 1] += W[ix] >> (mp_word)DIGIT_BIT; - } - - /* now we have to propagate the carries and - * shift the words downward [all those least - * significant digits we zeroed]. - */ - { - mp_digit *tmpx; - mp_word *_W, *_W1; - - /* nox fix rest of carries */ - - /* alias for current word */ - _W1 = W + ix; - - /* alias for next word, where the carry goes */ - _W = W + ++ix; - - for (; ix <= ((n->used * 2) + 1); ix++) { - *_W++ += *_W1++ >> (mp_word)DIGIT_BIT; - } - - /* copy out, A = A/b**n - * - * The result is A/b**n but instead of converting from an - * array of mp_word to mp_digit than calling mp_rshd - * we just copy them in the right order - */ - - /* alias for destination word */ - tmpx = x->dp; - - /* alias for shifted double precision result */ - _W = W + n->used; - - for (ix = 0; ix < (n->used + 1); ix++) { - *tmpx++ = *_W++ & (mp_word)MP_MASK; - } - - /* zero oldused digits, if the input a was larger than - * m->used+1 we'll have to clear the digits - */ - for (; ix < olduse; ix++) { - *tmpx++ = 0; - } - } - - /* set the max used and clamp */ - x->used = n->used + 1; - mp_clamp(x); - - /* if A >= m then A = A - m */ - if (mp_cmp_mag(x, n) != MP_LT) { - return s_mp_sub(x, n, x); - } - return MP_OKAY; -} -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_fast_s_mp_mul_digs.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,104 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_FAST_S_MP_MUL_DIGS_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* Fast (comba) multiplier - * - * This is the fast column-array [comba] multiplier. It is - * designed to compute the columns of the product first - * then handle the carries afterwards. This has the effect - * of making the nested loops that compute the columns very - * simple and schedulable on super-scalar processors. - * - * This has been modified to produce a variable number of - * digits of output so if say only a half-product is required - * you don't have to compute the upper half (a feature - * required for fast Barrett reduction). - * - * Based on Algorithm 14.12 on pp.595 of HAC. - * - */ -int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) -{ - int olduse, res, pa, ix, iz; - mp_digit W[MP_WARRAY]; - mp_word _W; - - /* grow the destination as required */ - if (c->alloc < digs) { - if ((res = mp_grow(c, digs)) != MP_OKAY) { - return res; - } - } - - /* number of output digits to produce */ - pa = MIN(digs, a->used + b->used); - - /* clear the carry */ - _W = 0; - for (ix = 0; ix < pa; ix++) { - int tx, ty; - int iy; - mp_digit *tmpx, *tmpy; - - /* get offsets into the two bignums */ - ty = MIN(b->used-1, ix); - tx = ix - ty; - - /* setup temp aliases */ - tmpx = a->dp + tx; - tmpy = b->dp + ty; - - /* this is the number of times the loop will iterrate, essentially - while (tx++ < a->used && ty-- >= 0) { ... } - */ - iy = MIN(a->used-tx, ty+1); - - /* execute loop */ - for (iz = 0; iz < iy; ++iz) { - _W += (mp_word)*tmpx++ * (mp_word)*tmpy--; - - } - - /* store term */ - W[ix] = (mp_digit)_W & MP_MASK; - - /* make next carry */ - _W = _W >> (mp_word)DIGIT_BIT; - } - - /* setup dest */ - olduse = c->used; - c->used = pa; - - { - mp_digit *tmpc; - tmpc = c->dp; - for (ix = 0; ix < pa; ix++) { - /* now extract the previous digit [below the carry] */ - *tmpc++ = W[ix]; - } - - /* clear unused digits [that existed in the old copy of c] */ - for (; ix < olduse; ix++) { - *tmpc++ = 0; - } - } - mp_clamp(c); - return MP_OKAY; -} -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_fast_s_mp_mul_high_digs.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,95 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* this is a modified version of fast_s_mul_digs that only produces - * output digits *above* digs. See the comments for fast_s_mul_digs - * to see how it works. - * - * This is used in the Barrett reduction since for one of the multiplications - * only the higher digits were needed. This essentially halves the work. - * - * Based on Algorithm 14.12 on pp.595 of HAC. - */ -int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) -{ - int olduse, res, pa, ix, iz; - mp_digit W[MP_WARRAY]; - mp_word _W; - - /* grow the destination as required */ - pa = a->used + b->used; - if (c->alloc < pa) { - if ((res = mp_grow(c, pa)) != MP_OKAY) { - return res; - } - } - - /* number of output digits to produce */ - pa = a->used + b->used; - _W = 0; - for (ix = digs; ix < pa; ix++) { - int tx, ty, iy; - mp_digit *tmpx, *tmpy; - - /* get offsets into the two bignums */ - ty = MIN(b->used-1, ix); - tx = ix - ty; - - /* setup temp aliases */ - tmpx = a->dp + tx; - tmpy = b->dp + ty; - - /* this is the number of times the loop will iterrate, essentially its - while (tx++ < a->used && ty-- >= 0) { ... } - */ - iy = MIN(a->used-tx, ty+1); - - /* execute loop */ - for (iz = 0; iz < iy; iz++) { - _W += (mp_word)*tmpx++ * (mp_word)*tmpy--; - } - - /* store term */ - W[ix] = (mp_digit)_W & MP_MASK; - - /* make next carry */ - _W = _W >> (mp_word)DIGIT_BIT; - } - - /* setup dest */ - olduse = c->used; - c->used = pa; - - { - mp_digit *tmpc; - - tmpc = c->dp + digs; - for (ix = digs; ix < pa; ix++) { - /* now extract the previous digit [below the carry] */ - *tmpc++ = W[ix]; - } - - /* clear unused digits [that existed in the old copy of c] */ - for (; ix < olduse; ix++) { - *tmpc++ = 0; - } - } - mp_clamp(c); - return MP_OKAY; -} -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_fast_s_mp_sqr.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,111 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_FAST_S_MP_SQR_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* the jist of squaring... - * you do like mult except the offset of the tmpx [one that - * starts closer to zero] can't equal the offset of tmpy. - * So basically you set up iy like before then you min it with - * (ty-tx) so that it never happens. You double all those - * you add in the inner loop - -After that loop you do the squares and add them in. -*/ - -int fast_s_mp_sqr(const mp_int *a, mp_int *b) -{ - int olduse, res, pa, ix, iz; - mp_digit W[MP_WARRAY], *tmpx; - mp_word W1; - - /* grow the destination as required */ - pa = a->used + a->used; - if (b->alloc < pa) { - if ((res = mp_grow(b, pa)) != MP_OKAY) { - return res; - } - } - - /* number of output digits to produce */ - W1 = 0; - for (ix = 0; ix < pa; ix++) { - int tx, ty, iy; - mp_word _W; - mp_digit *tmpy; - - /* clear counter */ - _W = 0; - - /* get offsets into the two bignums */ - ty = MIN(a->used-1, ix); - tx = ix - ty; - - /* setup temp aliases */ - tmpx = a->dp + tx; - tmpy = a->dp + ty; - - /* this is the number of times the loop will iterrate, essentially - while (tx++ < a->used && ty-- >= 0) { ... } - */ - iy = MIN(a->used-tx, ty+1); - - /* now for squaring tx can never equal ty - * we halve the distance since they approach at a rate of 2x - * and we have to round because odd cases need to be executed - */ - iy = MIN(iy, ((ty-tx)+1)>>1); - - /* execute loop */ - for (iz = 0; iz < iy; iz++) { - _W += (mp_word)*tmpx++ * (mp_word)*tmpy--; - } - - /* double the inner product and add carry */ - _W = _W + _W + W1; - - /* even columns have the square term in them */ - if (((unsigned)ix & 1u) == 0u) { - _W += (mp_word)a->dp[ix>>1] * (mp_word)a->dp[ix>>1]; - } - - /* store it */ - W[ix] = _W & MP_MASK; - - /* make next carry */ - W1 = _W >> (mp_word)DIGIT_BIT; - } - - /* setup dest */ - olduse = b->used; - b->used = a->used+a->used; - - { - mp_digit *tmpb; - tmpb = b->dp; - for (ix = 0; ix < pa; ix++) { - *tmpb++ = W[ix] & MP_MASK; - } - - /* clear unused digits [that existed in the old copy of c] */ - for (; ix < olduse; ix++) { - *tmpb++ = 0; - } - } - mp_clamp(b); - return MP_OKAY; -} -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_2expt.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_2expt.c Tue May 26 17:36:47 2020 +0200 @@ -1,44 +1,31 @@ #include "tommath_private.h" #ifdef BN_MP_2EXPT_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* computes a = 2**b * * Simple algorithm which zeroes the int, grows it then just sets one bit * as required. */ -int mp_2expt(mp_int *a, int b) +mp_err mp_2expt(mp_int *a, int b) { - int res; + mp_err err; /* zero a as per default */ mp_zero(a); /* grow a to accomodate the single bit */ - if ((res = mp_grow(a, (b / DIGIT_BIT) + 1)) != MP_OKAY) { - return res; + if ((err = mp_grow(a, (b / MP_DIGIT_BIT) + 1)) != MP_OKAY) { + return err; } /* set the used count of where the bit will go */ - a->used = (b / DIGIT_BIT) + 1; + a->used = (b / MP_DIGIT_BIT) + 1; /* put the single bit in its place */ - a->dp[b / DIGIT_BIT] = (mp_digit)1 << (mp_digit)(b % DIGIT_BIT); + a->dp[b / MP_DIGIT_BIT] = (mp_digit)1 << (mp_digit)(b % MP_DIGIT_BIT); return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_abs.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_abs.c Tue May 26 17:36:47 2020 +0200 @@ -1,29 +1,20 @@ #include "tommath_private.h" #ifdef BN_MP_ABS_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* b = |a| * * Simple function copies the input and fixes the sign to positive */ -int mp_abs(const mp_int *a, mp_int *b) +mp_err mp_abs(const mp_int *a, mp_int *b) { - int res; + mp_err err; /* copy a to b */ if (a != b) { - if ((res = mp_copy(a, b)) != MP_OKAY) { - return res; + if ((err = mp_copy(a, b)) != MP_OKAY) { + return err; } } @@ -33,7 +24,3 @@ return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_add.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_add.c Tue May 26 17:36:47 2020 +0200 @@ -1,21 +1,13 @@ #include "tommath_private.h" #ifdef BN_MP_ADD_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* high level addition (handles signs) */ -int mp_add(const mp_int *a, const mp_int *b, mp_int *c) +mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c) { - int sa, sb, res; + mp_sign sa, sb; + mp_err err; /* get sign of both inputs */ sa = a->sign; @@ -26,7 +18,7 @@ /* both positive or both negative */ /* add their magnitudes, copy the sign */ c->sign = sa; - res = s_mp_add(a, b, c); + err = s_mp_add(a, b, c); } else { /* one positive, the other negative */ /* subtract the one with the greater magnitude from */ @@ -34,17 +26,13 @@ /* the sign of the one with the greater magnitude. */ if (mp_cmp_mag(a, b) == MP_LT) { c->sign = sb; - res = s_mp_sub(b, a, c); + err = s_mp_sub(b, a, c); } else { c->sign = sa; - res = s_mp_sub(a, b, c); + err = s_mp_sub(a, b, c); } } - return res; + return err; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_add_d.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_add_d.c Tue May 26 17:36:47 2020 +0200 @@ -1,27 +1,19 @@ #include "tommath_private.h" #ifdef BN_MP_ADD_D_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* single digit addition */ -int mp_add_d(const mp_int *a, mp_digit b, mp_int *c) +mp_err mp_add_d(const mp_int *a, mp_digit b, mp_int *c) { - int res, ix, oldused; - mp_digit *tmpa, *tmpc, mu; + mp_err err; + int ix, oldused; + mp_digit *tmpa, *tmpc; /* grow c as required */ if (c->alloc < (a->used + 1)) { - if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { - return res; + if ((err = mp_grow(c, a->used + 1)) != MP_OKAY) { + return err; } } @@ -32,7 +24,7 @@ a_.sign = MP_ZPOS; /* c = |a| - b */ - res = mp_sub_d(&a_, b, c); + err = mp_sub_d(&a_, b, c); /* fix sign */ c->sign = MP_NEG; @@ -40,7 +32,7 @@ /* clamp */ mp_clamp(c); - return res; + return err; } /* old number of used digits in c */ @@ -54,17 +46,11 @@ /* if a is positive */ if (a->sign == MP_ZPOS) { - /* add digit, after this we're propagating - * the carry. - */ - *tmpc = *tmpa++ + b; - mu = *tmpc >> DIGIT_BIT; - *tmpc++ &= MP_MASK; - - /* now handle rest of the digits */ - for (ix = 1; ix < a->used; ix++) { + /* add digits, mu is carry */ + mp_digit mu = b; + for (ix = 0; ix < a->used; ix++) { *tmpc = *tmpa++ + mu; - mu = *tmpc >> DIGIT_BIT; + mu = *tmpc >> MP_DIGIT_BIT; *tmpc++ &= MP_MASK; } /* set final carry */ @@ -94,16 +80,10 @@ c->sign = MP_ZPOS; /* now zero to oldused */ - while (ix++ < oldused) { - *tmpc++ = 0; - } + MP_ZERO_DIGITS(tmpc, oldused - ix); mp_clamp(c); return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_addmod.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_addmod.c Tue May 26 17:36:47 2020 +0200 @@ -1,37 +1,25 @@ #include "tommath_private.h" #ifdef BN_MP_ADDMOD_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* d = a + b (mod c) */ -int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) +mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) { - int res; + mp_err err; mp_int t; - if ((res = mp_init(&t)) != MP_OKAY) { - return res; + if ((err = mp_init(&t)) != MP_OKAY) { + return err; } - if ((res = mp_add(a, b, &t)) != MP_OKAY) { - mp_clear(&t); - return res; + if ((err = mp_add(a, b, &t)) != MP_OKAY) { + goto LBL_ERR; } - res = mp_mod(&t, c, d); + err = mp_mod(&t, c, d); + +LBL_ERR: mp_clear(&t); - return res; + return err; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_and.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_and.c Tue May 26 17:36:47 2020 +0200 @@ -1,54 +1,56 @@ #include "tommath_private.h" #ifdef BN_MP_AND_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ -/* AND two ints together */ -int mp_and(const mp_int *a, const mp_int *b, mp_int *c) +/* two complement and */ +mp_err mp_and(const mp_int *a, const mp_int *b, mp_int *c) { - int res, ix, px; - mp_int t; - const mp_int *x; + int used = MP_MAX(a->used, b->used) + 1, i; + mp_err err; + mp_digit ac = 1, bc = 1, cc = 1; + mp_sign csign = ((a->sign == MP_NEG) && (b->sign == MP_NEG)) ? MP_NEG : MP_ZPOS; - if (a->used > b->used) { - if ((res = mp_init_copy(&t, a)) != MP_OKAY) { - return res; + if (c->alloc < used) { + if ((err = mp_grow(c, used)) != MP_OKAY) { + return err; } - px = b->used; - x = b; - } else { - if ((res = mp_init_copy(&t, b)) != MP_OKAY) { - return res; - } - px = a->used; - x = a; } - for (ix = 0; ix < px; ix++) { - t.dp[ix] &= x->dp[ix]; + for (i = 0; i < used; i++) { + mp_digit x, y; + + /* convert to two complement if negative */ + if (a->sign == MP_NEG) { + ac += (i >= a->used) ? MP_MASK : (~a->dp[i] & MP_MASK); + x = ac & MP_MASK; + ac >>= MP_DIGIT_BIT; + } else { + x = (i >= a->used) ? 0uL : a->dp[i]; + } + + /* convert to two complement if negative */ + if (b->sign == MP_NEG) { + bc += (i >= b->used) ? MP_MASK : (~b->dp[i] & MP_MASK); + y = bc & MP_MASK; + bc >>= MP_DIGIT_BIT; + } else { + y = (i >= b->used) ? 0uL : b->dp[i]; + } + + c->dp[i] = x & y; + + /* convert to to sign-magnitude if negative */ + if (csign == MP_NEG) { + cc += ~c->dp[i] & MP_MASK; + c->dp[i] = cc & MP_MASK; + cc >>= MP_DIGIT_BIT; + } } - /* zero digits above the last from the smallest mp_int */ - for (; ix < t.used; ix++) { - t.dp[ix] = 0; - } - - mp_clamp(&t); - mp_exch(c, &t); - mp_clear(&t); + c->used = used; + c->sign = csign; + mp_clamp(c); return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_clamp.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_clamp.c Tue May 26 17:36:47 2020 +0200 @@ -1,16 +1,7 @@ #include "tommath_private.h" #ifdef BN_MP_CLAMP_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* trim unused digits * @@ -34,7 +25,3 @@ } } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_clear.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_clear.c Tue May 26 17:36:47 2020 +0200 @@ -1,28 +1,15 @@ #include "tommath_private.h" -#include "dbhelpers.h" #ifdef BN_MP_CLEAR_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* clear one (frees) */ void mp_clear(mp_int *a) { /* only do anything if a hasn't been freed previously */ if (a->dp != NULL) { - /* first zero the digits */ - m_burn(a->dp, (size_t)a->alloc * sizeof(*a->dp)); - /* free ram */ - XFREE(a->dp); + MP_FREE_DIGITS(a->dp, a->alloc); /* reset members to make debugging easier */ a->dp = NULL; @@ -31,7 +18,3 @@ } } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_clear_multi.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_clear_multi.c Tue May 26 17:36:47 2020 +0200 @@ -1,16 +1,7 @@ #include "tommath_private.h" #ifdef BN_MP_CLEAR_MULTI_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ #include <stdarg.h> @@ -26,7 +17,3 @@ va_end(args); } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_cmp.