Mercurial > dropbear
changeset 2:86e0b50a9b58 libtommath-orig ltm-0.30-orig
ltm 0.30 orig import
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LICENSE Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,4 @@ +LibTomMath is hereby released into the Public Domain. + +-- Tom St Denis +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_error.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,41 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +static const struct { + int code; + char *msg; +} msgs[] = { + { MP_OKAY, "Successful" }, + { MP_MEM, "Out of heap" }, + { MP_VAL, "Value out of range" } +}; + +/* return a char * string for a given code */ +char *mp_error_to_string(int code) +{ + int x; + + /* scan the lookup table for the given message */ + for (x = 0; x < (int)(sizeof(msgs) / sizeof(msgs[0])); x++) { + if (msgs[x].code == code) { + return msgs[x].msg; + } + } + + /* generic reply for invalid code */ + return "Invalid error code"; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_fast_mp_invmod.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,143 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* computes the modular inverse via binary extended euclidean algorithm, + * that is c = 1/a mod b + * + * Based on mp_invmod except this is optimized for the case where b is + * odd as per HAC Note 14.64 on pp. 610 + */ +int +fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) +{ + mp_int x, y, u, v, B, D; + int res, neg; + + /* 2. [modified] b must be odd */ + if (mp_iseven (b) == 1) { + return MP_VAL; + } + + /* init all our temps */ + if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { + return res; + } + + /* x == modulus, y == value to invert */ + if ((res = mp_copy (b, &x)) != MP_OKAY) { + goto __ERR; + } + + /* we need y = |a| */ + if ((res = mp_abs (a, &y)) != MP_OKAY) { + goto __ERR; + } + + /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ + if ((res = mp_copy (&x, &u)) != MP_OKAY) { + goto __ERR; + } + if ((res = mp_copy (&y, &v)) != MP_OKAY) { + goto __ERR; + } + mp_set (&D, 1); + +top: + /* 4. while u is even do */ + while (mp_iseven (&u) == 1) { + /* 4.1 u = u/2 */ + if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { + goto __ERR; + } + /* 4.2 if B is odd then */ + if (mp_isodd (&B) == 1) { + if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { + goto __ERR; + } + } + /* B = B/2 */ + if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { + goto __ERR; + } + } + + /* 5. while v is even do */ + while (mp_iseven (&v) == 1) { + /* 5.1 v = v/2 */ + if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { + goto __ERR; + } + /* 5.2 if D is odd then */ + if (mp_isodd (&D) == 1) { + /* D = (D-x)/2 */ + if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { + goto __ERR; + } + } + /* D = D/2 */ + if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { + goto __ERR; + } + } + + /* 6. if u >= v then */ + if (mp_cmp (&u, &v) != MP_LT) { + /* u = u - v, B = B - D */ + if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { + goto __ERR; + } + + if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { + goto __ERR; + } + } else { + /* v - v - u, D = D - B */ + if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { + goto __ERR; + } + + if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { + goto __ERR; + } + } + + /* if not zero goto step 4 */ + if (mp_iszero (&u) == 0) { + goto top; + } + + /* now a = C, b = D, gcd == g*v */ + + /* if v != 1 then there is no inverse */ + if (mp_cmp_d (&v, 1) != MP_EQ) { + res = MP_VAL; + goto __ERR; + } + + /* b is now the inverse */ + neg = a->sign; + while (D.sign == MP_NEG) { + if ((res = mp_add (&D, b, &D)) != MP_OKAY) { + goto __ERR; + } + } + mp_exch (&D, c); + c->sign = neg; + res = MP_OKAY; + +__ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL); + return res; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_fast_mp_montgomery_reduce.