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_cmp.c Tue May 26 17:36:47 2020 +0200 @@ -1,19 +1,10 @@ #include "tommath_private.h" #ifdef BN_MP_CMP_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* compare two ints (signed)*/ -int mp_cmp(const mp_int *a, const mp_int *b) +mp_ord mp_cmp(const mp_int *a, const mp_int *b) { /* compare based on sign */ if (a->sign != b->sign) { @@ -33,7 +24,3 @@ } } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_cmp_d.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_cmp_d.c Tue May 26 17:36:47 2020 +0200 @@ -1,19 +1,10 @@ #include "tommath_private.h" #ifdef BN_MP_CMP_D_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* compare a digit */ -int mp_cmp_d(const mp_int *a, mp_digit b) +mp_ord mp_cmp_d(const mp_int *a, mp_digit b) { /* compare based on sign */ if (a->sign == MP_NEG) { @@ -35,7 +26,3 @@ } } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_cmp_mag.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_cmp_mag.c Tue May 26 17:36:47 2020 +0200 @@ -1,22 +1,13 @@ #include "tommath_private.h" #ifdef BN_MP_CMP_MAG_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* compare maginitude of two ints (unsigned) */ -int mp_cmp_mag(const mp_int *a, const mp_int *b) +mp_ord mp_cmp_mag(const mp_int *a, const mp_int *b) { int n; - mp_digit *tmpa, *tmpb; + const mp_digit *tmpa, *tmpb; /* compare based on # of non-zero digits */ if (a->used > b->used) { @@ -46,7 +37,3 @@ return MP_EQ; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_cnt_lsb.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_cnt_lsb.c Tue May 26 17:36:47 2020 +0200 @@ -1,16 +1,7 @@ #include "tommath_private.h" #ifdef BN_MP_CNT_LSB_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ static const int lnz[16] = { 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 @@ -23,14 +14,14 @@ mp_digit q, qq; /* easy out */ - if (mp_iszero(a) == MP_YES) { + if (MP_IS_ZERO(a)) { return 0; } /* scan lower digits until non-zero */ for (x = 0; (x < a->used) && (a->dp[x] == 0u); x++) {} q = a->dp[x]; - x *= DIGIT_BIT; + x *= MP_DIGIT_BIT; /* now scan this digit until a 1 is found */ if ((q & 1u) == 0u) { @@ -44,7 +35,3 @@ } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_complement.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_complement.c Tue May 26 17:36:47 2020 +0200 @@ -1,25 +1,12 @@ #include "tommath_private.h" #ifdef BN_MP_COMPLEMENT_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* b = ~a */ -int mp_complement(const mp_int *a, mp_int *b) +mp_err mp_complement(const mp_int *a, mp_int *b) { - int res = mp_neg(a, b); - return (res == MP_OKAY) ? mp_sub_d(b, 1uL, b) : res; + mp_err err = mp_neg(a, b); + return (err == MP_OKAY) ? mp_sub_d(b, 1uL, b) : err; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_copy.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_copy.c Tue May 26 17:36:47 2020 +0200 @@ -1,21 +1,14 @@ #include "tommath_private.h" #ifdef BN_MP_COPY_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* copy, b = a */ -int mp_copy(const mp_int *a, mp_int *b) +mp_err mp_copy(const mp_int *a, mp_int *b) { - int res, n; + int n; + mp_digit *tmpa, *tmpb; + mp_err err; /* if dst == src do nothing */ if (a == b) { @@ -24,33 +17,27 @@ /* grow dest */ if (b->alloc < a->used) { - if ((res = mp_grow(b, a->used)) != MP_OKAY) { - return res; + if ((err = mp_grow(b, a->used)) != MP_OKAY) { + return err; } } /* zero b and copy the parameters over */ - { - mp_digit *tmpa, *tmpb; - - /* pointer aliases */ + /* pointer aliases */ - /* source */ - tmpa = a->dp; + /* source */ + tmpa = a->dp; - /* destination */ - tmpb = b->dp; + /* destination */ + tmpb = b->dp; - /* copy all the digits */ - for (n = 0; n < a->used; n++) { - *tmpb++ = *tmpa++; - } + /* copy all the digits */ + for (n = 0; n < a->used; n++) { + *tmpb++ = *tmpa++; + } - /* clear high digits */ - for (; n < b->used; n++) { - *tmpb++ = 0; - } - } + /* clear high digits */ + MP_ZERO_DIGITS(tmpb, b->used - n); /* copy used count and sign */ b->used = a->used; @@ -58,7 +45,3 @@ return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_count_bits.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_count_bits.c Tue May 26 17:36:47 2020 +0200 @@ -1,16 +1,7 @@ #include "tommath_private.h" #ifdef BN_MP_COUNT_BITS_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* returns the number of bits in an int */ int mp_count_bits(const mp_int *a) @@ -19,23 +10,19 @@ mp_digit q; /* shortcut */ - if (a->used == 0) { + if (MP_IS_ZERO(a)) { return 0; } /* get number of digits and add that */ - r = (a->used - 1) * DIGIT_BIT; + r = (a->used - 1) * MP_DIGIT_BIT; /* take the last digit and count the bits in it */ q = a->dp[a->used - 1]; - while (q > (mp_digit)0) { + while (q > 0u) { ++r; - q >>= (mp_digit)1; + q >>= 1u; } return r; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_decr.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,34 @@ +#include "tommath_private.h" +#ifdef BN_MP_DECR_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +/* Decrement "a" by one like "a--". Changes input! */ +mp_err mp_decr(mp_int *a) +{ + if (MP_IS_ZERO(a)) { + mp_set(a,1uL); + a->sign = MP_NEG; + return MP_OKAY; + } else if (a->sign == MP_NEG) { + mp_err err; + a->sign = MP_ZPOS; + if ((err = mp_incr(a)) != MP_OKAY) { + return err; + } + /* There is no -0 in LTM */ + if (!MP_IS_ZERO(a)) { + a->sign = MP_NEG; + } + return MP_OKAY; + } else if (a->dp[0] > 1uL) { + a->dp[0]--; + if (a->dp[0] == 0u) { + mp_zero(a); + } + return MP_OKAY; + } else { + return mp_sub_d(a, 1uL,a); + } +} +#endif
--- a/libtommath/bn_mp_div.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_div.c Tue May 26 17:36:47 2020 +0200 @@ -1,69 +1,55 @@ #include "tommath_private.h" #ifdef BN_MP_DIV_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ #ifdef BN_MP_DIV_SMALL /* slower bit-bang division... also smaller */ -int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) +mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) { mp_int ta, tb, tq, q; - int res, n, n2; + int n, n2; + mp_err err; /* is divisor zero ? */ - if (mp_iszero(b) == MP_YES) { + if (MP_IS_ZERO(b)) { return MP_VAL; } /* if a < b then q=0, r = a */ if (mp_cmp_mag(a, b) == MP_LT) { if (d != NULL) { - res = mp_copy(a, d); + err = mp_copy(a, d); } else { - res = MP_OKAY; + err = MP_OKAY; } if (c != NULL) { mp_zero(c); } - return res; + return err; } /* init our temps */ - if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) { - return res; + if ((err = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) { + return err; } mp_set(&tq, 1uL); n = mp_count_bits(a) - mp_count_bits(b); - if (((res = mp_abs(a, &ta)) != MP_OKAY) || - ((res = mp_abs(b, &tb)) != MP_OKAY) || - ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || - ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { - goto LBL_ERR; - } + if ((err = mp_abs(a, &ta)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_abs(b, &tb)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_mul_2d(&tq, n, &tq)) != MP_OKAY) goto LBL_ERR; while (n-- >= 0) { if (mp_cmp(&tb, &ta) != MP_GT) { - if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || - ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { - goto LBL_ERR; - } + if ((err = mp_sub(&ta, &tb, &ta)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_add(&q, &tq, &q)) != MP_OKAY) goto LBL_ERR; } - if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || - ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { - goto LBL_ERR; - } + if ((err = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY) goto LBL_ERR; } /* now q == quotient and ta == remainder */ @@ -71,15 +57,15 @@ n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; if (c != NULL) { mp_exch(c, &q); - c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; + c->sign = MP_IS_ZERO(c) ? MP_ZPOS : n2; } if (d != NULL) { mp_exch(d, &ta); - d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n; + d->sign = MP_IS_ZERO(d) ? MP_ZPOS : n; } LBL_ERR: mp_clear_multi(&ta, &tb, &tq, &q, NULL); - return res; + return err; } #else @@ -97,64 +83,54 @@ * The overall algorithm is as described as * 14.20 from HAC but fixed to treat these cases. */ -int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) +mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) { mp_int q, x, y, t1, t2; - int res, n, t, i, norm, neg; + int n, t, i, norm; + mp_sign neg; + mp_err err; /* is divisor zero ? */ - if (mp_iszero(b) == MP_YES) { + if (MP_IS_ZERO(b)) { return MP_VAL; } /* if a < b then q=0, r = a */ if (mp_cmp_mag(a, b) == MP_LT) { if (d != NULL) { - res = mp_copy(a, d); + err = mp_copy(a, d); } else { - res = MP_OKAY; + err = MP_OKAY; } if (c != NULL) { mp_zero(c); } - return res; + return err; } - if ((res = mp_init_size(&q, a->used + 2)) != MP_OKAY) { - return res; + if ((err = mp_init_size(&q, a->used + 2)) != MP_OKAY) { + return err; } q.used = a->used + 2; - if ((res = mp_init(&t1)) != MP_OKAY) { - goto LBL_Q; - } + if ((err = mp_init(&t1)) != MP_OKAY) goto LBL_Q; - if ((res = mp_init(&t2)) != MP_OKAY) { - goto LBL_T1; - } + if ((err = mp_init(&t2)) != MP_OKAY) goto LBL_T1; - if ((res = mp_init_copy(&x, a)) != MP_OKAY) { - goto LBL_T2; - } + if ((err = mp_init_copy(&x, a)) != MP_OKAY) goto LBL_T2; - if ((res = mp_init_copy(&y, b)) != MP_OKAY) { - goto LBL_X; - } + if ((err = mp_init_copy(&y, b)) != MP_OKAY) goto LBL_X; /* fix the sign */ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; x.sign = y.sign = MP_ZPOS; - /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ - norm = mp_count_bits(&y) % DIGIT_BIT; - if (norm < (DIGIT_BIT - 1)) { - norm = (DIGIT_BIT - 1) - norm; - if ((res = mp_mul_2d(&x, norm, &x)) != MP_OKAY) { - goto LBL_Y; - } - if ((res = mp_mul_2d(&y, norm, &y)) != MP_OKAY) { - goto LBL_Y; - } + /* normalize both x and y, ensure that y >= b/2, [b == 2**MP_DIGIT_BIT] */ + norm = mp_count_bits(&y) % MP_DIGIT_BIT; + if (norm < (MP_DIGIT_BIT - 1)) { + norm = (MP_DIGIT_BIT - 1) - norm; + if ((err = mp_mul_2d(&x, norm, &x)) != MP_OKAY) goto LBL_Y; + if ((err = mp_mul_2d(&y, norm, &y)) != MP_OKAY) goto LBL_Y; } else { norm = 0; } @@ -164,15 +140,12 @@ t = y.used - 1; /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ - if ((res = mp_lshd(&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ - goto LBL_Y; - } + /* y = y*b**{n-t} */ + if ((err = mp_lshd(&y, n - t)) != MP_OKAY) goto LBL_Y; while (mp_cmp(&x, &y) != MP_LT) { ++(q.dp[n - t]); - if ((res = mp_sub(&x, &y, &x)) != MP_OKAY) { - goto LBL_Y; - } + if ((err = mp_sub(&x, &y, &x)) != MP_OKAY) goto LBL_Y; } /* reset y by shifting it back down */ @@ -187,10 +160,10 @@ /* step 3.1 if xi == yt then set q{i-t-1} to b-1, * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ if (x.dp[i] == y.dp[t]) { - q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)DIGIT_BIT) - (mp_digit)1; + q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)MP_DIGIT_BIT) - (mp_digit)1; } else { mp_word tmp; - tmp = (mp_word)x.dp[i] << (mp_word)DIGIT_BIT; + tmp = (mp_word)x.dp[i] << (mp_word)MP_DIGIT_BIT; tmp |= (mp_word)x.dp[i - 1]; tmp /= (mp_word)y.dp[t]; if (tmp > (mp_word)MP_MASK) { @@ -213,41 +186,27 @@ t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1]; t1.dp[1] = y.dp[t]; t1.used = 2; - if ((res = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) { - goto LBL_Y; - } + if ((err = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) goto LBL_Y; /* find right hand */ t2.dp[0] = ((i - 2) < 0) ? 0u : x.dp[i - 2]; - t2.dp[1] = ((i - 1) < 0) ? 0u : x.dp[i - 1]; + t2.dp[1] = x.dp[i - 1]; /* i >= 1 always holds */ t2.dp[2] = x.dp[i]; t2.used = 3; } while (mp_cmp_mag(&t1, &t2) == MP_GT); /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ - if ((res = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) { - goto LBL_Y; - } + if ((err = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) goto LBL_Y; - if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) { - goto LBL_Y; - } + if ((err = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) goto LBL_Y; - if ((res = mp_sub(&x, &t1, &x)) != MP_OKAY) { - goto LBL_Y; - } + if ((err = mp_sub(&x, &t1, &x)) != MP_OKAY) goto LBL_Y; /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ if (x.sign == MP_NEG) { - if ((res = mp_copy(&y, &t1)) != MP_OKAY) { - goto LBL_Y; - } - if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) { - goto LBL_Y; - } - if ((res = mp_add(&x, &t1, &x)) != MP_OKAY) { - goto LBL_Y; - } + if ((err = mp_copy(&y, &t1)) != MP_OKAY) goto LBL_Y; + if ((err = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) goto LBL_Y; + if ((err = mp_add(&x, &t1, &x)) != MP_OKAY) goto LBL_Y; q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & MP_MASK; } @@ -267,13 +226,11 @@ } if (d != NULL) { - if ((res = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) { - goto LBL_Y; - } + if ((err = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) goto LBL_Y; mp_exch(&x, d); } - res = MP_OKAY; + err = MP_OKAY; LBL_Y: mp_clear(&y); @@ -285,13 +242,9 @@ mp_clear(&t1); LBL_Q: mp_clear(&q); - return res; + return err; } #endif #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_div_2.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_div_2.c Tue May 26 17:36:47 2020 +0200 @@ -1,65 +1,49 @@ #include "tommath_private.h" #ifdef BN_MP_DIV_2_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* b = a/2 */ -int mp_div_2(const mp_int *a, mp_int *b) +mp_err mp_div_2(const mp_int *a, mp_int *b) { - int x, res, oldused; + int x, oldused; + mp_digit r, rr, *tmpa, *tmpb; + mp_err err; /* copy */ if (b->alloc < a->used) { - if ((res = mp_grow(b, a->used)) != MP_OKAY) { - return res; + if ((err = mp_grow(b, a->used)) != MP_OKAY) { + return err; } } oldused = b->used; b->used = a->used; - { - mp_digit r, rr, *tmpa, *tmpb; - /* source alias */ - tmpa = a->dp + b->used - 1; + /* source alias */ + tmpa = a->dp + b->used - 1; - /* dest alias */ - tmpb = b->dp + b->used - 1; + /* dest alias */ + tmpb = b->dp + b->used - 1; - /* carry */ - r = 0; - for (x = b->used - 1; x >= 0; x--) { - /* get the carry for the next iteration */ - rr = *tmpa & 1u; - - /* shift the current digit, add in carry and store */ - *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); + /* carry */ + r = 0; + for (x = b->used - 1; x >= 0; x--) { + /* get the carry for the next iteration */ + rr = *tmpa & 1u; - /* forward carry to next iteration */ - r = rr; - } + /* shift the current digit, add in carry and store */ + *tmpb-- = (*tmpa-- >> 1) | (r << (MP_DIGIT_BIT - 1)); - /* zero excess digits */ - tmpb = b->dp + b->used; - for (x = b->used; x < oldused; x++) { - *tmpb++ = 0; - } + /* forward carry to next iteration */ + r = rr; } + + /* zero excess digits */ + MP_ZERO_DIGITS(b->dp + b->used, oldused - b->used); + b->sign = a->sign; mp_clamp(b); return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_div_2d.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_div_2d.c Tue May 26 17:36:47 2020 +0200 @@ -1,52 +1,44 @@ #include "tommath_private.h" #ifdef BN_MP_DIV_2D_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* shift right by a certain bit count (store quotient in c, optional remainder in d) */ -int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d) +mp_err mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d) { mp_digit D, r, rr; - int x, res; + int x; + mp_err err; /* if the shift count is <= 0 then we do no work */ if (b <= 0) { - res = mp_copy(a, c); + err = mp_copy(a, c); if (d != NULL) { mp_zero(d); } - return res; + return err; } /* copy */ - if ((res = mp_copy(a, c)) != MP_OKAY) { - return res; + if ((err = mp_copy(a, c)) != MP_OKAY) { + return err; } /* 'a' should not be used after here - it might be the same as d */ /* get the remainder */ if (d != NULL) { - if ((res = mp_mod_2d(a, b, d)) != MP_OKAY) { - return res; + if ((err = mp_mod_2d(a, b, d)) != MP_OKAY) { + return err; } } /* shift by as many digits in the bit count */ - if (b >= DIGIT_BIT) { - mp_rshd(c, b / DIGIT_BIT); + if (b >= MP_DIGIT_BIT) { + mp_rshd(c, b / MP_DIGIT_BIT); } - /* shift any bit count < DIGIT_BIT */ - D = (mp_digit)(b % DIGIT_BIT); + /* shift any bit count < MP_DIGIT_BIT */ + D = (mp_digit)(b % MP_DIGIT_BIT); if (D != 0u) { mp_digit *tmpc, mask, shift; @@ -54,7 +46,7 @@ mask = ((mp_digit)1 << D) - 1uL; /* shift for lsb */ - shift = (mp_digit)DIGIT_BIT - D; + shift = (mp_digit)MP_DIGIT_BIT - D; /* alias */ tmpc = c->dp + (c->used - 1); @@ -77,7 +69,3 @@ return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_div_3.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_div_3.c Tue May 26 17:36:47 2020 +0200 @@ -1,41 +1,33 @@ #include "tommath_private.h" #ifdef BN_MP_DIV_3_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* divide by three (based on routine from MPI and the GMP manual) */ -int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d) +mp_err mp_div_3(const mp_int *a, mp_int *c, mp_digit *d) { mp_int q; mp_word w, t; mp_digit b; - int res, ix; + mp_err err; + int ix; - /* b = 2**DIGIT_BIT / 3 */ - b = ((mp_word)1 << (mp_word)DIGIT_BIT) / (mp_word)3; + /* b = 2**MP_DIGIT_BIT / 3 */ + b = ((mp_word)1 << (mp_word)MP_DIGIT_BIT) / (mp_word)3; - if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { - return res; + if ((err = mp_init_size(&q, a->used)) != MP_OKAY) { + return err; } q.used = a->used; q.sign = a->sign; w = 0; for (ix = a->used - 1; ix >= 0; ix--) { - w = (w << (mp_word)DIGIT_BIT) | (mp_word)a->dp[ix]; + w = (w << (mp_word)MP_DIGIT_BIT) | (mp_word)a->dp[ix]; if (w >= 3u) { /* multiply w by [1/3] */ - t = (w * (mp_word)b) >> (mp_word)DIGIT_BIT; + t = (w * (mp_word)b) >> (mp_word)MP_DIGIT_BIT; /* now subtract 3 * [w/3] from w, to get the remainder */ w -= t+t+t; @@ -65,11 +57,7 @@ } mp_clear(&q); - return res; + return err; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_div_d.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_div_d.c Tue May 26 17:36:47 2020 +0200 @@ -1,42 +1,16 @@ #include "tommath_private.h" #ifdef BN_MP_DIV_D_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -static int s_is_power_of_two(mp_digit b, int *p) -{ - int x; - - /* fast return if no power of two */ - if ((b == 0u) || ((b & (b-1u)) != 0u)) { - return 0; - } - - for (x = 0; x < DIGIT_BIT; x++) { - if (b == ((mp_digit)1<<(mp_digit)x)) { - *p = x; - return 1; - } - } - return 0; -} +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* single digit division (based on routine from MPI) */ -int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d) +mp_err mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d) { mp_int q; mp_word w; mp_digit t; - int res, ix; + mp_err err; + int ix; /* cannot divide by zero */ if (b == 0u) { @@ -44,7 +18,7 @@ } /* quick outs */ - if ((b == 1u) || (mp_iszero(a) == MP_YES)) { + if ((b == 1u) || MP_IS_ZERO(a)) { if (d != NULL) { *d = 0; } @@ -55,7 +29,11 @@ } /* power of two ? */ - if (s_is_power_of_two(b, &ix) == 1) { + if ((b & (b - 1u)) == 0u) { + ix = 1; + while ((ix < MP_DIGIT_BIT) && (b != (((mp_digit)1)<<ix))) { + ix++; + } if (d != NULL) { *d = a->dp[0] & (((mp_digit)1<<(mp_digit)ix) - 1uL); } @@ -65,23 +43,21 @@ return MP_OKAY; } -#ifdef BN_MP_DIV_3_C /* three? */ - if (b == 3u) { + if (MP_HAS(MP_DIV_3) && (b == 3u)) { return mp_div_3(a, c, d); } -#endif /* no easy answer [c'est la vie]. Just division */ - if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { - return res; + if ((err = mp_init_size(&q, a->used)) != MP_OKAY) { + return err; } q.used = a->used; q.sign = a->sign; w = 0; for (ix = a->used - 1; ix >= 0; ix--) { - w = (w << (mp_word)DIGIT_BIT) | (mp_word)a->dp[ix]; + w = (w << (mp_word)MP_DIGIT_BIT) | (mp_word)a->dp[ix]; if (w >= b) { t = (mp_digit)(w / b); @@ -102,11 +78,7 @@ } mp_clear(&q); - return res; + return err; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_dr_is_modulus.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_dr_is_modulus.c Tue May 26 17:36:47 2020 +0200 @@ -1,25 +1,16 @@ #include "tommath_private.h" #ifdef BN_MP_DR_IS_MODULUS_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* determines if a number is a valid DR modulus */ -int mp_dr_is_modulus(const mp_int *a) +mp_bool mp_dr_is_modulus(const mp_int *a) { int ix; /* must be at least two digits */ if (a->used < 2) { - return 0; + return MP_NO; } /* must be of the form b**k - a [a <= b] so all @@ -27,14 +18,10 @@ */ for (ix = 1; ix < a->used; ix++) { if (a->dp[ix] != MP_MASK) { - return 0; + return MP_NO; } } - return 1; + return MP_YES; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_dr_reduce.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_dr_reduce.c Tue May 26 17:36:47 2020 +0200 @@ -1,16 +1,7 @@ #include "tommath_private.h" #ifdef BN_MP_DR_REDUCE_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* reduce "x" in place modulo "n" using the Diminished Radix algorithm. * @@ -26,9 +17,10 @@ * * Input x must be in the range 0 <= x <= (n-1)**2 */ -int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k) +mp_err mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k) { - int err, i, m; + mp_err err; + int i, m; mp_word r; mp_digit mu, *tmpx1, *tmpx2; @@ -60,16 +52,14 @@ for (i = 0; i < m; i++) { r = ((mp_word)*tmpx2++ * (mp_word)k) + *tmpx1 + mu; *tmpx1++ = (mp_digit)(r & MP_MASK); - mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); + mu = (mp_digit)(r >> ((mp_word)MP_DIGIT_BIT)); } /* set final carry */ *tmpx1++ = mu; /* zero words above m */ - for (i = m + 1; i < x->used; i++) { - *tmpx1++ = 0; - } + MP_ZERO_DIGITS(tmpx1, (x->used - m) - 1); /* clamp, sub and return */ mp_clamp(x); @@ -86,7 +76,3 @@ return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_dr_setup.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_dr_setup.c Tue May 26 17:36:47 2020 +0200 @@ -1,28 +1,15 @@ #include "tommath_private.h" #ifdef BN_MP_DR_SETUP_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* determines the setup value */ void mp_dr_setup(const mp_int *a, mp_digit *d) { - /* the casts are required if DIGIT_BIT is one less than - * the number of bits in a mp_digit [e.g. DIGIT_BIT==31] + /* the casts are required if MP_DIGIT_BIT is one less than + * the number of bits in a mp_digit [e.g. MP_DIGIT_BIT==31] */ - *d = (mp_digit)(((mp_word)1 << (mp_word)DIGIT_BIT) - (mp_word)a->dp[0]); + *d = (mp_digit)(((mp_word)1 << (mp_word)MP_DIGIT_BIT) - (mp_word)a->dp[0]); } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_error_to_string.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,27 @@ +#include "tommath_private.h" +#ifdef BN_MP_ERROR_TO_STRING_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +/* return a char * string for a given code */ +const char *mp_error_to_string(mp_err code) +{ + switch (code) { + case MP_OKAY: + return "Successful"; + case MP_ERR: + return "Unknown error"; + case MP_MEM: + return "Out of heap"; + case MP_VAL: + return "Value out of range"; + case MP_ITER: + return "Max. iterations reached"; + case MP_BUF: + return "Buffer overflow"; + default: + return "Invalid error code"; + } +} + +#endif
--- a/libtommath/bn_mp_exch.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_exch.c Tue May 26 17:36:47 2020 +0200 @@ -1,16 +1,7 @@ #include "tommath_private.h" #ifdef BN_MP_EXCH_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* swap the elements of two integers, for cases where you can't simply swap the * mp_int pointers around @@ -24,7 +15,3 @@ *b = t; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_export.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,84 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_MP_EXPORT_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* based on gmp's mpz_export. - * see http://gmplib.org/manual/Integer-Import-and-Export.html - */ -int mp_export(void *rop, size_t *countp, int order, size_t size, - int endian, size_t nails, const mp_int *op) -{ - int result; - size_t odd_nails, nail_bytes, i, j, bits, count; - unsigned char odd_nail_mask; - - mp_int t; - - if ((result = mp_init_copy(&t, op)) != MP_OKAY) { - return result; - } - - if (endian == 0) { - union { - unsigned int i; - char c[4]; - } lint; - lint.i = 0x01020304; - - endian = (lint.c[0] == '\x04') ? -1 : 1; - } - - odd_nails = (nails % 8u); - odd_nail_mask = 0xff; - for (i = 0; i < odd_nails; ++i) { - odd_nail_mask ^= (unsigned char)(1u << (7u - i)); - } - nail_bytes = nails / 8u; - - bits = (size_t)mp_count_bits(&t); - count = (bits / ((size * 8u) - nails)) + (((bits % ((size * 8u) - nails)) != 0u) ? 1u : 0u); - - for (i = 0; i < count; ++i) { - for (j = 0; j < size; ++j) { - unsigned char *byte = (unsigned char *)rop + - (((order == -1) ? i : ((count - 1u) - i)) * size) + - ((endian == -1) ? j : ((size - 1u) - j)); - - if (j >= (size - nail_bytes)) { - *byte = 0; - continue; - } - - *byte = (unsigned char)((j == ((size - nail_bytes) - 1u)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFFuL)); - - if ((result = mp_div_2d(&t, (j == ((size - nail_bytes) - 1u)) ? (int)(8u - odd_nails) : 8, &t, NULL)) != MP_OKAY) { - mp_clear(&t); - return result; - } - } - } - - mp_clear(&t); - - if (countp != NULL) { - *countp = count; - } - - return MP_OKAY; -} - -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_expt_d.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,25 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_MP_EXPT_D_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* wrapper function for mp_expt_d_ex() */ -int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c) -{ - return mp_expt_d_ex(a, b, c, 0); -} - -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_expt_d_ex.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,79 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_MP_EXPT_D_EX_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* calculate c = a**b using a square-multiply algorithm */ -int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast) -{ - int res; - unsigned int x; - - mp_int g; - - if ((res = mp_init_copy(&g, a)) != MP_OKAY) { - return res; - } - - /* set initial result */ - mp_set(c, 1uL); - - if (fast != 0) { - while (b > 0u) { - /* if the bit is set multiply */ - if ((b & 1u) != 0u) { - if ((res = mp_mul(c, &g, c)) != MP_OKAY) { - mp_clear(&g); - return res; - } - } - - /* square */ - if (b > 1u) { - if ((res = mp_sqr(&g, &g)) != MP_OKAY) { - mp_clear(&g); - return res; - } - } - - /* shift to next bit */ - b >>= 1; - } - } else { - for (x = 0; x < (unsigned)DIGIT_BIT; x++) { - /* square */ - if ((res = mp_sqr(c, c)) != MP_OKAY) { - mp_clear(&g); - return res; - } - - /* if the bit is set multiply */ - if ((b & ((mp_digit)1 << (DIGIT_BIT - 1))) != 0u) { - if ((res = mp_mul(c, &g, c)) != MP_OKAY) { - mp_clear(&g); - return res; - } - } - - /* shift to next bit */ - b <<= 1; - } - } /* if ... else */ - - mp_clear(&g); - return MP_OKAY; -} -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_expt_u32.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,46 @@ +#include "tommath_private.h" +#ifdef BN_MP_EXPT_U32_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +/* calculate c = a**b using a square-multiply algorithm */ +mp_err mp_expt_u32(const mp_int *a, uint32_t b, mp_int *c) +{ + mp_err err; + + mp_int g; + + if ((err = mp_init_copy(&g, a)) != MP_OKAY) { + return err; + } + + /* set initial result */ + mp_set(c, 1uL); + + while (b > 0u) { + /* if the bit is set multiply */ + if ((b & 1u) != 0u) { + if ((err = mp_mul(c, &g, c)) != MP_OKAY) { + goto LBL_ERR; + } + } + + /* square */ + if (b > 1u) { + if ((err = mp_sqr(&g, &g)) != MP_OKAY) { + goto LBL_ERR; + } + } + + /* shift to next bit */ + b >>= 1; + } + + err = MP_OKAY; + +LBL_ERR: + mp_clear(&g); + return err; +} + +#endif
--- a/libtommath/bn_mp_exptmod.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_exptmod.c Tue May 26 17:36:47 2020 +0200 @@ -1,24 +1,14 @@ #include "tommath_private.h" #ifdef BN_MP_EXPTMOD_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* this is a shell function that calls either the normal or Montgomery * exptmod functions. Originally the call to the montgomery code was * embedded in the normal function but that wasted alot of stack space * for nothing (since 99% of the time the Montgomery code would be called) */ -int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y) +mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y) { int dr; @@ -29,81 +19,58 @@ /* if exponent X is negative we have to recurse */ if (X->sign == MP_NEG) { -#ifdef BN_MP_INVMOD_C mp_int tmpG, tmpX; - int err; + mp_err err; - /* first compute 1/G mod P */ - if ((err = mp_init(&tmpG)) != MP_OKAY) { - return err; + if (!MP_HAS(MP_INVMOD)) { + return MP_VAL; } - if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { - mp_clear(&tmpG); + + if ((err = mp_init_multi(&tmpG, &tmpX, NULL)) != MP_OKAY) { return err; } + /* first compute 1/G mod P */ + if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { + goto LBL_ERR; + } + /* now get |X| */ - if ((err = mp_init(&tmpX)) != MP_OKAY) { - mp_clear(&tmpG); - return err; - } if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { - mp_clear_multi(&tmpG, &tmpX, NULL); - return err; + goto LBL_ERR; } /* and now compute (1/G)**|X| instead of G**X [X < 0] */ err = mp_exptmod(&tmpG, &tmpX, P, Y); +LBL_ERR: mp_clear_multi(&tmpG, &tmpX, NULL); return err; -#else - /* no invmod */ - return MP_VAL; -#endif } /* modified diminished radix reduction */ -#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C) - if (mp_reduce_is_2k_l(P) == MP_YES) { + if (MP_HAS(MP_REDUCE_IS_2K_L) && MP_HAS(MP_REDUCE_2K_L) && MP_HAS(S_MP_EXPTMOD) && + (mp_reduce_is_2k_l(P) == MP_YES)) { return s_mp_exptmod(G, X, P, Y, 1); } -#endif + + /* is it a DR modulus? default to no */ + dr = (MP_HAS(MP_DR_IS_MODULUS) && (mp_dr_is_modulus(P) == MP_YES)) ? 1 : 0; -#ifdef BN_MP_DR_IS_MODULUS_C - /* is it a DR modulus? */ - dr = mp_dr_is_modulus(P); -#else - /* default to no */ - dr = 0; -#endif - -#ifdef BN_MP_REDUCE_IS_2K_C /* if not, is it a unrestricted DR modulus? */ - if (dr == 0) { - dr = mp_reduce_is_2k(P) << 1; + if (MP_HAS(MP_REDUCE_IS_2K) && (dr == 0)) { + dr = (mp_reduce_is_2k(P) == MP_YES) ? 2 : 0; } -#endif /* if the modulus is odd or dr != 0 use the montgomery method */ -#ifdef BN_MP_EXPTMOD_FAST_C - if ((mp_isodd(P) == MP_YES) || (dr != 0)) { - return mp_exptmod_fast(G, X, P, Y, dr); - } else { -#endif -#ifdef BN_S_MP_EXPTMOD_C + if (MP_HAS(S_MP_EXPTMOD_FAST) && (MP_IS_ODD(P) || (dr != 0))) { + return s_mp_exptmod_fast(G, X, P, Y, dr); + } else if (MP_HAS(S_MP_EXPTMOD)) { /* otherwise use the generic Barrett reduction technique */ return s_mp_exptmod(G, X, P, Y, 0); -#else + } else { /* no exptmod for evens */ return MP_VAL; -#endif -#ifdef BN_MP_EXPTMOD_FAST_C } -#endif } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_exptmod_fast.