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,167 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* computes xR**-1 == x (mod N) via Montgomery Reduction + * + * This is an optimized implementation of mp_montgomery_reduce + * which uses the comba method to quickly calculate the columns of the + * reduction. + * + * Based on Algorithm 14.32 on pp.601 of HAC. +*/ +int +fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) +{ + int ix, res, olduse; + mp_word W[MP_WARRAY]; + + /* get old used count */ + olduse = x->used; + + /* grow a as required */ + if (x->alloc < n->used + 1) { + if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) { + return res; + } + } + + /* first we have to get the digits of the input into + * an array of double precision words W[...] + */ + { + register mp_word *_W; + register mp_digit *tmpx; + + /* alias for the W[] array */ + _W = W; + + /* alias for the digits of x*/ + tmpx = x->dp; + + /* copy the digits of a into W[0..a->used-1] */ + for (ix = 0; ix < x->used; ix++) { + *_W++ = *tmpx++; + } + + /* zero the high words of W[a->used..m->used*2] */ + for (; ix < n->used * 2 + 1; ix++) { + *_W++ = 0; + } + } + + /* now we proceed to zero successive digits + * from the least significant upwards + */ + for (ix = 0; ix < n->used; ix++) { + /* mu = ai * m' mod b + * + * We avoid a double precision multiplication (which isn't required) + * by casting the value down to a mp_digit. Note this requires + * that W[ix-1] have the carry cleared (see after the inner loop) + */ + register mp_digit mu; + mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK); + + /* a = a + mu * m * b**i + * + * This is computed in place and on the fly. The multiplication + * by b**i is handled by offseting which columns the results + * are added to. + * + * Note the comba method normally doesn't handle carries in the + * inner loop In this case we fix the carry from the previous + * column since the Montgomery reduction requires digits of the + * result (so far) [see above] to work. This is + * handled by fixing up one carry after the inner loop. The + * carry fixups are done in order so after these loops the + * first m->used words of W[] have the carries fixed + */ + { + register int iy; + register mp_digit *tmpn; + register mp_word *_W; + + /* alias for the digits of the modulus */ + tmpn = n->dp; + + /* Alias for the columns set by an offset of ix */ + _W = W + ix; + + /* inner loop */ + for (iy = 0; iy < n->used; iy++) { + *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++); + } + } + + /* now fix carry for next digit, W[ix+1] */ + W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT); + } + + /* now we have to propagate the carries and + * shift the words downward [all those least + * significant digits we zeroed]. + */ + { + register mp_digit *tmpx; + register mp_word *_W, *_W1; + + /* nox fix rest of carries */ + + /* alias for current word */ + _W1 = W + ix; + + /* alias for next word, where the carry goes */ + _W = W + ++ix; + + for (; ix <= n->used * 2 + 1; ix++) { + *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT); + } + + /* copy out, A = A/b**n + * + * The result is A/b**n but instead of converting from an + * array of mp_word to mp_digit than calling mp_rshd + * we just copy them in the right order + */ + + /* alias for destination word */ + tmpx = x->dp; + + /* alias for shifted double precision result */ + _W = W + n->used; + + for (ix = 0; ix < n->used + 1; ix++) { + *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK)); + } + + /* zero oldused digits, if the input a was larger than + * m->used+1 we'll have to clear the digits + */ + for (; ix < olduse; ix++) { + *tmpx++ = 0; + } + } + + /* set the max used and clamp */ + x->used = n->used + 1; + mp_clamp (x); + + /* if A >= m then A = A - m */ + if (mp_cmp_mag (x, n) != MP_LT) { + return s_mp_sub (x, n, x); + } + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_fast_s_mp_mul_digs.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,130 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* Fast (comba) multiplier + * + * This is the fast column-array [comba] multiplier. It is + * designed to compute the columns of the product first + * then handle the carries afterwards. This has the effect + * of making the nested loops that compute the columns very + * simple and schedulable on super-scalar processors. + * + * This has been modified to produce a variable number of + * digits of output so if say only a half-product is required + * you don't have to compute the upper half (a feature + * required for fast Barrett reduction). + * + * Based on Algorithm 14.12 on pp.595 of HAC. + * + */ +int +fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) +{ + int olduse, res, pa, ix; + mp_word W[MP_WARRAY]; + + /* grow the destination as required */ + if (c->alloc < digs) { + if ((res = mp_grow (c, digs)) != MP_OKAY) { + return res; + } + } + + /* clear temp buf (the columns) */ + memset (W, 0, sizeof (mp_word) * digs); + + /* calculate the columns */ + pa = a->used; + for (ix = 0; ix < pa; ix++) { + /* this multiplier has been modified to allow you to + * control how many digits of output are produced. + * So at most we want to make upto "digs" digits of output. + * + * this adds products to distinct columns (at ix+iy) of W + * note that each step through the loop is not dependent on + * the previous which means the compiler can easily unroll + * the loop without scheduling problems + */ + { + register mp_digit tmpx, *tmpy; + register mp_word *_W; + register int iy, pb; + + /* alias for the the word on the left e.g. A[ix] * A[iy] */ + tmpx = a->dp[ix]; + + /* alias for the right side */ + tmpy = b->dp; + + /* alias for the columns, each step through the loop adds a new + term to each column + */ + _W = W + ix; + + /* the number of digits is limited by their placement. E.g. + we avoid multiplying digits that will end up above the # of + digits of precision requested + */ + pb = MIN (b->used, digs - ix); + + for (iy = 0; iy < pb; iy++) { + *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++); + } + } + + } + + /* setup dest */ + olduse = c->used; + c->used = digs; + + { + register mp_digit *tmpc; + + /* At this point W[] contains the sums of each column. To get the + * correct result we must take the extra bits from each column and + * carry them down + * + * Note that while this adds extra code to the multiplier it + * saves time since the carry propagation is removed from the + * above nested loop.This has the effect of reducing the work + * from N*(N+N*c)==N**2 + c*N**2 to N**2 + N*c where c is the + * cost of the shifting. On very small numbers this is slower + * but on most cryptographic size numbers it is faster. + * + * In this particular implementation we feed the carries from + * behind which means when the loop terminates we still have one + * last digit to copy + */ + tmpc = c->dp; + for (ix = 1; ix < digs; ix++) { + /* forward the carry from the previous temp */ + W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT)); + + /* now extract the previous digit [below the carry] */ + *tmpc++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK)); + } + /* fetch the last digit */ + *tmpc++ = (mp_digit) (W[digs - 1] & ((mp_word) MP_MASK)); + + /* clear unused digits [that existed in the old copy of c] */ + for (; ix < olduse; ix++) { + *tmpc++ = 0; + } + } + mp_clamp (c); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_fast_s_mp_mul_high_digs.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,98 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ + #include <tommath.h> + +/* this is a modified version of fast_s_mp_mul_digs that only produces + * output digits *above* digs. See the comments for fast_s_mp_mul_digs + * to see how it works. + * + * This is used in the Barrett reduction since for one of the multiplications + * only the higher digits were needed. This essentially halves the work. + * + * Based on Algorithm 14.12 on pp.595 of HAC. + */ +int +fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) +{ + int oldused, newused, res, pa, pb, ix; + mp_word W[MP_WARRAY]; + + /* calculate size of product and allocate more space if required */ + newused = a->used + b->used + 1; + if (c->alloc < newused) { + if ((res = mp_grow (c, newused)) != MP_OKAY) { + return res; + } + } + + /* like the other comba method we compute the columns first */ + pa = a->used; + pb = b->used; + memset (W + digs, 0, (pa + pb + 1 - digs) * sizeof (mp_word)); + for (ix = 0; ix < pa; ix++) { + { + register mp_digit tmpx, *tmpy; + register int iy; + register mp_word *_W; + + /* work todo, that is we only calculate digits that are at "digs" or above */ + iy = digs - ix; + + /* copy of word on the left of A[ix] * B[iy] */ + tmpx = a->dp[ix]; + + /* alias for right side */ + tmpy = b->dp + iy; + + /* alias for the columns of output. Offset to be equal to or above the + * smallest digit place requested + */ + _W = W + digs; + + /* skip cases below zero where ix > digs */ + if (iy < 0) { + iy = abs(iy); + tmpy += iy; + _W += iy; + iy = 0; + } + + /* compute column products for digits above the minimum */ + for (; iy < pb; iy++) { + *_W++ += ((mp_word) tmpx) * ((mp_word)*tmpy++); + } + } + } + + /* setup dest */ + oldused = c->used; + c->used = newused; + + /* now convert the array W downto what we need + * + * See comments in bn_fast_s_mp_mul_digs.c + */ + for (ix = digs + 1; ix < newused; ix++) { + W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT)); + c->dp[ix - 1] = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK)); + } + c->dp[newused - 1] = (mp_digit) (W[newused - 1] & ((mp_word) MP_MASK)); + + for (; ix < oldused; ix++) { + c->dp[ix] = 0; + } + mp_clamp (c); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_fast_s_mp_sqr.