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,319 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_MP_EXPTMOD_FAST_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 - * - * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. - * The value of k changes based on the size of the exponent. - * - * Uses Montgomery or Diminished Radix reduction [whichever appropriate] - */ - -#ifdef MP_LOW_MEM -# define TAB_SIZE 32 -#else -# define TAB_SIZE 256 -#endif - -int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) -{ - mp_int M[TAB_SIZE], res; - mp_digit buf, mp; - int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; - - /* use a pointer to the reduction algorithm. This allows us to use - * one of many reduction algorithms without modding the guts of - * the code with if statements everywhere. - */ - int (*redux)(mp_int *x, const mp_int *n, mp_digit rho); - - /* find window size */ - x = mp_count_bits(X); - if (x <= 7) { - winsize = 2; - } else if (x <= 36) { - winsize = 3; - } else if (x <= 140) { - winsize = 4; - } else if (x <= 450) { - winsize = 5; - } else if (x <= 1303) { - winsize = 6; - } else if (x <= 3529) { - winsize = 7; - } else { - winsize = 8; - } - -#ifdef MP_LOW_MEM - if (winsize > 5) { - winsize = 5; - } -#endif - - /* init M array */ - /* init first cell */ - if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) { - return err; - } - - /* now init the second half of the array */ - for (x = 1<<(winsize-1); x < (1 << winsize); x++) { - if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) { - for (y = 1<<(winsize-1); y < x; y++) { - mp_clear(&M[y]); - } - mp_clear(&M[1]); - return err; - } - } - - /* determine and setup reduction code */ - if (redmode == 0) { -#ifdef BN_MP_MONTGOMERY_SETUP_C - /* now setup montgomery */ - if ((err = mp_montgomery_setup(P, &mp)) != MP_OKAY) { - goto LBL_M; - } -#else - err = MP_VAL; - goto LBL_M; -#endif - - /* automatically pick the comba one if available (saves quite a few calls/ifs) */ -#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C - if ((((P->used * 2) + 1) < (int)MP_WARRAY) && - (P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) { - redux = fast_mp_montgomery_reduce; - } else -#endif - { -#ifdef BN_MP_MONTGOMERY_REDUCE_C - /* use slower baseline Montgomery method */ - redux = mp_montgomery_reduce; -#else - err = MP_VAL; - goto LBL_M; -#endif - } - } else if (redmode == 1) { -#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C) - /* setup DR reduction for moduli of the form B**k - b */ - mp_dr_setup(P, &mp); - redux = mp_dr_reduce; -#else - err = MP_VAL; - goto LBL_M; -#endif - } else { -#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C) - /* setup DR reduction for moduli of the form 2**k - b */ - if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { - goto LBL_M; - } - redux = mp_reduce_2k; -#else - err = MP_VAL; - goto LBL_M; -#endif - } - - /* setup result */ - if ((err = mp_init_size(&res, P->alloc)) != MP_OKAY) { - goto LBL_M; - } - - /* create M table - * - - * - * The first half of the table is not computed though accept for M[0] and M[1] - */ - - if (redmode == 0) { -#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C - /* now we need R mod m */ - if ((err = mp_montgomery_calc_normalization(&res, P)) != MP_OKAY) { - goto LBL_RES; - } - - /* now set M[1] to G * R mod m */ - if ((err = mp_mulmod(G, &res, P, &M[1])) != MP_OKAY) { - goto LBL_RES; - } -#else - err = MP_VAL; - goto LBL_RES; -#endif - } else { - mp_set(&res, 1uL); - if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { - goto LBL_RES; - } - } - - /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ - if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) { - goto LBL_RES; - } - - for (x = 0; x < (winsize - 1); x++) { - if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, mp)) != MP_OKAY) { - goto LBL_RES; - } - } - - /* create upper table */ - for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { - if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux(&M[x], P, mp)) != MP_OKAY) { - goto LBL_RES; - } - } - - /* set initial mode and bit cnt */ - mode = 0; - bitcnt = 1; - buf = 0; - digidx = X->used - 1; - bitcpy = 0; - bitbuf = 0; - - for (;;) { - /* grab next digit as required */ - if (--bitcnt == 0) { - /* if digidx == -1 we are out of digits so break */ - if (digidx == -1) { - break; - } - /* read next digit and reset bitcnt */ - buf = X->dp[digidx--]; - bitcnt = (int)DIGIT_BIT; - } - - /* grab the next msb from the exponent */ - y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1; - buf <<= (mp_digit)1; - - /* if the bit is zero and mode == 0 then we ignore it - * These represent the leading zero bits before the first 1 bit - * in the exponent. Technically this opt is not required but it - * does lower the # of trivial squaring/reductions used - */ - if ((mode == 0) && (y == 0)) { - continue; - } - - /* if the bit is zero and mode == 1 then we square */ - if ((mode == 1) && (y == 0)) { - if ((err = mp_sqr(&res, &res)) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux(&res, P, mp)) != MP_OKAY) { - goto LBL_RES; - } - continue; - } - - /* else we add it to the window */ - bitbuf |= (y << (winsize - ++bitcpy)); - mode = 2; - - if (bitcpy == winsize) { - /* ok window is filled so square as required and multiply */ - /* square first */ - for (x = 0; x < winsize; x++) { - if ((err = mp_sqr(&res, &res)) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux(&res, P, mp)) != MP_OKAY) { - goto LBL_RES; - } - } - - /* then multiply */ - if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux(&res, P, mp)) != MP_OKAY) { - goto LBL_RES; - } - - /* empty window and reset */ - bitcpy = 0; - bitbuf = 0; - mode = 1; - } - } - - /* if bits remain then square/multiply */ - if ((mode == 2) && (bitcpy > 0)) { - /* square then multiply if the bit is set */ - for (x = 0; x < bitcpy; x++) { - if ((err = mp_sqr(&res, &res)) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux(&res, P, mp)) != MP_OKAY) { - goto LBL_RES; - } - - /* get next bit of the window */ - bitbuf <<= 1; - if ((bitbuf & (1 << winsize)) != 0) { - /* then multiply */ - if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux(&res, P, mp)) != MP_OKAY) { - goto LBL_RES; - } - } - } - } - - if (redmode == 0) { - /* fixup result if Montgomery reduction is used - * recall that any value in a Montgomery system is - * actually multiplied by R mod n. So we have - * to reduce one more time to cancel out the factor - * of R. - */ - if ((err = redux(&res, P, mp)) != MP_OKAY) { - goto LBL_RES; - } - } - - /* swap res with Y */ - mp_exch(&res, Y); - err = MP_OKAY; -LBL_RES: - mp_clear(&res); -LBL_M: - mp_clear(&M[1]); - for (x = 1<<(winsize-1); x < (1 << winsize); x++) { - mp_clear(&M[x]); - } - return err; -} -#endif - - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_exteuclid.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_exteuclid.c Tue May 26 17:36:47 2020 +0200 @@ -1,24 +1,15 @@ #include "tommath_private.h" #ifdef BN_MP_EXTEUCLID_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* Extended euclidean algorithm of (a, b) produces a*u1 + b*u2 = u3 */ -int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3) +mp_err mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3) { mp_int u1, u2, u3, v1, v2, v3, t1, t2, t3, q, tmp; - int err; + mp_err err; if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) { return err; @@ -26,77 +17,41 @@ /* initialize, (u1,u2,u3) = (1,0,a) */ mp_set(&u1, 1uL); - if ((err = mp_copy(a, &u3)) != MP_OKAY) { - goto LBL_ERR; - } + if ((err = mp_copy(a, &u3)) != MP_OKAY) goto LBL_ERR; /* initialize, (v1,v2,v3) = (0,1,b) */ mp_set(&v2, 1uL); - if ((err = mp_copy(b, &v3)) != MP_OKAY) { - goto LBL_ERR; - } + if ((err = mp_copy(b, &v3)) != MP_OKAY) goto LBL_ERR; /* loop while v3 != 0 */ - while (mp_iszero(&v3) == MP_NO) { + while (!MP_IS_ZERO(&v3)) { /* q = u3/v3 */ - if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) { - goto LBL_ERR; - } + if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) goto LBL_ERR; /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */ - if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) { - goto LBL_ERR; - } - if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) { - goto LBL_ERR; - } - if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) { - goto LBL_ERR; - } - if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) { - goto LBL_ERR; - } - if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) { - goto LBL_ERR; - } - if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) { - goto LBL_ERR; - } + if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) goto LBL_ERR; /* (u1,u2,u3) = (v1,v2,v3) */ - if ((err = mp_copy(&v1, &u1)) != MP_OKAY) { - goto LBL_ERR; - } - if ((err = mp_copy(&v2, &u2)) != MP_OKAY) { - goto LBL_ERR; - } - if ((err = mp_copy(&v3, &u3)) != MP_OKAY) { - goto LBL_ERR; - } + if ((err = mp_copy(&v1, &u1)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_copy(&v2, &u2)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_copy(&v3, &u3)) != MP_OKAY) goto LBL_ERR; /* (v1,v2,v3) = (t1,t2,t3) */ - if ((err = mp_copy(&t1, &v1)) != MP_OKAY) { - goto LBL_ERR; - } - if ((err = mp_copy(&t2, &v2)) != MP_OKAY) { - goto LBL_ERR; - } - if ((err = mp_copy(&t3, &v3)) != MP_OKAY) { - goto LBL_ERR; - } + if ((err = mp_copy(&t1, &v1)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_copy(&t2, &v2)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_copy(&t3, &v3)) != MP_OKAY) goto LBL_ERR; } /* make sure U3 >= 0 */ if (u3.sign == MP_NEG) { - if ((err = mp_neg(&u1, &u1)) != MP_OKAY) { - goto LBL_ERR; - } - if ((err = mp_neg(&u2, &u2)) != MP_OKAY) { - goto LBL_ERR; - } - if ((err = mp_neg(&u3, &u3)) != MP_OKAY) { - goto LBL_ERR; - } + if ((err = mp_neg(&u1, &u1)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_neg(&u2, &u2)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_neg(&u3, &u3)) != MP_OKAY) goto LBL_ERR; } /* copy result out */ @@ -116,7 +71,3 @@ return err; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_fread.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_fread.c Tue May 26 17:36:47 2020 +0200 @@ -1,29 +1,17 @@ #include "tommath_private.h" #ifdef BN_MP_FREAD_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ -#ifndef LTM_NO_FILE +#ifndef MP_NO_FILE /* read a bigint from a file stream in ASCII */ -int mp_fread(mp_int *a, int radix, FILE *stream) +mp_err mp_fread(mp_int *a, int radix, FILE *stream) { - int err, ch, neg, y; - unsigned pos; - - /* clear a */ - mp_zero(a); + mp_err err; + mp_sign neg; /* if first digit is - then set negative */ - ch = fgetc(stream); + int ch = fgetc(stream); if (ch == (int)'-') { neg = MP_NEG; ch = fgetc(stream); @@ -31,8 +19,17 @@ neg = MP_ZPOS; } - for (;;) { - pos = (unsigned)(ch - (int)'('); + /* no digits, return error */ + if (ch == EOF) { + return MP_ERR; + } + + /* clear a */ + mp_zero(a); + + do { + int y; + unsigned pos = (unsigned)(ch - (int)'('); if (mp_s_rmap_reverse_sz < pos) { break; } @@ -50,10 +47,9 @@ if ((err = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) { return err; } + } while ((ch = fgetc(stream)) != EOF); - ch = fgetc(stream); - } - if (mp_cmp_d(a, 0uL) != MP_EQ) { + if (a->used != 0) { a->sign = neg; } @@ -62,7 +58,3 @@ #endif #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_from_sbin.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,25 @@ +#include "tommath_private.h" +#ifdef BN_MP_FROM_SBIN_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +/* read signed bin, big endian, first byte is 0==positive or 1==negative */ +mp_err mp_from_sbin(mp_int *a, const unsigned char *buf, size_t size) +{ + mp_err err; + + /* read magnitude */ + if ((err = mp_from_ubin(a, buf + 1, size - 1u)) != MP_OKAY) { + return err; + } + + /* first byte is 0 for positive, non-zero for negative */ + if (buf[0] == (unsigned char)0) { + a->sign = MP_ZPOS; + } else { + a->sign = MP_NEG; + } + + return MP_OKAY; +} +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_from_ubin.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,39 @@ +#include "tommath_private.h" +#ifdef BN_MP_FROM_UBIN_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +/* reads a unsigned char array, assumes the msb is stored first [big endian] */ +mp_err mp_from_ubin(mp_int *a, const unsigned char *buf, size_t size) +{ + mp_err err; + + /* make sure there are at least two digits */ + if (a->alloc < 2) { + if ((err = mp_grow(a, 2)) != MP_OKAY) { + return err; + } + } + + /* zero the int */ + mp_zero(a); + + /* read the bytes in */ + while (size-- > 0u) { + if ((err = mp_mul_2d(a, 8, a)) != MP_OKAY) { + return err; + } + +#ifndef MP_8BIT + a->dp[0] |= *buf++; + a->used += 1; +#else + a->dp[0] = (*buf & MP_MASK); + a->dp[1] |= ((*buf++ >> 7) & 1u); + a->used += 2; +#endif + } + mp_clamp(a); + return MP_OKAY; +} +#endif
--- a/libtommath/bn_mp_fwrite.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_fwrite.c Tue May 26 17:36:47 2020 +0200 @@ -1,51 +1,45 @@ #include "tommath_private.h" #ifdef BN_MP_FWRITE_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ -#ifndef LTM_NO_FILE -int mp_fwrite(const mp_int *a, int radix, FILE *stream) +#ifndef MP_NO_FILE +mp_err mp_fwrite(const mp_int *a, int radix, FILE *stream) { char *buf; - int err, len, x; + mp_err err; + int len; + size_t written; - if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) { - return err; + /* TODO: this function is not in this PR */ + if (MP_HAS(MP_RADIX_SIZE_OVERESTIMATE)) { + /* if ((err = mp_radix_size_overestimate(&t, base, &len)) != MP_OKAY) goto LBL_ERR; */ + } else { + if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) { + return err; + } } - buf = OPT_CAST(char) XMALLOC((size_t)len); + buf = (char *) MP_MALLOC((size_t)len); if (buf == NULL) { return MP_MEM; } - if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) { - XFREE(buf); - return err; + if ((err = mp_to_radix(a, buf, (size_t)len, &written, radix)) != MP_OKAY) { + goto LBL_ERR; } - for (x = 0; x < len; x++) { - if (fputc((int)buf[x], stream) == EOF) { - XFREE(buf); - return MP_VAL; - } + if (fwrite(buf, written, 1uL, stream) != 1uL) { + err = MP_ERR; + goto LBL_ERR; } + err = MP_OKAY; - XFREE(buf); - return MP_OKAY; + +LBL_ERR: + MP_FREE_BUFFER(buf, (size_t)len); + return err; } #endif #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_gcd.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_gcd.c Tue May 26 17:36:47 2020 +0200 @@ -1,37 +1,29 @@ #include "tommath_private.h" #ifdef BN_MP_GCD_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* Greatest Common Divisor using the binary method */ -int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c) +mp_err mp_gcd(const mp_int *a, const mp_int *b, mp_int *c) { mp_int u, v; - int k, u_lsb, v_lsb, res; + int k, u_lsb, v_lsb; + mp_err err; /* either zero than gcd is the largest */ - if (mp_iszero(a) == MP_YES) { + if (MP_IS_ZERO(a)) { return mp_abs(b, c); } - if (mp_iszero(b) == MP_YES) { + if (MP_IS_ZERO(b)) { return mp_abs(a, c); } /* get copies of a and b we can modify */ - if ((res = mp_init_copy(&u, a)) != MP_OKAY) { - return res; + if ((err = mp_init_copy(&u, a)) != MP_OKAY) { + return err; } - if ((res = mp_init_copy(&v, b)) != MP_OKAY) { + if ((err = mp_init_copy(&v, b)) != MP_OKAY) { goto LBL_U; } @@ -41,33 +33,33 @@ /* B1. Find the common power of two for u and v */ u_lsb = mp_cnt_lsb(&u); v_lsb = mp_cnt_lsb(&v); - k = MIN(u_lsb, v_lsb); + k = MP_MIN(u_lsb, v_lsb); if (k > 0) { /* divide the power of two out */ - if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { + if ((err = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { goto LBL_V; } - if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { + if ((err = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { goto LBL_V; } } /* divide any remaining factors of two out */ if (u_lsb != k) { - if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { + if ((err = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { goto LBL_V; } } if (v_lsb != k) { - if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { + if ((err = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { goto LBL_V; } } - while (mp_iszero(&v) == MP_NO) { + while (!MP_IS_ZERO(&v)) { /* make sure v is the largest */ if (mp_cmp_mag(&u, &v) == MP_GT) { /* swap u and v to make sure v is >= u */ @@ -75,30 +67,26 @@ } /* subtract smallest from largest */ - if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { + if ((err = s_mp_sub(&v, &u, &v)) != MP_OKAY) { goto LBL_V; } /* Divide out all factors of two */ - if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { + if ((err = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { goto LBL_V; } } /* multiply by 2**k which we divided out at the beginning */ - if ((res = mp_mul_2d(&u, k, c)) != MP_OKAY) { + if ((err = mp_mul_2d(&u, k, c)) != MP_OKAY) { goto LBL_V; } c->sign = MP_ZPOS; - res = MP_OKAY; + err = MP_OKAY; LBL_V: mp_clear(&u); LBL_U: mp_clear(&v); - return res; + return err; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_get_bit.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,54 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_MP_GET_BIT_C - -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* Checks the bit at position b and returns MP_YES - if the bit is 1, MP_NO if it is 0 and MP_VAL - in case of error */ -int mp_get_bit(const mp_int *a, int b) -{ - int limb; - mp_digit bit, isset; - - if (b < 0) { - return MP_VAL; - } - - limb = b / DIGIT_BIT; - - /* - * Zero is a special value with the member "used" set to zero. - * Needs to be tested before the check for the upper boundary - * otherwise (limb >= a->used) would be true for a = 0 - */ - - if (mp_iszero(a) != MP_NO) { - return MP_NO; - } - - if (limb >= a->used) { - return MP_VAL; - } - - bit = (mp_digit)(1) << (b % DIGIT_BIT); - - isset = a->dp[limb] & bit; - return (isset != 0u) ? MP_YES : MP_NO; -} - -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_get_i32.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,7 @@ +#include "tommath_private.h" +#ifdef BN_MP_GET_I32_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +MP_GET_SIGNED(mp_get_i32, mp_get_mag_u32, int32_t, uint32_t) +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_get_i64.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,7 @@ +#include "tommath_private.h" +#ifdef BN_MP_GET_I64_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +MP_GET_SIGNED(mp_get_i64, mp_get_mag_u64, int64_t, uint64_t) +#endif
--- a/libtommath/bn_mp_get_int.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,42 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_MP_GET_INT_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* get the lower 32-bits of an mp_int */ -unsigned long mp_get_int(const mp_int *a) -{ - int i; - mp_min_u32 res; - - if (a->used == 0) { - return 0; - } - - /* get number of digits of the lsb we have to read */ - i = MIN(a->used, ((((int)sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1; - - /* get most significant digit of result */ - res = DIGIT(a, i); - - while (--i >= 0) { - res = (res << DIGIT_BIT) | DIGIT(a, i); - } - - /* force result to 32-bits always so it is consistent on non 32-bit platforms */ - return res & 0xFFFFFFFFUL; -} -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_get_l.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,7 @@ +#include "tommath_private.h" +#ifdef BN_MP_GET_L_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +MP_GET_SIGNED(mp_get_l, mp_get_mag_ul, long, unsigned long) +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_get_ll.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,7 @@ +#include "tommath_private.h" +#ifdef BN_MP_GET_LL_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +MP_GET_SIGNED(mp_get_ll, mp_get_mag_ull, long long, unsigned long long) +#endif
--- a/libtommath/bn_mp_get_long.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,42 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_MP_GET_LONG_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* get the lower unsigned long of an mp_int, platform dependent */ -unsigned long mp_get_long(const mp_int *a) -{ - int i; - unsigned long res; - - if (a->used == 0) { - return 0; - } - - /* get number of digits of the lsb we have to read */ - i = MIN(a->used, ((((int)sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1; - - /* get most significant digit of result */ - res = DIGIT(a, i); - -#if (ULONG_MAX != 0xffffffffuL) || (DIGIT_BIT < 32) - while (--i >= 0) { - res = (res << DIGIT_BIT) | DIGIT(a, i); - } -#endif - return res; -} -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_get_long_long.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,42 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_MP_GET_LONG_LONG_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* get the lower unsigned long long of an mp_int, platform dependent */ -unsigned long long mp_get_long_long(const mp_int *a) -{ - int i; - unsigned long long res; - - if (a->used == 0) { - return 0; - } - - /* get number of digits of the lsb we have to read */ - i = MIN(a->used, ((((int)sizeof(unsigned long long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1; - - /* get most significant digit of result */ - res = DIGIT(a, i); - -#if DIGIT_BIT < 64 - while (--i >= 0) { - res = (res << DIGIT_BIT) | DIGIT(a, i); - } -#endif - return res; -} -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_get_mag_u32.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,7 @@ +#include "tommath_private.h" +#ifdef BN_MP_GET_MAG_U32_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +MP_GET_MAG(mp_get_mag_u32, uint32_t) +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_get_mag_u64.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,7 @@ +#include "tommath_private.h" +#ifdef BN_MP_GET_MAG_U64_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +MP_GET_MAG(mp_get_mag_u64, uint64_t) +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_get_mag_ul.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,7 @@ +#include "tommath_private.h" +#ifdef BN_MP_GET_MAG_UL_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +MP_GET_MAG(mp_get_mag_ul, unsigned long) +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_get_mag_ull.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,7 @@ +#include "tommath_private.h" +#ifdef BN_MP_GET_MAG_ULL_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +MP_GET_MAG(mp_get_mag_ull, unsigned long long) +#endif
--- a/libtommath/bn_mp_grow.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_grow.c Tue May 26 17:36:47 2020 +0200 @@ -1,35 +1,25 @@ #include "tommath_private.h" #ifdef BN_MP_GROW_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* grow as required */ -int mp_grow(mp_int *a, int size) +mp_err mp_grow(mp_int *a, int size) { int i; mp_digit *tmp; /* if the alloc size is smaller alloc more ram */ if (a->alloc < size) { - /* ensure there are always at least MP_PREC digits extra on top */ - size += (MP_PREC * 2) - (size % MP_PREC); - /* reallocate the array a->dp * * We store the return in a temporary variable * in case the operation failed we don't want * to overwrite the dp member of a. */ - tmp = OPT_CAST(mp_digit) XREALLOC(a->dp, sizeof(mp_digit) * (size_t)size); + tmp = (mp_digit *) MP_REALLOC(a->dp, + (size_t)a->alloc * sizeof(mp_digit), + (size_t)size * sizeof(mp_digit)); if (tmp == NULL) { /* reallocation failed but "a" is still valid [can be freed] */ return MP_MEM; @@ -41,14 +31,8 @@ /* zero excess digits */ i = a->alloc; a->alloc = size; - for (; i < a->alloc; i++) { - a->dp[i] = 0; - } + MP_ZERO_DIGITS(a->dp + i, a->alloc - i); } return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_import.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,68 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_MP_IMPORT_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* based on gmp's mpz_import. - * see http://gmplib.org/manual/Integer-Import-and-Export.html - */ -int mp_import(mp_int *rop, size_t count, int order, size_t size, - int endian, size_t nails, const void *op) -{ - int result; - size_t odd_nails, nail_bytes, i, j; - unsigned char odd_nail_mask; - - mp_zero(rop); - - if (endian == 0) { - union { - unsigned int i; - char c[4]; - } lint; - lint.i = 0x01020304; - - endian = (lint.c[0] == '\x04') ? -1 : 1; - } - - odd_nails = (nails % 8u); - odd_nail_mask = 0xff; - for (i = 0; i < odd_nails; ++i) { - odd_nail_mask ^= (unsigned char)(1u << (7u - i)); - } - nail_bytes = nails / 8u; - - for (i = 0; i < count; ++i) { - for (j = 0; j < (size - nail_bytes); ++j) { - unsigned char byte = *((unsigned char *)op + - (((order == 1) ? i : ((count - 1u) - i)) * size) + - ((endian == 1) ? (j + nail_bytes) : (((size - 1u) - j) - nail_bytes))); - - if ((result = mp_mul_2d(rop, (j == 0u) ? (int)(8u - odd_nails) : 8, rop)) != MP_OKAY) { - return result; - } - - rop->dp[0] |= (j == 0u) ? (mp_digit)(byte & odd_nail_mask) : (mp_digit)byte; - rop->used += 1; - } - } - - mp_clamp(rop); - - return MP_OKAY; -} - -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_incr.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,30 @@ +#include "tommath_private.h" +#ifdef BN_MP_INCR_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +/* Increment "a" by one like "a++". Changes input! */ +mp_err mp_incr(mp_int *a) +{ + if (MP_IS_ZERO(a)) { + mp_set(a,1uL); + return MP_OKAY; + } else if (a->sign == MP_NEG) { + mp_err err; + a->sign = MP_ZPOS; + if ((err = mp_decr(a)) != MP_OKAY) { + return err; + } + /* There is no -0 in LTM */ + if (!MP_IS_ZERO(a)) { + a->sign = MP_NEG; + } + return MP_OKAY; + } else if (a->dp[0] < MP_DIGIT_MAX) { + a->dp[0]++; + return MP_OKAY; + } else { + return mp_add_d(a, 1uL,a); + } +} +#endif
--- a/libtommath/bn_mp_init.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_init.c Tue May 26 17:36:47 2020 +0200 @@ -1,33 +1,17 @@ #include "tommath_private.h" #ifdef BN_MP_INIT_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* init a new mp_int */ -int mp_init(mp_int *a) +mp_err mp_init(mp_int *a) { - int i; - /* allocate memory required and clear it */ - a->dp = OPT_CAST(mp_digit) XMALLOC(sizeof(mp_digit) * (size_t)MP_PREC); + a->dp = (mp_digit *) MP_CALLOC((size_t)MP_PREC, sizeof(mp_digit)); if (a->dp == NULL) { return MP_MEM; } - /* set the digits to zero */ - for (i = 0; i < MP_PREC; i++) { - a->dp[i] = 0; - } - /* set the used to zero, allocated digits to the default precision * and sign to positive */ a->used = 0; @@ -37,7 +21,3 @@ return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_init_copy.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_init_copy.c Tue May 26 17:36:47 2020 +0200 @@ -1,34 +1,21 @@ #include "tommath_private.h" #ifdef BN_MP_INIT_COPY_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* creates "a" then copies b into it */ -int mp_init_copy(mp_int *a, const mp_int *b) +mp_err mp_init_copy(mp_int *a, const mp_int *b) { - int res; + mp_err err; - if ((res = mp_init_size(a, b->used)) != MP_OKAY) { - return res; + if ((err = mp_init_size(a, b->used)) != MP_OKAY) { + return err; } - if ((res = mp_copy(b, a)) != MP_OKAY) { + if ((err = mp_copy(b, a)) != MP_OKAY) { mp_clear(a); } - return res; + return err; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_init_i32.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,7 @@ +#include "tommath_private.h" +#ifdef BN_MP_INIT_I32_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +MP_INIT_INT(mp_init_i32, mp_set_i32, int32_t) +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_init_i64.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,7 @@ +#include "tommath_private.h" +#ifdef BN_MP_INIT_I64_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +MP_INIT_INT(mp_init_i64, mp_set_i64, int64_t) +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_init_l.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,7 @@ +#include "tommath_private.h" +#ifdef BN_MP_INIT_L_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +MP_INIT_INT(mp_init_l, mp_set_l, long) +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_init_ll.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,7 @@ +#include "tommath_private.h" +#ifdef BN_MP_INIT_LL_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +MP_INIT_INT(mp_init_ll, mp_set_ll, long long) +#endif
--- a/libtommath/bn_mp_init_multi.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_init_multi.c Tue May 26 17:36:47 2020 +0200 @@ -1,22 +1,13 @@ #include "tommath_private.h" #ifdef BN_MP_INIT_MULTI_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ #include <stdarg.h> -int mp_init_multi(mp_int *mp, ...) +mp_err mp_init_multi(mp_int *mp, ...) { - mp_err res = MP_OKAY; /* Assume ok until proven otherwise */ + mp_err err = MP_OKAY; /* Assume ok until proven otherwise */ int n = 0; /* Number of ok inits */ mp_int *cur_arg = mp; va_list args; @@ -37,18 +28,14 @@ cur_arg = va_arg(clean_args, mp_int *); } va_end(clean_args); - res = MP_MEM; + err = MP_MEM; break; } n++; cur_arg = va_arg(args, mp_int *); } va_end(args); - return res; /* Assumed ok, if error flagged above. */ + return err; /* Assumed ok, if error flagged above. */ } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_init_set.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_init_set.c Tue May 26 17:36:47 2020 +0200 @@ -1,21 +1,12 @@ #include "tommath_private.h" #ifdef BN_MP_INIT_SET_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* initialize and set a digit */ -int mp_init_set(mp_int *a, mp_digit b) +mp_err mp_init_set(mp_int *a, mp_digit b) { - int err; + mp_err err; if ((err = mp_init(a)) != MP_OKAY) { return err; } @@ -23,7 +14,3 @@ return err; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_init_set_int.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,28 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_MP_INIT_SET_INT_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* initialize and set a digit */ -int mp_init_set_int(mp_int *a, unsigned long b) -{ - int err; - if ((err = mp_init(a)) != MP_OKAY) { - return err; - } - return mp_set_int(a, b); -} -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_init_size.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_init_size.c Tue May 26 17:36:47 2020 +0200 @@ -1,27 +1,15 @@ #include "tommath_private.h" #ifdef BN_MP_INIT_SIZE_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* init an mp_init for a given size */ -int mp_init_size(mp_int *a, int size) +mp_err mp_init_size(mp_int *a, int size) { - int x; - - /* pad size so there are always extra digits */ - size += (MP_PREC * 2) - (size % MP_PREC); + size = MP_MAX(MP_MIN_PREC, size); /* alloc mem */ - a->dp = OPT_CAST(mp_digit) XMALLOC(sizeof(mp_digit) * (size_t)size); + a->dp = (mp_digit *) MP_CALLOC((size_t)size, sizeof(mp_digit)); if (a->dp == NULL) { return MP_MEM; } @@ -31,15 +19,6 @@ a->alloc = size; a->sign = MP_ZPOS; - /* zero the digits */ - for (x = 0; x < size; x++) { - a->dp[x] = 0; - } - return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_init_u32.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,7 @@ +#include "tommath_private.h" +#ifdef BN_MP_INIT_U32_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +MP_INIT_INT(mp_init_u32, mp_set_u32, uint32_t) +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_init_u64.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,7 @@ +#include "tommath_private.h" +#ifdef BN_MP_INIT_U64_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +MP_INIT_INT(mp_init_u64, mp_set_u64, uint64_t) +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_init_ul.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,7 @@ +#include "tommath_private.h" +#ifdef BN_MP_INIT_UL_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +MP_INIT_INT(mp_init_ul, mp_set_ul, unsigned long) +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_init_ull.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,7 @@ +#include "tommath_private.h" +#ifdef BN_MP_INIT_ULL_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +MP_INIT_INT(mp_init_ull, mp_set_ull, unsigned long long) +#endif