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,139 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* fast squaring + * + * This is the comba method where the columns of the product + * are computed first then the carries are computed. This + * has the effect of making a very simple inner loop that + * is executed the most + * + * W2 represents the outer products and W the inner. + * + * A further optimizations is made because the inner + * products are of the form "A * B * 2". The *2 part does + * not need to be computed until the end which is good + * because 64-bit shifts are slow! + * + * Based on Algorithm 14.16 on pp.597 of HAC. + * + */ +int fast_s_mp_sqr (mp_int * a, mp_int * b) +{ + int olduse, newused, res, ix, pa; + mp_word W2[MP_WARRAY], W[MP_WARRAY]; + + /* calculate size of product and allocate as required */ + pa = a->used; + newused = pa + pa + 1; + if (b->alloc < newused) { + if ((res = mp_grow (b, newused)) != MP_OKAY) { + return res; + } + } + + /* zero temp buffer (columns) + * Note that there are two buffers. Since squaring requires + * a outer and inner product and the inner product requires + * computing a product and doubling it (a relatively expensive + * op to perform n**2 times if you don't have to) the inner and + * outer products are computed in different buffers. This way + * the inner product can be doubled using n doublings instead of + * n**2 + */ + memset (W, 0, newused * sizeof (mp_word)); + memset (W2, 0, newused * sizeof (mp_word)); + + /* This computes the inner product. To simplify the inner N**2 loop + * the multiplication by two is done afterwards in the N loop. + */ + for (ix = 0; ix < pa; ix++) { + /* compute the outer product + * + * Note that every outer product is computed + * for a particular column only once which means that + * there is no need todo a double precision addition + * into the W2[] array. + */ + W2[ix + ix] = ((mp_word)a->dp[ix]) * ((mp_word)a->dp[ix]); + + { + register mp_digit tmpx, *tmpy; + register mp_word *_W; + register int iy; + + /* copy of left side */ + tmpx = a->dp[ix]; + + /* alias for right side */ + tmpy = a->dp + (ix + 1); + + /* the column to store the result in */ + _W = W + (ix + ix + 1); + + /* inner products */ + for (iy = ix + 1; iy < pa; iy++) { + *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++); + } + } + } + + /* setup dest */ + olduse = b->used; + b->used = newused; + + /* now compute digits + * + * We have to double the inner product sums, add in the + * outer product sums, propagate carries and convert + * to single precision. + */ + { + register mp_digit *tmpb; + + /* double first value, since the inner products are + * half of what they should be + */ + W[0] += W[0] + W2[0]; + + tmpb = b->dp; + for (ix = 1; ix < newused; ix++) { + /* double/add next digit */ + W[ix] += W[ix] + W2[ix]; + + /* propagate carry forwards [from the previous digit] */ + W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT)); + + /* store the current digit now that the carry isn't + * needed + */ + *tmpb++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK)); + } + /* set the last value. Note even if the carry is zero + * this is required since the next step will not zero + * it if b originally had a value at b->dp[2*a.used] + */ + *tmpb++ = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK)); + + /* clear high digits of b if there were any originally */ + for (; ix < olduse; ix++) { + *tmpb++ = 0; + } + } + + mp_clamp (b); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_2expt.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,42 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* computes a = 2**b + * + * Simple algorithm which zeroes the int, grows it then just sets one bit + * as required. + */ +int +mp_2expt (mp_int * a, int b) +{ + int res; + + /* zero a as per default */ + mp_zero (a); + + /* grow a to accomodate the single bit */ + if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) { + return res; + } + + /* set the used count of where the bit will go */ + a->used = b / DIGIT_BIT + 1; + + /* put the single bit in its place */ + a->dp[b / DIGIT_BIT] = 1 << (b % DIGIT_BIT); + + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_abs.