--- a/libtommath/bn_mp_invmod.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_invmod.c Tue May 26 17:36:47 2020 +0200 @@ -1,40 +1,23 @@ #include "tommath_private.h" #ifdef BN_MP_INVMOD_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* hac 14.61, pp608 */ -int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c) +mp_err mp_invmod(const mp_int *a, const mp_int *b, mp_int *c) { /* b cannot be negative and has to be >1 */ if ((b->sign == MP_NEG) || (mp_cmp_d(b, 1uL) != MP_GT)) { return MP_VAL; } -#ifdef BN_FAST_MP_INVMOD_C /* if the modulus is odd we can use a faster routine instead */ - if ((mp_isodd(b) == MP_YES)) { - return fast_mp_invmod(a, b, c); + if (MP_HAS(S_MP_INVMOD_FAST) && MP_IS_ODD(b)) { + return s_mp_invmod_fast(a, b, c); } -#endif -#ifdef BN_MP_INVMOD_SLOW_C - return mp_invmod_slow(a, b, c); -#else - return MP_VAL; -#endif + return MP_HAS(S_MP_INVMOD_SLOW) + ? s_mp_invmod_slow(a, b, c) + : MP_VAL; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_invmod_slow.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,173 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_MP_INVMOD_SLOW_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* hac 14.61, pp608 */ -int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c) -{ - mp_int x, y, u, v, A, B, C, D; - int res; - - /* b cannot be negative */ - if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) { - return MP_VAL; - } - - /* init temps */ - if ((res = mp_init_multi(&x, &y, &u, &v, - &A, &B, &C, &D, NULL)) != MP_OKAY) { - return res; - } - - /* x = a, y = b */ - if ((res = mp_mod(a, b, &x)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_copy(b, &y)) != MP_OKAY) { - goto LBL_ERR; - } - - /* 2. [modified] if x,y are both even then return an error! */ - if ((mp_iseven(&x) == MP_YES) && (mp_iseven(&y) == MP_YES)) { - res = MP_VAL; - goto LBL_ERR; - } - - /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ - if ((res = mp_copy(&x, &u)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_copy(&y, &v)) != MP_OKAY) { - goto LBL_ERR; - } - mp_set(&A, 1uL); - mp_set(&D, 1uL); - -top: - /* 4. while u is even do */ - while (mp_iseven(&u) == MP_YES) { - /* 4.1 u = u/2 */ - if ((res = mp_div_2(&u, &u)) != MP_OKAY) { - goto LBL_ERR; - } - /* 4.2 if A or B is odd then */ - if ((mp_isodd(&A) == MP_YES) || (mp_isodd(&B) == MP_YES)) { - /* A = (A+y)/2, B = (B-x)/2 */ - if ((res = mp_add(&A, &y, &A)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) { - goto LBL_ERR; - } - } - /* A = A/2, B = B/2 */ - if ((res = mp_div_2(&A, &A)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_div_2(&B, &B)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* 5. while v is even do */ - while (mp_iseven(&v) == MP_YES) { - /* 5.1 v = v/2 */ - if ((res = mp_div_2(&v, &v)) != MP_OKAY) { - goto LBL_ERR; - } - /* 5.2 if C or D is odd then */ - if ((mp_isodd(&C) == MP_YES) || (mp_isodd(&D) == MP_YES)) { - /* C = (C+y)/2, D = (D-x)/2 */ - if ((res = mp_add(&C, &y, &C)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) { - goto LBL_ERR; - } - } - /* C = C/2, D = D/2 */ - if ((res = mp_div_2(&C, &C)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_div_2(&D, &D)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* 6. if u >= v then */ - if (mp_cmp(&u, &v) != MP_LT) { - /* u = u - v, A = A - C, B = B - D */ - if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) { - goto LBL_ERR; - } - - if ((res = mp_sub(&A, &C, &A)) != MP_OKAY) { - goto LBL_ERR; - } - - if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) { - goto LBL_ERR; - } - } else { - /* v - v - u, C = C - A, D = D - B */ - if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) { - goto LBL_ERR; - } - - if ((res = mp_sub(&C, &A, &C)) != MP_OKAY) { - goto LBL_ERR; - } - - if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* if not zero goto step 4 */ - if (mp_iszero(&u) == MP_NO) - goto top; - - /* now a = C, b = D, gcd == g*v */ - - /* if v != 1 then there is no inverse */ - if (mp_cmp_d(&v, 1uL) != MP_EQ) { - res = MP_VAL; - goto LBL_ERR; - } - - /* if its too low */ - while (mp_cmp_d(&C, 0uL) == MP_LT) { - if ((res = mp_add(&C, b, &C)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* too big */ - while (mp_cmp_mag(&C, b) != MP_LT) { - if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* C is now the inverse */ - mp_exch(&C, c); - res = MP_OKAY; -LBL_ERR: - mp_clear_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL); - return res; -} -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_is_square.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_is_square.c Tue May 26 17:36:47 2020 +0200 @@ -1,16 +1,7 @@ #include "tommath_private.h" #ifdef BN_MP_IS_SQUARE_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* Check if remainders are possible squares - fast exclude non-squares */ static const char rem_128[128] = { @@ -35,9 +26,9 @@ }; /* Store non-zero to ret if arg is square, and zero if not */ -int mp_is_square(const mp_int *arg, int *ret) +mp_err mp_is_square(const mp_int *arg, mp_bool *ret) { - int res; + mp_err err; mp_digit c; mp_int t; unsigned long r; @@ -49,34 +40,33 @@ return MP_VAL; } - /* digits used? (TSD) */ - if (arg->used == 0) { + if (MP_IS_ZERO(arg)) { return MP_OKAY; } - /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */ - if (rem_128[127u & DIGIT(arg, 0)] == (char)1) { + /* First check mod 128 (suppose that MP_DIGIT_BIT is at least 7) */ + if (rem_128[127u & arg->dp[0]] == (char)1) { return MP_OKAY; } /* Next check mod 105 (3*5*7) */ - if ((res = mp_mod_d(arg, 105uL, &c)) != MP_OKAY) { - return res; + if ((err = mp_mod_d(arg, 105uL, &c)) != MP_OKAY) { + return err; } if (rem_105[c] == (char)1) { return MP_OKAY; } - if ((res = mp_init_set_int(&t, 11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) { - return res; + if ((err = mp_init_u32(&t, 11u*13u*17u*19u*23u*29u*31u)) != MP_OKAY) { + return err; } - if ((res = mp_mod(arg, &t, &t)) != MP_OKAY) { + if ((err = mp_mod(arg, &t, &t)) != MP_OKAY) { goto LBL_ERR; } - r = mp_get_int(&t); + r = mp_get_u32(&t); /* Check for other prime modules, note it's not an ERROR but we must - * free "t" so the easiest way is to goto LBL_ERR. We know that res + * free "t" so the easiest way is to goto LBL_ERR. We know that err * is already equal to MP_OKAY from the mp_mod call */ if (((1uL<<(r%11uL)) & 0x5C4uL) != 0uL) goto LBL_ERR; @@ -88,20 +78,16 @@ if (((1uL<<(r%31uL)) & 0x6DE2B848uL) != 0uL) goto LBL_ERR; /* Final check - is sqr(sqrt(arg)) == arg ? */ - if ((res = mp_sqrt(arg, &t)) != MP_OKAY) { + if ((err = mp_sqrt(arg, &t)) != MP_OKAY) { goto LBL_ERR; } - if ((res = mp_sqr(&t, &t)) != MP_OKAY) { + if ((err = mp_sqr(&t, &t)) != MP_OKAY) { goto LBL_ERR; } *ret = (mp_cmp_mag(&t, arg) == MP_EQ) ? MP_YES : MP_NO; LBL_ERR: mp_clear(&t); - return res; + return err; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_iseven.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,10 @@ +#include "tommath_private.h" +#ifdef BN_MP_ISEVEN_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +mp_bool mp_iseven(const mp_int *a) +{ + return MP_IS_EVEN(a) ? MP_YES : MP_NO; +} +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_isodd.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,10 @@ +#include "tommath_private.h" +#ifdef BN_MP_ISODD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +mp_bool mp_isodd(const mp_int *a) +{ + return MP_IS_ODD(a) ? MP_YES : MP_NO; +} +#endif
--- a/libtommath/bn_mp_jacobi.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,36 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_MP_JACOBI_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* computes the jacobi c = (a | n) (or Legendre if n is prime) - * Kept for legacy reasons, please use mp_kronecker() instead - */ -int mp_jacobi(const mp_int *a, const mp_int *n, int *c) -{ - /* if a < 0 return MP_VAL */ - if (mp_isneg(a) == MP_YES) { - return MP_VAL; - } - - /* if n <= 0 return MP_VAL */ - if (mp_cmp_d(n, 0uL) != MP_GT) { - return MP_VAL; - } - - return mp_kronecker(a, n, c); -} -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_karatsuba_mul.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,171 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_MP_KARATSUBA_MUL_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* c = |a| * |b| using Karatsuba Multiplication using - * three half size multiplications - * - * Let B represent the radix [e.g. 2**DIGIT_BIT] and - * let n represent half of the number of digits in - * the min(a,b) - * - * a = a1 * B**n + a0 - * b = b1 * B**n + b0 - * - * Then, a * b => - a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0 - * - * Note that a1b1 and a0b0 are used twice and only need to be - * computed once. So in total three half size (half # of - * digit) multiplications are performed, a0b0, a1b1 and - * (a1+b1)(a0+b0) - * - * Note that a multiplication of half the digits requires - * 1/4th the number of single precision multiplications so in - * total after one call 25% of the single precision multiplications - * are saved. Note also that the call to mp_mul can end up back - * in this function if the a0, a1, b0, or b1 are above the threshold. - * This is known as divide-and-conquer and leads to the famous - * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than - * the standard O(N**2) that the baseline/comba methods use. - * Generally though the overhead of this method doesn't pay off - * until a certain size (N ~ 80) is reached. - */ -int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c) -{ - mp_int x0, x1, y0, y1, t1, x0y0, x1y1; - int B, err; - - /* default the return code to an error */ - err = MP_MEM; - - /* min # of digits */ - B = MIN(a->used, b->used); - - /* now divide in two */ - B = B >> 1; - - /* init copy all the temps */ - if (mp_init_size(&x0, B) != MP_OKAY) - goto LBL_ERR; - if (mp_init_size(&x1, a->used - B) != MP_OKAY) - goto X0; - if (mp_init_size(&y0, B) != MP_OKAY) - goto X1; - if (mp_init_size(&y1, b->used - B) != MP_OKAY) - goto Y0; - - /* init temps */ - if (mp_init_size(&t1, B * 2) != MP_OKAY) - goto Y1; - if (mp_init_size(&x0y0, B * 2) != MP_OKAY) - goto T1; - if (mp_init_size(&x1y1, B * 2) != MP_OKAY) - goto X0Y0; - - /* now shift the digits */ - x0.used = y0.used = B; - x1.used = a->used - B; - y1.used = b->used - B; - - { - int x; - mp_digit *tmpa, *tmpb, *tmpx, *tmpy; - - /* we copy the digits directly instead of using higher level functions - * since we also need to shift the digits - */ - tmpa = a->dp; - tmpb = b->dp; - - tmpx = x0.dp; - tmpy = y0.dp; - for (x = 0; x < B; x++) { - *tmpx++ = *tmpa++; - *tmpy++ = *tmpb++; - } - - tmpx = x1.dp; - for (x = B; x < a->used; x++) { - *tmpx++ = *tmpa++; - } - - tmpy = y1.dp; - for (x = B; x < b->used; x++) { - *tmpy++ = *tmpb++; - } - } - - /* only need to clamp the lower words since by definition the - * upper words x1/y1 must have a known number of digits - */ - mp_clamp(&x0); - mp_clamp(&y0); - - /* now calc the products x0y0 and x1y1 */ - /* after this x0 is no longer required, free temp [x0==t2]! */ - if (mp_mul(&x0, &y0, &x0y0) != MP_OKAY) - goto X1Y1; /* x0y0 = x0*y0 */ - if (mp_mul(&x1, &y1, &x1y1) != MP_OKAY) - goto X1Y1; /* x1y1 = x1*y1 */ - - /* now calc x1+x0 and y1+y0 */ - if (s_mp_add(&x1, &x0, &t1) != MP_OKAY) - goto X1Y1; /* t1 = x1 - x0 */ - if (s_mp_add(&y1, &y0, &x0) != MP_OKAY) - goto X1Y1; /* t2 = y1 - y0 */ - if (mp_mul(&t1, &x0, &t1) != MP_OKAY) - goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */ - - /* add x0y0 */ - if (mp_add(&x0y0, &x1y1, &x0) != MP_OKAY) - goto X1Y1; /* t2 = x0y0 + x1y1 */ - if (s_mp_sub(&t1, &x0, &t1) != MP_OKAY) - goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */ - - /* shift by B */ - if (mp_lshd(&t1, B) != MP_OKAY) - goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */ - if (mp_lshd(&x1y1, B * 2) != MP_OKAY) - goto X1Y1; /* x1y1 = x1y1 << 2*B */ - - if (mp_add(&x0y0, &t1, &t1) != MP_OKAY) - goto X1Y1; /* t1 = x0y0 + t1 */ - if (mp_add(&t1, &x1y1, c) != MP_OKAY) - goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */ - - /* Algorithm succeeded set the return code to MP_OKAY */ - err = MP_OKAY; - -X1Y1: - mp_clear(&x1y1); -X0Y0: - mp_clear(&x0y0); -T1: - mp_clear(&t1); -Y1: - mp_clear(&y1); -Y0: - mp_clear(&y0); -X1: - mp_clear(&x1); -X0: - mp_clear(&x0); -LBL_ERR: - return err; -} -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_karatsuba_sqr.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,124 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_MP_KARATSUBA_SQR_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* Karatsuba squaring, computes b = a*a using three - * half size squarings - * - * See comments of karatsuba_mul for details. It - * is essentially the same algorithm but merely - * tuned to perform recursive squarings. - */ -int mp_karatsuba_sqr(const mp_int *a, mp_int *b) -{ - mp_int x0, x1, t1, t2, x0x0, x1x1; - int B, err; - - err = MP_MEM; - - /* min # of digits */ - B = a->used; - - /* now divide in two */ - B = B >> 1; - - /* init copy all the temps */ - if (mp_init_size(&x0, B) != MP_OKAY) - goto LBL_ERR; - if (mp_init_size(&x1, a->used - B) != MP_OKAY) - goto X0; - - /* init temps */ - if (mp_init_size(&t1, a->used * 2) != MP_OKAY) - goto X1; - if (mp_init_size(&t2, a->used * 2) != MP_OKAY) - goto T1; - if (mp_init_size(&x0x0, B * 2) != MP_OKAY) - goto T2; - if (mp_init_size(&x1x1, (a->used - B) * 2) != MP_OKAY) - goto X0X0; - - { - int x; - mp_digit *dst, *src; - - src = a->dp; - - /* now shift the digits */ - dst = x0.dp; - for (x = 0; x < B; x++) { - *dst++ = *src++; - } - - dst = x1.dp; - for (x = B; x < a->used; x++) { - *dst++ = *src++; - } - } - - x0.used = B; - x1.used = a->used - B; - - mp_clamp(&x0); - - /* now calc the products x0*x0 and x1*x1 */ - if (mp_sqr(&x0, &x0x0) != MP_OKAY) - goto X1X1; /* x0x0 = x0*x0 */ - if (mp_sqr(&x1, &x1x1) != MP_OKAY) - goto X1X1; /* x1x1 = x1*x1 */ - - /* now calc (x1+x0)**2 */ - if (s_mp_add(&x1, &x0, &t1) != MP_OKAY) - goto X1X1; /* t1 = x1 - x0 */ - if (mp_sqr(&t1, &t1) != MP_OKAY) - goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */ - - /* add x0y0 */ - if (s_mp_add(&x0x0, &x1x1, &t2) != MP_OKAY) - goto X1X1; /* t2 = x0x0 + x1x1 */ - if (s_mp_sub(&t1, &t2, &t1) != MP_OKAY) - goto X1X1; /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */ - - /* shift by B */ - if (mp_lshd(&t1, B) != MP_OKAY) - goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */ - if (mp_lshd(&x1x1, B * 2) != MP_OKAY) - goto X1X1; /* x1x1 = x1x1 << 2*B */ - - if (mp_add(&x0x0, &t1, &t1) != MP_OKAY) - goto X1X1; /* t1 = x0x0 + t1 */ - if (mp_add(&t1, &x1x1, b) != MP_OKAY) - goto X1X1; /* t1 = x0x0 + t1 + x1x1 */ - - err = MP_OKAY; - -X1X1: - mp_clear(&x1x1); -X0X0: - mp_clear(&x0x0); -T2: - mp_clear(&t2); -T1: - mp_clear(&t1); -X1: - mp_clear(&x1); -X0: - mp_clear(&x0); -LBL_ERR: - return err; -} -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_kronecker.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_kronecker.c Tue May 26 17:36:47 2020 +0200 @@ -1,17 +1,8 @@ #include "tommath_private.h" #ifdef BN_MP_KRONECKER_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* Kronecker symbol (a|p) @@ -26,43 +17,41 @@ publisher={Springer Science \& Business Media} } */ -int mp_kronecker(const mp_int *a, const mp_int *p, int *c) +mp_err mp_kronecker(const mp_int *a, const mp_int *p, int *c) { mp_int a1, p1, r; - - int e = MP_OKAY; + mp_err err; int v, k; static const int table[8] = {0, 1, 0, -1, 0, -1, 0, 1}; - if (mp_iszero(p) != MP_NO) { + if (MP_IS_ZERO(p)) { if ((a->used == 1) && (a->dp[0] == 1u)) { *c = 1; - return e; } else { *c = 0; - return e; } + return MP_OKAY; } - if ((mp_iseven(a) != MP_NO) && (mp_iseven(p) != MP_NO)) { + if (MP_IS_EVEN(a) && MP_IS_EVEN(p)) { *c = 0; - return e; + return MP_OKAY; } - if ((e = mp_init_copy(&a1, a)) != MP_OKAY) { - return e; + if ((err = mp_init_copy(&a1, a)) != MP_OKAY) { + return err; } - if ((e = mp_init_copy(&p1, p)) != MP_OKAY) { + if ((err = mp_init_copy(&p1, p)) != MP_OKAY) { goto LBL_KRON_0; } v = mp_cnt_lsb(&p1); - if ((e = mp_div_2d(&p1, v, &p1, NULL)) != MP_OKAY) { + if ((err = mp_div_2d(&p1, v, &p1, NULL)) != MP_OKAY) { goto LBL_KRON_1; } - if ((v & 0x1) == 0) { + if ((v & 1) == 0) { k = 1; } else { k = table[a->dp[0] & 7u]; @@ -75,12 +64,12 @@ } } - if ((e = mp_init(&r)) != MP_OKAY) { + if ((err = mp_init(&r)) != MP_OKAY) { goto LBL_KRON_1; } for (;;) { - if (mp_iszero(&a1) != MP_NO) { + if (MP_IS_ZERO(&a1)) { if (mp_cmp_d(&p1, 1uL) == MP_EQ) { *c = k; goto LBL_KRON; @@ -91,11 +80,11 @@ } v = mp_cnt_lsb(&a1); - if ((e = mp_div_2d(&a1, v, &a1, NULL)) != MP_OKAY) { + if ((err = mp_div_2d(&a1, v, &a1, NULL)) != MP_OKAY) { goto LBL_KRON; } - if ((v & 0x1) == 1) { + if ((v & 1) == 1) { k = k * table[p1.dp[0] & 7u]; } @@ -115,14 +104,14 @@ } } - if ((e = mp_copy(&a1, &r)) != MP_OKAY) { + if ((err = mp_copy(&a1, &r)) != MP_OKAY) { goto LBL_KRON; } r.sign = MP_ZPOS; - if ((e = mp_mod(&p1, &r, &a1)) != MP_OKAY) { + if ((err = mp_mod(&p1, &r, &a1)) != MP_OKAY) { goto LBL_KRON; } - if ((e = mp_copy(&r, &p1)) != MP_OKAY) { + if ((err = mp_copy(&r, &p1)) != MP_OKAY) { goto LBL_KRON; } } @@ -134,11 +123,7 @@ LBL_KRON_0: mp_clear(&a1); - return e; + return err; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_lcm.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_lcm.c Tue May 26 17:36:47 2020 +0200 @@ -1,46 +1,37 @@ #include "tommath_private.h" #ifdef BN_MP_LCM_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* computes least common multiple as |a*b|/(a, b) */ -int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c) +mp_err mp_lcm(const mp_int *a, const mp_int *b, mp_int *c) { - int res; + mp_err err; mp_int t1, t2; - if ((res = mp_init_multi(&t1, &t2, NULL)) != MP_OKAY) { - return res; + if ((err = mp_init_multi(&t1, &t2, NULL)) != MP_OKAY) { + return err; } /* t1 = get the GCD of the two inputs */ - if ((res = mp_gcd(a, b, &t1)) != MP_OKAY) { + if ((err = mp_gcd(a, b, &t1)) != MP_OKAY) { goto LBL_T; } /* divide the smallest by the GCD */ if (mp_cmp_mag(a, b) == MP_LT) { /* store quotient in t2 such that t2 * b is the LCM */ - if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) { + if ((err = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) { goto LBL_T; } - res = mp_mul(b, &t2, c); + err = mp_mul(b, &t2, c); } else { /* store quotient in t2 such that t2 * a is the LCM */ - if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) { + if ((err = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) { goto LBL_T; } - res = mp_mul(a, &t2, c); + err = mp_mul(a, &t2, c); } /* fix the sign to positive */ @@ -48,10 +39,6 @@ LBL_T: mp_clear_multi(&t1, &t2, NULL); - return res; + return err; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_log_u32.