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,37 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* b = |a| + * + * Simple function copies the input and fixes the sign to positive + */ +int +mp_abs (mp_int * a, mp_int * b) +{ + int res; + + /* copy a to b */ + if (a != b) { + if ((res = mp_copy (a, b)) != MP_OKAY) { + return res; + } + } + + /* force the sign of b to positive */ + b->sign = MP_ZPOS; + + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_add.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,47 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* high level addition (handles signs) */ +int mp_add (mp_int * a, mp_int * b, mp_int * c) +{ + int sa, sb, res; + + /* get sign of both inputs */ + sa = a->sign; + sb = b->sign; + + /* handle two cases, not four */ + if (sa == sb) { + /* both positive or both negative */ + /* add their magnitudes, copy the sign */ + c->sign = sa; + res = s_mp_add (a, b, c); + } else { + /* one positive, the other negative */ + /* subtract the one with the greater magnitude from */ + /* the one of the lesser magnitude. The result gets */ + /* the sign of the one with the greater magnitude. */ + if (mp_cmp_mag (a, b) == MP_LT) { + c->sign = sb; + res = s_mp_sub (b, a, c); + } else { + c->sign = sa; + res = s_mp_sub (a, b, c); + } + } + return res; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_add_d.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,103 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* single digit addition */ +int +mp_add_d (mp_int * a, mp_digit b, mp_int * c) +{ + int res, ix, oldused; + mp_digit *tmpa, *tmpc, mu; + + /* grow c as required */ + if (c->alloc < a->used + 1) { + if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { + return res; + } + } + + /* if a is negative and |a| >= b, call c = |a| - b */ + if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) { + /* temporarily fix sign of a */ + a->sign = MP_ZPOS; + + /* c = |a| - b */ + res = mp_sub_d(a, b, c); + + /* fix sign */ + a->sign = c->sign = MP_NEG; + + return res; + } + + /* old number of used digits in c */ + oldused = c->used; + + /* sign always positive */ + c->sign = MP_ZPOS; + + /* source alias */ + tmpa = a->dp; + + /* destination alias */ + tmpc = c->dp; + + /* if a is positive */ + if (a->sign == MP_ZPOS) { + /* add digit, after this we're propagating + * the carry. + */ + *tmpc = *tmpa++ + b; + mu = *tmpc >> DIGIT_BIT; + *tmpc++ &= MP_MASK; + + /* now handle rest of the digits */ + for (ix = 1; ix < a->used; ix++) { + *tmpc = *tmpa++ + mu; + mu = *tmpc >> DIGIT_BIT; + *tmpc++ &= MP_MASK; + } + /* set final carry */ + ix++; + *tmpc++ = mu; + + /* setup size */ + c->used = a->used + 1; + } else { + /* a was negative and |a| < b */ + c->used = 1; + + /* the result is a single digit */ + if (a->used == 1) { + *tmpc++ = b - a->dp[0]; + } else { + *tmpc++ = b; + } + + /* setup count so the clearing of oldused + * can fall through correctly + */ + ix = 1; + } + + /* now zero to oldused */ + while (ix++ < oldused) { + *tmpc++ = 0; + } + mp_clamp(c); + + return MP_OKAY; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_addmod.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,35 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* d = a + b (mod c) */ +int +mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) +{ + int res; + mp_int t; + + if ((res = mp_init (&t)) != MP_OKAY) { + return res; + } + + if ((res = mp_add (a, b, &t)) != MP_OKAY) { + mp_clear (&t); + return res; + } + res = mp_mod (&t, c, d); + mp_clear (&t); + return res; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_and.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,51 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* AND two ints together */ +int +mp_and (mp_int * a, mp_int * b, mp_int * c) +{ + int res, ix, px; + mp_int t, *x; + + if (a->used > b->used) { + if ((res = mp_init_copy (&t, a)) != MP_OKAY) { + return res; + } + px = b->used; + x = b; + } else { + if ((res = mp_init_copy (&t, b)) != MP_OKAY) { + return res; + } + px = a->used; + x = a; + } + + for (ix = 0; ix < px; ix++) { + t.dp[ix] &= x->dp[ix]; + } + + /* zero digits above the last from the smallest mp_int */ + for (; ix < t.used; ix++) { + t.dp[ix] = 0; + } + + mp_clamp (&t); + mp_exch (c, &t); + mp_clear (&t); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_clamp.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,38 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* trim unused digits + * + * This is used to ensure that leading zero digits are + * trimed and the leading "used" digit will be non-zero + * Typically very fast. Also fixes the sign if there + * are no more leading digits + */ +void +mp_clamp (mp_int * a) +{ + /* decrease used while the most significant digit is + * zero. + */ + while (a->used > 0 && a->dp[a->used - 1] == 0) { + --(a->used); + } + + /* reset the sign flag if used == 0 */ + if (a->used == 0) { + a->sign = MP_ZPOS; + } +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_clear.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,34 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* clear one (frees) */ +void +mp_clear (mp_int * a) +{ + /* only do anything if a hasn't been freed previously */ + if (a->dp != NULL) { + /* first zero the digits */ + memset (a->dp, 0, sizeof (mp_digit) * a->used); + + /* free ram */ + XFREE(a->dp); + + /* reset members to make debugging easier */ + a->dp = NULL; + a->alloc = a->used = 0; + a->sign = MP_ZPOS; + } +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_clear_multi.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,28 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> +#include <stdarg.h> + +void mp_clear_multi(mp_int *mp, ...) +{ + mp_int* next_mp = mp; + va_list args; + va_start(args, mp); + while (next_mp != NULL) { + mp_clear(next_mp); + next_mp = va_arg(args, mp_int*); + } + va_end(args); +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_cmp.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,37 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* compare two ints (signed)*/ +int +mp_cmp (mp_int * a, mp_int * b) +{ + /* compare based on sign */ + if (a->sign != b->sign) { + if (a->sign == MP_NEG) { + return MP_LT; + } else { + return MP_GT; + } + } + + /* compare digits */ + if (a->sign == MP_NEG) { + /* if negative compare opposite direction */ + return mp_cmp_mag(b, a); + } else { + return mp_cmp_mag(a, b); + } +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_cmp_d.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,38 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* compare a digit */ +int mp_cmp_d(mp_int * a, mp_digit b) +{ + /* compare based on sign */ + if (a->sign == MP_NEG) { + return MP_LT; + } + + /* compare based on magnitude */ + if (a->used > 1) { + return MP_GT; + } + + /* compare the only digit of a to b */ + if (a->dp[0] > b) { + return MP_GT; + } else if (a->dp[0] < b) { + return MP_LT; + } else { + return MP_EQ; + } +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_cmp_mag.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,49 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* compare maginitude of two ints (unsigned) */ +int mp_cmp_mag (mp_int * a, mp_int * b) +{ + int n; + mp_digit *tmpa, *tmpb; + + /* compare based on # of non-zero digits */ + if (a->used > b->used) { + return MP_GT; + } + + if (a->used < b->used) { + return MP_LT; + } + + /* alias for a */ + tmpa = a->dp + (a->used - 1); + + /* alias for b */ + tmpb = b->dp + (a->used - 1); + + /* compare based on digits */ + for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { + if (*tmpa > *tmpb) { + return MP_GT; + } + + if (*tmpa < *tmpb) { + return MP_LT; + } + } + return MP_EQ; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_cnt_lsb.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,47 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +static const int lnz[16] = { + 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 +}; + +/* Counts the number of lsbs which are zero before the first zero bit */ +int mp_cnt_lsb(mp_int *a) +{ + int x; + mp_digit q, qq; + + /* easy out */ + if (mp_iszero(a) == 1) { + return 0; + } + + /* scan lower digits until non-zero */ + for (x = 0; x < a->used && a->dp[x] == 0; x++); + q = a->dp[x]; + x *= DIGIT_BIT; + + /* now scan this digit until a 1 is found */ + if ((q & 1) == 0) { + do { + qq = q & 15; + x += lnz[qq]; + q >>= 4; + } while (qq == 0); + } + return x; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_copy.