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,180 @@ +#include "tommath_private.h" +#ifdef BN_MP_LOG_U32_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +/* Compute log_{base}(a) */ +static mp_word s_pow(mp_word base, mp_word exponent) +{ + mp_word result = 1uLL; + while (exponent != 0u) { + if ((exponent & 1u) == 1u) { + result *= base; + } + exponent >>= 1; + base *= base; + } + + return result; +} + +static mp_digit s_digit_ilogb(mp_digit base, mp_digit n) +{ + mp_word bracket_low = 1uLL, bracket_mid, bracket_high, N; + mp_digit ret, high = 1uL, low = 0uL, mid; + + if (n < base) { + return 0uL; + } + if (n == base) { + return 1uL; + } + + bracket_high = (mp_word) base ; + N = (mp_word) n; + + while (bracket_high < N) { + low = high; + bracket_low = bracket_high; + high <<= 1; + bracket_high *= bracket_high; + } + + while (((mp_digit)(high - low)) > 1uL) { + mid = (low + high) >> 1; + bracket_mid = bracket_low * s_pow(base, (mp_word)(mid - low)); + + if (N < bracket_mid) { + high = mid ; + bracket_high = bracket_mid ; + } + if (N > bracket_mid) { + low = mid ; + bracket_low = bracket_mid ; + } + if (N == bracket_mid) { + return (mp_digit) mid; + } + } + + if (bracket_high == N) { + ret = high; + } else { + ret = low; + } + + return ret; +} + +/* TODO: output could be "int" because the output of mp_radix_size is int, too, + as is the output of mp_bitcount. + With the same problem: max size is INT_MAX * MP_DIGIT not INT_MAX only! +*/ +mp_err mp_log_u32(const mp_int *a, uint32_t base, uint32_t *c) +{ + mp_err err; + mp_ord cmp; + uint32_t high, low, mid; + mp_int bracket_low, bracket_high, bracket_mid, t, bi_base; + + err = MP_OKAY; + + if (a->sign == MP_NEG) { + return MP_VAL; + } + + if (MP_IS_ZERO(a)) { + return MP_VAL; + } + + if (base < 2u) { + return MP_VAL; + } + + /* A small shortcut for bases that are powers of two. */ + if ((base & (base - 1u)) == 0u) { + int y, bit_count; + for (y=0; (y < 7) && ((base & 1u) == 0u); y++) { + base >>= 1; + } + bit_count = mp_count_bits(a) - 1; + *c = (uint32_t)(bit_count/y); + return MP_OKAY; + } + + if (a->used == 1) { + *c = (uint32_t)s_digit_ilogb(base, a->dp[0]); + return err; + } + + cmp = mp_cmp_d(a, base); + if ((cmp == MP_LT) || (cmp == MP_EQ)) { + *c = cmp == MP_EQ; + return err; + } + + if ((err = + mp_init_multi(&bracket_low, &bracket_high, + &bracket_mid, &t, &bi_base, NULL)) != MP_OKAY) { + return err; + } + + low = 0u; + mp_set(&bracket_low, 1uL); + high = 1u; + + mp_set(&bracket_high, base); + + /* + A kind of Giant-step/baby-step algorithm. + Idea shamelessly stolen from https://programmingpraxis.com/2010/05/07/integer-logarithms/2/ + The effect is asymptotic, hence needs benchmarks to test if the Giant-step should be skipped + for small n. + */ + while (mp_cmp(&bracket_high, a) == MP_LT) { + low = high; + if ((err = mp_copy(&bracket_high, &bracket_low)) != MP_OKAY) { + goto LBL_ERR; + } + high <<= 1; + if ((err = mp_sqr(&bracket_high, &bracket_high)) != MP_OKAY) { + goto LBL_ERR; + } + } + mp_set(&bi_base, base); + + while ((high - low) > 1u) { + mid = (high + low) >> 1; + + if ((err = mp_expt_u32(&bi_base, (uint32_t)(mid - low), &t)) != MP_OKAY) { + goto LBL_ERR; + } + if ((err = mp_mul(&bracket_low, &t, &bracket_mid)) != MP_OKAY) { + goto LBL_ERR; + } + cmp = mp_cmp(a, &bracket_mid); + if (cmp == MP_LT) { + high = mid; + mp_exch(&bracket_mid, &bracket_high); + } + if (cmp == MP_GT) { + low = mid; + mp_exch(&bracket_mid, &bracket_low); + } + if (cmp == MP_EQ) { + *c = mid; + goto LBL_END; + } + } + + *c = (mp_cmp(&bracket_high, a) == MP_EQ) ? high : low; + +LBL_END: +LBL_ERR: + mp_clear_multi(&bracket_low, &bracket_high, &bracket_mid, + &t, &bi_base, NULL); + return err; +} + + +#endif
--- a/libtommath/bn_mp_lshd.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_lshd.c Tue May 26 17:36:47 2020 +0200 @@ -1,68 +1,51 @@ #include "tommath_private.h" #ifdef BN_MP_LSHD_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* shift left a certain amount of digits */ -int mp_lshd(mp_int *a, int b) +mp_err mp_lshd(mp_int *a, int b) { - int x, res; + int x; + mp_err err; + mp_digit *top, *bottom; /* if its less than zero return */ if (b <= 0) { return MP_OKAY; } /* no need to shift 0 around */ - if (mp_iszero(a) == MP_YES) { + if (MP_IS_ZERO(a)) { return MP_OKAY; } /* grow to fit the new digits */ if (a->alloc < (a->used + b)) { - if ((res = mp_grow(a, a->used + b)) != MP_OKAY) { - return res; + if ((err = mp_grow(a, a->used + b)) != MP_OKAY) { + return err; } } - { - mp_digit *top, *bottom; - - /* increment the used by the shift amount then copy upwards */ - a->used += b; + /* increment the used by the shift amount then copy upwards */ + a->used += b; - /* top */ - top = a->dp + a->used - 1; + /* top */ + top = a->dp + a->used - 1; - /* base */ - bottom = (a->dp + a->used - 1) - b; + /* base */ + bottom = (a->dp + a->used - 1) - b; - /* much like mp_rshd this is implemented using a sliding window - * except the window goes the otherway around. Copying from - * the bottom to the top. see bn_mp_rshd.c for more info. - */ - for (x = a->used - 1; x >= b; x--) { - *top-- = *bottom--; - } + /* much like mp_rshd this is implemented using a sliding window + * except the window goes the otherway around. Copying from + * the bottom to the top. see bn_mp_rshd.c for more info. + */ + for (x = a->used - 1; x >= b; x--) { + *top-- = *bottom--; + } - /* zero the lower digits */ - top = a->dp; - for (x = 0; x < b; x++) { - *top++ = 0; - } - } + /* zero the lower digits */ + MP_ZERO_DIGITS(a->dp, b); + return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_mod.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_mod.c Tue May 26 17:36:47 2020 +0200 @@ -1,44 +1,31 @@ #include "tommath_private.h" #ifdef BN_MP_MOD_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */ -int mp_mod(const mp_int *a, const mp_int *b, mp_int *c) +mp_err mp_mod(const mp_int *a, const mp_int *b, mp_int *c) { mp_int t; - int res; + mp_err err; - if ((res = mp_init_size(&t, b->used)) != MP_OKAY) { - return res; + if ((err = mp_init_size(&t, b->used)) != MP_OKAY) { + return err; } - if ((res = mp_div(a, b, NULL, &t)) != MP_OKAY) { - mp_clear(&t); - return res; + if ((err = mp_div(a, b, NULL, &t)) != MP_OKAY) { + goto LBL_ERR; } - if ((mp_iszero(&t) != MP_NO) || (t.sign == b->sign)) { - res = MP_OKAY; + if (MP_IS_ZERO(&t) || (t.sign == b->sign)) { + err = MP_OKAY; mp_exch(&t, c); } else { - res = mp_add(b, &t, c); + err = mp_add(b, &t, c); } +LBL_ERR: mp_clear(&t); - return res; + return err; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_mod_2d.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_mod_2d.c Tue May 26 17:36:47 2020 +0200 @@ -1,21 +1,13 @@ #include "tommath_private.h" #ifdef BN_MP_MOD_2D_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* calc a value mod 2**b */ -int mp_mod_2d(const mp_int *a, int b, mp_int *c) +mp_err mp_mod_2d(const mp_int *a, int b, mp_int *c) { - int x, res; + int x; + mp_err err; /* if b is <= 0 then zero the int */ if (b <= 0) { @@ -24,28 +16,23 @@ } /* if the modulus is larger than the value than return */ - if (b >= (a->used * DIGIT_BIT)) { - res = mp_copy(a, c); - return res; + if (b >= (a->used * MP_DIGIT_BIT)) { + return mp_copy(a, c); } /* copy */ - if ((res = mp_copy(a, c)) != MP_OKAY) { - return res; + if ((err = mp_copy(a, c)) != MP_OKAY) { + return err; } /* zero digits above the last digit of the modulus */ - for (x = (b / DIGIT_BIT) + (((b % DIGIT_BIT) == 0) ? 0 : 1); x < c->used; x++) { - c->dp[x] = 0; - } + x = (b / MP_DIGIT_BIT) + (((b % MP_DIGIT_BIT) == 0) ? 0 : 1); + MP_ZERO_DIGITS(c->dp + x, c->used - x); + /* clear the digit that is not completely outside/inside the modulus */ - c->dp[b / DIGIT_BIT] &= - ((mp_digit)1 << (mp_digit)(b % DIGIT_BIT)) - (mp_digit)1; + c->dp[b / MP_DIGIT_BIT] &= + ((mp_digit)1 << (mp_digit)(b % MP_DIGIT_BIT)) - (mp_digit)1; mp_clamp(c); return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_mod_d.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_mod_d.c Tue May 26 17:36:47 2020 +0200 @@ -1,23 +1,10 @@ #include "tommath_private.h" #ifdef BN_MP_MOD_D_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ -int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c) +mp_err mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c) { return mp_div_d(a, b, NULL, c); } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_montgomery_calc_normalization.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_montgomery_calc_normalization.c Tue May 26 17:36:47 2020 +0200 @@ -1,16 +1,7 @@ #include "tommath_private.h" #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* * shifts with subtractions when the result is greater than b. @@ -18,16 +9,17 @@ * The method is slightly modified to shift B unconditionally upto just under * the leading bit of b. This saves alot of multiple precision shifting. */ -int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b) +mp_err mp_montgomery_calc_normalization(mp_int *a, const mp_int *b) { - int x, bits, res; + int x, bits; + mp_err err; /* how many bits of last digit does b use */ - bits = mp_count_bits(b) % DIGIT_BIT; + bits = mp_count_bits(b) % MP_DIGIT_BIT; if (b->used > 1) { - if ((res = mp_2expt(a, ((b->used - 1) * DIGIT_BIT) + bits - 1)) != MP_OKAY) { - return res; + if ((err = mp_2expt(a, ((b->used - 1) * MP_DIGIT_BIT) + bits - 1)) != MP_OKAY) { + return err; } } else { mp_set(a, 1uL); @@ -36,13 +28,13 @@ /* now compute C = A * B mod b */ - for (x = bits - 1; x < (int)DIGIT_BIT; x++) { - if ((res = mp_mul_2(a, a)) != MP_OKAY) { - return res; + for (x = bits - 1; x < (int)MP_DIGIT_BIT; x++) { + if ((err = mp_mul_2(a, a)) != MP_OKAY) { + return err; } if (mp_cmp_mag(a, b) != MP_LT) { - if ((res = s_mp_sub(a, b, a)) != MP_OKAY) { - return res; + if ((err = s_mp_sub(a, b, a)) != MP_OKAY) { + return err; } } } @@ -50,7 +42,3 @@ return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_montgomery_reduce.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_montgomery_reduce.c Tue May 26 17:36:47 2020 +0200 @@ -1,21 +1,13 @@ #include "tommath_private.h" #ifdef BN_MP_MONTGOMERY_REDUCE_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* computes xR**-1 == x (mod N) via Montgomery Reduction */ -int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho) +mp_err mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho) { - int ix, res, digs; + int ix, digs; + mp_err err; mp_digit mu; /* can the fast reduction [comba] method be used? @@ -25,17 +17,16 @@ * are fixed up in the inner loop. */ digs = (n->used * 2) + 1; - if ((digs < (int)MP_WARRAY) && - (x->used <= (int)MP_WARRAY) && - (n->used < - (int)(1u << (((size_t)CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)DIGIT_BIT))))) { - return fast_mp_montgomery_reduce(x, n, rho); + if ((digs < MP_WARRAY) && + (x->used <= MP_WARRAY) && + (n->used < MP_MAXFAST)) { + return s_mp_montgomery_reduce_fast(x, n, rho); } /* grow the input as required */ if (x->alloc < digs) { - if ((res = mp_grow(x, digs)) != MP_OKAY) { - return res; + if ((err = mp_grow(x, digs)) != MP_OKAY) { + return err; } } x->used = digs; @@ -73,7 +64,7 @@ (mp_word)u + (mp_word)*tmpx; /* get carry */ - u = (mp_digit)(r >> (mp_word)DIGIT_BIT); + u = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT); /* fix digit */ *tmpx++ = (mp_digit)(r & (mp_word)MP_MASK); @@ -84,7 +75,7 @@ /* propagate carries upwards as required*/ while (u != 0u) { *tmpx += u; - u = *tmpx >> DIGIT_BIT; + u = *tmpx >> MP_DIGIT_BIT; *tmpx++ &= MP_MASK; } } @@ -109,7 +100,3 @@ return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_montgomery_setup.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_montgomery_setup.c Tue May 26 17:36:47 2020 +0200 @@ -1,19 +1,10 @@ #include "tommath_private.h" #ifdef BN_MP_MONTGOMERY_SETUP_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* setups the montgomery reduction stuff */ -int mp_montgomery_setup(const mp_int *n, mp_digit *rho) +mp_err mp_montgomery_setup(const mp_int *n, mp_digit *rho) { mp_digit x, b; @@ -44,12 +35,8 @@ #endif /* rho = -1/m mod b */ - *rho = (mp_digit)(((mp_word)1 << (mp_word)DIGIT_BIT) - x) & MP_MASK; + *rho = (mp_digit)(((mp_word)1 << (mp_word)MP_DIGIT_BIT) - x) & MP_MASK; return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_mul.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_mul.c Tue May 26 17:36:47 2020 +0200 @@ -1,64 +1,52 @@ #include "tommath_private.h" #ifdef BN_MP_MUL_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* high level multiplication (handles sign) */ -int mp_mul(const mp_int *a, const mp_int *b, mp_int *c) +mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int *c) { - int res, neg; - neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; + mp_err err; + int min_len = MP_MIN(a->used, b->used), + max_len = MP_MAX(a->used, b->used), + digs = a->used + b->used + 1; + mp_sign neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; - /* use Toom-Cook? */ -#ifdef BN_MP_TOOM_MUL_C - if (MIN(a->used, b->used) >= TOOM_MUL_CUTOFF) { - res = mp_toom_mul(a, b, c); - } else -#endif -#ifdef BN_MP_KARATSUBA_MUL_C - /* use Karatsuba? */ - if (MIN(a->used, b->used) >= KARATSUBA_MUL_CUTOFF) { - res = mp_karatsuba_mul(a, b, c); - } else -#endif - { - /* can we use the fast multiplier? - * - * The fast multiplier can be used if the output will - * have less than MP_WARRAY digits and the number of - * digits won't affect carry propagation - */ - int digs = a->used + b->used + 1; - -#ifdef BN_FAST_S_MP_MUL_DIGS_C - if ((digs < (int)MP_WARRAY) && - (MIN(a->used, b->used) <= - (int)(1u << (((size_t)CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)DIGIT_BIT))))) { - res = fast_s_mp_mul_digs(a, b, c, digs); - } else -#endif - { -#ifdef BN_S_MP_MUL_DIGS_C - res = s_mp_mul(a, b, c); /* uses s_mp_mul_digs */ -#else - res = MP_VAL; -#endif - } - } + if (MP_HAS(S_MP_BALANCE_MUL) && + /* Check sizes. The smaller one needs to be larger than the Karatsuba cut-off. + * The bigger one needs to be at least about one MP_KARATSUBA_MUL_CUTOFF bigger + * to make some sense, but it depends on architecture, OS, position of the + * stars... so YMMV. + * Using it to cut the input into slices small enough for fast_s_mp_mul_digs + * was actually slower on the author's machine, but YMMV. + */ + (min_len >= MP_KARATSUBA_MUL_CUTOFF) && + ((max_len / 2) >= MP_KARATSUBA_MUL_CUTOFF) && + /* Not much effect was observed below a ratio of 1:2, but again: YMMV. */ + (max_len >= (2 * min_len))) { + err = s_mp_balance_mul(a,b,c); + } else if (MP_HAS(S_MP_TOOM_MUL) && + (min_len >= MP_TOOM_MUL_CUTOFF)) { + err = s_mp_toom_mul(a, b, c); + } else if (MP_HAS(S_MP_KARATSUBA_MUL) && + (min_len >= MP_KARATSUBA_MUL_CUTOFF)) { + err = s_mp_karatsuba_mul(a, b, c); + } else if (MP_HAS(S_MP_MUL_DIGS_FAST) && + /* can we use the fast multiplier? + * + * The fast multiplier can be used if the output will + * have less than MP_WARRAY digits and the number of + * digits won't affect carry propagation + */ + (digs < MP_WARRAY) && + (min_len <= MP_MAXFAST)) { + err = s_mp_mul_digs_fast(a, b, c, digs); + } else if (MP_HAS(S_MP_MUL_DIGS)) { + err = s_mp_mul_digs(a, b, c, digs); + } else { + err = MP_VAL; + } c->sign = (c->used > 0) ? neg : MP_ZPOS; - return res; + return err; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_mul_2.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_mul_2.c Tue May 26 17:36:47 2020 +0200 @@ -1,26 +1,18 @@ #include "tommath_private.h" #ifdef BN_MP_MUL_2_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* b = a*2 */ -int mp_mul_2(const mp_int *a, mp_int *b) +mp_err mp_mul_2(const mp_int *a, mp_int *b) { - int x, res, oldused; + int x, oldused; + mp_err err; /* grow to accomodate result */ if (b->alloc < (a->used + 1)) { - if ((res = mp_grow(b, a->used + 1)) != MP_OKAY) { - return res; + if ((err = mp_grow(b, a->used + 1)) != MP_OKAY) { + return err; } } @@ -43,7 +35,7 @@ /* get what will be the *next* carry bit from the * MSB of the current digit */ - rr = *tmpa >> (mp_digit)(DIGIT_BIT - 1); + rr = *tmpa >> (mp_digit)(MP_DIGIT_BIT - 1); /* now shift up this digit, add in the carry [from the previous] */ *tmpb++ = ((*tmpa++ << 1uL) | r) & MP_MASK; @@ -64,16 +56,9 @@ /* now zero any excess digits on the destination * that we didn't write to */ - tmpb = b->dp + b->used; - for (x = b->used; x < oldused; x++) { - *tmpb++ = 0; - } + MP_ZERO_DIGITS(b->dp + b->used, oldused - b->used); } b->sign = a->sign; return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_mul_2d.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_mul_2d.c Tue May 26 17:36:47 2020 +0200 @@ -1,45 +1,36 @@ #include "tommath_private.h" #ifdef BN_MP_MUL_2D_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* shift left by a certain bit count */ -int mp_mul_2d(const mp_int *a, int b, mp_int *c) +mp_err mp_mul_2d(const mp_int *a, int b, mp_int *c) { mp_digit d; - int res; + mp_err err; /* copy */ if (a != c) { - if ((res = mp_copy(a, c)) != MP_OKAY) { - return res; + if ((err = mp_copy(a, c)) != MP_OKAY) { + return err; } } - if (c->alloc < (c->used + (b / DIGIT_BIT) + 1)) { - if ((res = mp_grow(c, c->used + (b / DIGIT_BIT) + 1)) != MP_OKAY) { - return res; + if (c->alloc < (c->used + (b / MP_DIGIT_BIT) + 1)) { + if ((err = mp_grow(c, c->used + (b / MP_DIGIT_BIT) + 1)) != MP_OKAY) { + return err; } } /* shift by as many digits in the bit count */ - if (b >= DIGIT_BIT) { - if ((res = mp_lshd(c, b / DIGIT_BIT)) != MP_OKAY) { - return res; + if (b >= MP_DIGIT_BIT) { + if ((err = mp_lshd(c, b / MP_DIGIT_BIT)) != MP_OKAY) { + return err; } } - /* shift any bit count < DIGIT_BIT */ - d = (mp_digit)(b % DIGIT_BIT); + /* shift any bit count < MP_DIGIT_BIT */ + d = (mp_digit)(b % MP_DIGIT_BIT); if (d != 0u) { mp_digit *tmpc, shift, mask, r, rr; int x; @@ -48,7 +39,7 @@ mask = ((mp_digit)1 << d) - (mp_digit)1; /* shift for msbs */ - shift = (mp_digit)DIGIT_BIT - d; + shift = (mp_digit)MP_DIGIT_BIT - d; /* alias */ tmpc = c->dp; @@ -76,7 +67,3 @@ return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_mul_d.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_mul_d.c Tue May 26 17:36:47 2020 +0200 @@ -1,28 +1,20 @@ #include "tommath_private.h" #ifdef BN_MP_MUL_D_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* multiply by a digit */ -int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c) +mp_err mp_mul_d(const mp_int *a, mp_digit b, mp_int *c) { mp_digit u, *tmpa, *tmpc; mp_word r; - int ix, res, olduse; + mp_err err; + int ix, olduse; /* make sure c is big enough to hold a*b */ if (c->alloc < (a->used + 1)) { - if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { - return res; + if ((err = mp_grow(c, a->used + 1)) != MP_OKAY) { + return err; } } @@ -50,7 +42,7 @@ *tmpc++ = (mp_digit)(r & (mp_word)MP_MASK); /* send carry into next iteration */ - u = (mp_digit)(r >> (mp_word)DIGIT_BIT); + u = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT); } /* store final carry [if any] and increment ix offset */ @@ -58,9 +50,7 @@ ++ix; /* now zero digits above the top */ - while (ix++ < olduse) { - *tmpc++ = 0; - } + MP_ZERO_DIGITS(tmpc, olduse - ix); /* set used count */ c->used = a->used + 1; @@ -69,7 +59,3 @@ return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_mulmod.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_mulmod.c Tue May 26 17:36:47 2020 +0200 @@ -1,37 +1,25 @@ #include "tommath_private.h" #ifdef BN_MP_MULMOD_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* d = a * b (mod c) */ -int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) +mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) { - int res; - mp_int t; + mp_err err; + mp_int t; - if ((res = mp_init_size(&t, c->used)) != MP_OKAY) { - return res; + if ((err = mp_init_size(&t, c->used)) != MP_OKAY) { + return err; } - if ((res = mp_mul(a, b, &t)) != MP_OKAY) { - mp_clear(&t); - return res; + if ((err = mp_mul(a, b, &t)) != MP_OKAY) { + goto LBL_ERR; } - res = mp_mod(&t, c, d); + err = mp_mod(&t, c, d); + +LBL_ERR: mp_clear(&t); - return res; + return err; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_n_root.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,27 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_MP_N_ROOT_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* wrapper function for mp_n_root_ex() - * computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a - */ -int mp_n_root(const mp_int *a, mp_digit b, mp_int *c) -{ - return mp_n_root_ex(a, b, c, 0); -} - -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_n_root_ex.c Tue May 26 23:27:26 2020 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,129 +0,0 @@ -#include "tommath_private.h" -#ifdef BN_MP_N_ROOT_EX_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ - -/* find the n'th root of an integer - * - * Result found such that (c)**b <= a and (c+1)**b > a - * - * This algorithm uses Newton's approximation - * x[i+1] = x[i] - f(x[i])/f'(x[i]) - * which will find the root in log(N) time where - * each step involves a fair bit. This is not meant to - * find huge roots [square and cube, etc]. - */ -int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast) -{ - mp_int t1, t2, t3, a_; - int res; - - /* input must be positive if b is even */ - if (((b & 1u) == 0u) && (a->sign == MP_NEG)) { - return MP_VAL; - } - - if ((res = mp_init(&t1)) != MP_OKAY) { - return res; - } - - if ((res = mp_init(&t2)) != MP_OKAY) { - goto LBL_T1; - } - - if ((res = mp_init(&t3)) != MP_OKAY) { - goto LBL_T2; - } - - /* if a is negative fudge the sign but keep track */ - a_ = *a; - a_.sign = MP_ZPOS; - - /* t2 = 2 */ - mp_set(&t2, 2uL); - - do { - /* t1 = t2 */ - if ((res = mp_copy(&t2, &t1)) != MP_OKAY) { - goto LBL_T3; - } - - /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ - - /* t3 = t1**(b-1) */ - if ((res = mp_expt_d_ex(&t1, b - 1u, &t3, fast)) != MP_OKAY) { - goto LBL_T3; - } - - /* numerator */ - /* t2 = t1**b */ - if ((res = mp_mul(&t3, &t1, &t2)) != MP_OKAY) { - goto LBL_T3; - } - - /* t2 = t1**b - a */ - if ((res = mp_sub(&t2, &a_, &t2)) != MP_OKAY) { - goto LBL_T3; - } - - /* denominator */ - /* t3 = t1**(b-1) * b */ - if ((res = mp_mul_d(&t3, b, &t3)) != MP_OKAY) { - goto LBL_T3; - } - - /* t3 = (t1**b - a)/(b * t1**(b-1)) */ - if ((res = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) { - goto LBL_T3; - } - - if ((res = mp_sub(&t1, &t3, &t2)) != MP_OKAY) { - goto LBL_T3; - } - } while (mp_cmp(&t1, &t2) != MP_EQ); - - /* result can be off by a few so check */ - for (;;) { - if ((res = mp_expt_d_ex(&t1, b, &t2, fast)) != MP_OKAY) { - goto LBL_T3; - } - - if (mp_cmp(&t2, &a_) == MP_GT) { - if ((res = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) { - goto LBL_T3; - } - } else { - break; - } - } - - /* set the result */ - mp_exch(&t1, c); - - /* set the sign of the result */ - c->sign = a->sign; - - res = MP_OKAY; - -LBL_T3: - mp_clear(&t3); -LBL_T2: - mp_clear(&t2); -LBL_T1: - mp_clear(&t1); - return res; -} -#endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_neg.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_neg.c Tue May 26 17:36:47 2020 +0200 @@ -1,28 +1,19 @@ #include "tommath_private.h" #ifdef BN_MP_NEG_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* b = -a */ -int mp_neg(const mp_int *a, mp_int *b) +mp_err mp_neg(const mp_int *a, mp_int *b) { - int res; + mp_err err; if (a != b) { - if ((res = mp_copy(a, b)) != MP_OKAY) { - return res; + if ((err = mp_copy(a, b)) != MP_OKAY) { + return err; } } - if (mp_iszero(b) != MP_YES) { + if (!MP_IS_ZERO(b)) { b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS; } else { b->sign = MP_ZPOS; @@ -31,7 +22,3 @@ return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_or.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_or.c Tue May 26 17:36:47 2020 +0200 @@ -1,48 +1,56 @@ #include "tommath_private.h" #ifdef BN_MP_OR_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ -/* OR two ints together */ -int mp_or(const mp_int *a, const mp_int *b, mp_int *c) +/* two complement or */ +mp_err mp_or(const mp_int *a, const mp_int *b, mp_int *c) { - int res, ix, px; - mp_int t; - const mp_int *x; + int used = MP_MAX(a->used, b->used) + 1, i; + mp_err err; + mp_digit ac = 1, bc = 1, cc = 1; + mp_sign csign = ((a->sign == MP_NEG) || (b->sign == MP_NEG)) ? MP_NEG : MP_ZPOS; - if (a->used > b->used) { - if ((res = mp_init_copy(&t, a)) != MP_OKAY) { - return res; + if (c->alloc < used) { + if ((err = mp_grow(c, used)) != MP_OKAY) { + return err; } - px = b->used; - x = b; - } else { - if ((res = mp_init_copy(&t, b)) != MP_OKAY) { - return res; - } - px = a->used; - x = a; } - for (ix = 0; ix < px; ix++) { - t.dp[ix] |= x->dp[ix]; + for (i = 0; i < used; i++) { + mp_digit x, y; + + /* convert to two complement if negative */ + if (a->sign == MP_NEG) { + ac += (i >= a->used) ? MP_MASK : (~a->dp[i] & MP_MASK); + x = ac & MP_MASK; + ac >>= MP_DIGIT_BIT; + } else { + x = (i >= a->used) ? 0uL : a->dp[i]; + } + + /* convert to two complement if negative */ + if (b->sign == MP_NEG) { + bc += (i >= b->used) ? MP_MASK : (~b->dp[i] & MP_MASK); + y = bc & MP_MASK; + bc >>= MP_DIGIT_BIT; + } else { + y = (i >= b->used) ? 0uL : b->dp[i]; + } + + c->dp[i] = x | y; + + /* convert to to sign-magnitude if negative */ + if (csign == MP_NEG) { + cc += ~c->dp[i] & MP_MASK; + c->dp[i] = cc & MP_MASK; + cc >>= MP_DIGIT_BIT; + } } - mp_clamp(&t); - mp_exch(c, &t); - mp_clear(&t); + + c->used = used; + c->sign = csign; + mp_clamp(c); return MP_OKAY; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_pack.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,69 @@ +#include "tommath_private.h" +#ifdef BN_MP_PACK_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +/* based on gmp's mpz_export. + * see http://gmplib.org/manual/Integer-Import-and-Export.html + */ +mp_err mp_pack(void *rop, size_t maxcount, size_t *written, mp_order order, size_t size, + mp_endian endian, size_t nails, const mp_int *op) +{ + mp_err err; + size_t odd_nails, nail_bytes, i, j, count; + unsigned char odd_nail_mask; + + mp_int t; + + count = mp_pack_count(op, nails, size); + + if (count > maxcount) { + return MP_BUF; + } + + if ((err = mp_init_copy(&t, op)) != MP_OKAY) { + return err; + } + + if (endian == MP_NATIVE_ENDIAN) { + MP_GET_ENDIANNESS(endian); + } + + odd_nails = (nails % 8u); + odd_nail_mask = 0xff; + for (i = 0u; i < odd_nails; ++i) { + odd_nail_mask ^= (unsigned char)(1u << (7u - i)); + } + nail_bytes = nails / 8u; + + for (i = 0u; i < count; ++i) { + for (j = 0u; j < size; ++j) { + unsigned char *byte = (unsigned char *)rop + + (((order == MP_LSB_FIRST) ? i : ((count - 1u) - i)) * size) + + ((endian == MP_LITTLE_ENDIAN) ? j : ((size - 1u) - j)); + + if (j >= (size - nail_bytes)) { + *byte = 0; + continue; + } + + *byte = (unsigned char)((j == ((size - nail_bytes) - 1u)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFFuL)); + + if ((err = mp_div_2d(&t, (j == ((size - nail_bytes) - 1u)) ? (int)(8u - odd_nails) : 8, &t, NULL)) != MP_OKAY) { + goto LBL_ERR; + } + + } + } + + if (written != NULL) { + *written = count; + } + err = MP_OKAY; + +LBL_ERR: + mp_clear(&t); + return err; +} + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_pack_count.c Tue May 26 17:36:47 2020 +0200 @@ -0,0 +1,12 @@ +#include "tommath_private.h" +#ifdef BN_MP_PACK_COUNT_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +size_t mp_pack_count(const mp_int *a, size_t nails, size_t size) +{ + size_t bits = (size_t)mp_count_bits(a); + return ((bits / ((size * 8u) - nails)) + (((bits % ((size * 8u) - nails)) != 0u) ? 1u : 0u)); +} + +#endif
--- a/libtommath/bn_mp_prime_fermat.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_prime_fermat.c Tue May 26 17:36:47 2020 +0200 @@ -1,16 +1,7 @@ #include "tommath_private.h" #ifdef BN_MP_PRIME_FERMAT_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* performs one Fermat test. * @@ -20,10 +11,10 @@ * * Sets result to 1 if the congruence holds, or zero otherwise. */ -int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result) +mp_err mp_prime_fermat(const mp_int *a, const mp_int *b, mp_bool *result) { mp_int t; - int err; + mp_err err; /* default to composite */ *result = MP_NO; @@ -54,7 +45,3 @@ return err; } #endif - -/* ref: HEAD -> master, tag: v1.1.0 */ -/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ -/* commit time: 2019-01-28 20:32:32 +0100 */
--- a/libtommath/bn_mp_prime_frobenius_underwood.c Tue May 26 23:27:26 2020 +0800 +++ b/libtommath/bn_mp_prime_frobenius_underwood.c Tue May 26 17:36:47 2020 +0200 @@ -1,22 +1,13 @@ #include "tommath_private.h" #ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * SPDX-License-Identifier: Unlicense - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* * See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details */ -#ifndef LTM_USE_FIPS_ONLY +#ifndef LTM_USE_ONLY_MR #ifdef MP_8BIT /* @@ -32,17 +23,17 @@ #else #define LTM_FROBENIUS_UNDERWOOD_A 32764 #endif -int mp_prime_frobenius_underwood(const mp_int *N, int *result) +mp_err mp_prime_frobenius_underwood(const mp_int *N, mp_bool *result) { mp_int T1z, T2z, Np1z, sz, tz; - int a, ap2, length, i, j, isset; - int e; + int a, ap2, length, i, j; + mp_err err; *result = MP_NO; - if ((e = mp_init_multi(&T1z, &T2z, &Np1z, &sz, &tz, NULL)) != MP_OKAY) { - return e; + if ((err = mp_init_multi(&T1z, &T2z, &Np1z, &sz, &tz, NULL)) != MP_OKAY) { + return err; } for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) { @@ -52,21 +43,13 @@ continue; } /* (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed) */ - if ((e = mp_set_long(&T1z, (unsigned long)a)) != MP_OKAY) { - goto LBL_FU_ERR; - } + mp_set_u32(&T1z, (uint32_t)a); - if ((e = mp_sqr(&T1z, &T1z)) != MP_OKAY) { - goto LBL_FU_ERR; - } + if ((err = mp_sqr(&T1z, &T1z)) != MP_OKAY) goto LBL_FU_ERR; - if ((e = mp_sub_d(&T1z, 4uL, &T1z)) != MP_OKAY) { - goto LBL_FU_ERR; - } + if ((err = mp_sub_d(&T1z, 4uL, &T1z)) != MP_OKAY) goto LBL_FU_ERR; - if ((e = mp_kronecker(&T1z, N, &j)) != MP_OKAY) { - goto LBL_FU_ERR; - } + if ((err = mp_kronecker(&T1z, N, &j)) != MP_OKAY) goto LBL_FU_ERR; if (j == -1) { break; @@ -79,26 +62,18 @@ } /* Tell it a composite and set return value accordingly */ if (a >= LTM_FROBENIUS_UNDERWOOD_A) { - e = MP_ITER; + err = MP_ITER; goto LBL_FU_ERR; } /* Composite if N and (a+4)*(2*a+5) are not coprime */ - if ((e = mp_set_long(&T1z, (unsigned long)((a+4)*((2*a)+5)))) != MP_OKAY) { - goto LBL_FU_ERR; - } + mp_set_u32(&T1z, (uint32_t)((a+4)*((2*a)+5))); - if ((e = mp_gcd(N, &T1z, &T1z)) != MP_OKAY) { - goto LBL_FU_ERR; - } + if ((err = mp_gcd(N, &T1z, &T1z)) != MP_OKAY) goto LBL_FU_ERR; - if (!((T1z.used == 1) && (T1z.dp[0] == 1u))) { - goto LBL_FU_ERR; - } + if (!((T1z.used == 1) && (T1z.dp[0] == 1u))) goto LBL_FU_ERR; ap2 = a + 2; - if ((e = mp_add_d(N, 1uL, &Np1z)) != MP_OKAY) { - goto LBL_FU_ERR; - } + if ((err = mp_add_d(N, 1uL, &Np1z)) != MP_OKAY) goto LBL_FU_ERR; mp_set(&sz, 1uL); mp_set(&tz, 2uL); @@ -110,89 +85,48 @@ * tz = ((tz-sz)*(tz+sz))%N; * sz = temp; */ - if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) { - goto LBL_FU_ERR; - } + if ((err = mp_mul_2(&tz, &T2z)) != MP_OKAY) goto LBL_FU_ERR; /* a = 0 at about 50% of the cases (non-square and odd input) */ if (a != 0) { - if ((e = mp_mul_d(&sz, (mp_digit)a, &T1z)) != MP_OKAY) { - goto LBL_FU_ERR; - } - if ((e = mp_add(&T1z, &T2z, &T2z)) != MP_OKAY) { - goto LBL_FU_ERR; - } + if ((err = mp_mul_d(&sz, (mp_digit)a, &T1z)) != MP_OKAY) goto LBL_FU_ERR; + if ((err = mp_add(&T1z, &T2z, &T2z)) != MP_OKAY) goto LBL_FU_ERR; } - if ((e = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) { - goto LBL_FU_ERR; - } - if ((e = mp_sub(&tz, &sz, &T2z)) != MP_OKAY) { - goto LBL_FU_ERR; - } - if ((e = mp_add(&sz, &tz, &sz)) != MP_OKAY) { - goto LBL_FU_ERR; - } - if ((e = mp_mul(&sz, &T2z, &tz)) != MP_OKAY) { - goto LBL_FU_ERR; - } - if ((e = mp_mod(&tz, N, &tz)) != MP_OKAY) { - goto LBL_FU_ERR; - } - if ((e = mp_mod(&T1z, N, &sz)) != MP_OKAY) { - goto LBL_FU_ERR; - } - if ((isset = mp_get_bit(&Np1z, i)) == MP_VAL) { -