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,62 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* copy, b = a */ +int +mp_copy (mp_int * a, mp_int * b) +{ + int res, n; + + /* if dst == src do nothing */ + if (a == b) { + return MP_OKAY; + } + + /* grow dest */ + if (b->alloc < a->used) { + if ((res = mp_grow (b, a->used)) != MP_OKAY) { + return res; + } + } + + /* zero b and copy the parameters over */ + { + register mp_digit *tmpa, *tmpb; + + /* pointer aliases */ + + /* source */ + tmpa = a->dp; + + /* destination */ + tmpb = b->dp; + + /* copy all the digits */ + for (n = 0; n < a->used; n++) { + *tmpb++ = *tmpa++; + } + + /* clear high digits */ + for (; n < b->used; n++) { + *tmpb++ = 0; + } + } + + /* copy used count and sign */ + b->used = a->used; + b->sign = a->sign; + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_count_bits.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,39 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* returns the number of bits in an int */ +int +mp_count_bits (mp_int * a) +{ + int r; + mp_digit q; + + /* shortcut */ + if (a->used == 0) { + return 0; + } + + /* get number of digits and add that */ + r = (a->used - 1) * DIGIT_BIT; + + /* take the last digit and count the bits in it */ + q = a->dp[a->used - 1]; + while (q > ((mp_digit) 0)) { + ++r; + q >>= ((mp_digit) 1); + } + return r; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_div.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,211 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* integer signed division. + * c*b + d == a [e.g. a/b, c=quotient, d=remainder] + * HAC pp.598 Algorithm 14.20 + * + * Note that the description in HAC is horribly + * incomplete. For example, it doesn't consider + * the case where digits are removed from 'x' in + * the inner loop. It also doesn't consider the + * case that y has fewer than three digits, etc.. + * + * The overall algorithm is as described as + * 14.20 from HAC but fixed to treat these cases. +*/ +int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) +{ + mp_int q, x, y, t1, t2; + int res, n, t, i, norm, neg; + + /* is divisor zero ? */ + if (mp_iszero (b) == 1) { + return MP_VAL; + } + + /* if a < b then q=0, r = a */ + if (mp_cmp_mag (a, b) == MP_LT) { + if (d != NULL) { + res = mp_copy (a, d); + } else { + res = MP_OKAY; + } + if (c != NULL) { + mp_zero (c); + } + return res; + } + + if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) { + return res; + } + q.used = a->used + 2; + + if ((res = mp_init (&t1)) != MP_OKAY) { + goto __Q; + } + + if ((res = mp_init (&t2)) != MP_OKAY) { + goto __T1; + } + + if ((res = mp_init_copy (&x, a)) != MP_OKAY) { + goto __T2; + } + + if ((res = mp_init_copy (&y, b)) != MP_OKAY) { + goto __X; + } + + /* fix the sign */ + neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; + x.sign = y.sign = MP_ZPOS; + + /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ + norm = mp_count_bits(&y) % DIGIT_BIT; + if (norm < (int)(DIGIT_BIT-1)) { + norm = (DIGIT_BIT-1) - norm; + if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) { + goto __Y; + } + if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) { + goto __Y; + } + } else { + norm = 0; + } + + /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ + n = x.used - 1; + t = y.used - 1; + + /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ + if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ + goto __Y; + } + + while (mp_cmp (&x, &y) != MP_LT) { + ++(q.dp[n - t]); + if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) { + goto __Y; + } + } + + /* reset y by shifting it back down */ + mp_rshd (&y, n - t); + + /* step 3. for i from n down to (t + 1) */ + for (i = n; i >= (t + 1); i--) { + if (i > x.used) { + continue; + } + + /* step 3.1 if xi == yt then set q{i-t-1} to b-1, + * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ + if (x.dp[i] == y.dp[t]) { + q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); + } else { + mp_word tmp; + tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); + tmp |= ((mp_word) x.dp[i - 1]); + tmp /= ((mp_word) y.dp[t]); + if (tmp > (mp_word) MP_MASK) + tmp = MP_MASK; + q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); + } + + /* while (q{i-t-1} * (yt * b + y{t-1})) > + xi * b**2 + xi-1 * b + xi-2 + + do q{i-t-1} -= 1; + */ + q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; + do { + q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; + + /* find left hand */ + mp_zero (&t1); + t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; + t1.dp[1] = y.dp[t]; + t1.used = 2; + if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { + goto __Y; + } + + /* find right hand */ + t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; + t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; + t2.dp[2] = x.dp[i]; + t2.used = 3; + } while (mp_cmp_mag(&t1, &t2) == MP_GT); + + /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ + if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { + goto __Y; + } + + if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { + goto __Y; + } + + if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) { + goto __Y; + } + + /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ + if (x.sign == MP_NEG) { + if ((res = mp_copy (&y, &t1)) != MP_OKAY) { + goto __Y; + } + if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { + goto __Y; + } + if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { + goto __Y; + } + + q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; + } + } + + /* now q is the quotient and x is the remainder + * [which we have to normalize] + */ + + /* get sign before writing to c */ + x.sign = a->sign; + + if (c != NULL) { + mp_clamp (&q); + mp_exch (&q, c); + c->sign = neg; + } + + if (d != NULL) { + mp_div_2d (&x, norm, &x, NULL); + mp_exch (&x, d); + } + + res = MP_OKAY; + +__Y:mp_clear (&y); +__X:mp_clear (&x); +__T2:mp_clear (&t2); +__T1:mp_clear (&t1); +__Q:mp_clear (&q); + return res; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_div_2.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,62 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* b = a/2 */ +int mp_div_2(mp_int * a, mp_int * b) +{ + int x, res, oldused; + + /* copy */ + if (b->alloc < a->used) { + if ((res = mp_grow (b, a->used)) != MP_OKAY) { + return res; + } + } + + oldused = b->used; + b->used = a->used; + { + register mp_digit r, rr, *tmpa, *tmpb; + + /* source alias */ + tmpa = a->dp + b->used - 1; + + /* dest alias */ + tmpb = b->dp + b->used - 1; + + /* carry */ + r = 0; + for (x = b->used - 1; x >= 0; x--) { + /* get the carry for the next iteration */ + rr = *tmpa & 1; + + /* shift the current digit, add in carry and store */ + *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); + + /* forward carry to next iteration */ + r = rr; + } + + /* zero excess digits */ + tmpb = b->dp + b->used; + for (x = b->used; x < oldused; x++) { + *tmpb++ = 0; + } + } + b->sign = a->sign; + mp_clamp (b); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_div_2d.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,91 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* shift right by a certain bit count (store quotient in c, optional remainder in d) */ +int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d) +{ + mp_digit D, r, rr; + int x, res; + mp_int t; + + + /* if the shift count is <= 0 then we do no work */ + if (b <= 0) { + res = mp_copy (a, c); + if (d != NULL) { + mp_zero (d); + } + return res; + } + + if ((res = mp_init (&t)) != MP_OKAY) { + return res; + } + + /* get the remainder */ + if (d != NULL) { + if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) { + mp_clear (&t); + return res; + } + } + + /* copy */ + if ((res = mp_copy (a, c)) != MP_OKAY) { + mp_clear (&t); + return res; + } + + /* shift by as many digits in the bit count */ + if (b >= (int)DIGIT_BIT) { + mp_rshd (c, b / DIGIT_BIT); + } + + /* shift any bit count < DIGIT_BIT */ + D = (mp_digit) (b % DIGIT_BIT); + if (D != 0) { + register mp_digit *tmpc, mask, shift; + + /* mask */ + mask = (((mp_digit)1) << D) - 1; + + /* shift for lsb */ + shift = DIGIT_BIT - D; + + /* alias */ + tmpc = c->dp + (c->used - 1); + + /* carry */ + r = 0; + for (x = c->used - 1; x >= 0; x--) { + /* get the lower bits of this word in a temp */ + rr = *tmpc & mask; + + /* shift the current word and mix in the carry bits from the previous word */ + *tmpc = (*tmpc >> D) | (r << shift); + --tmpc; + + /* set the carry to the carry bits of the current word found above */ + r = rr; + } + } + mp_clamp (c); + if (d != NULL) { + mp_exch (&t, d); + } + mp_clear (&t); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_div_3.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,73 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* divide by three (based on routine from MPI and the GMP manual) */ +int +mp_div_3 (mp_int * a, mp_int *c, mp_digit * d) +{ + mp_int q; + mp_word w, t; + mp_digit b; + int res, ix; + + /* b = 2**DIGIT_BIT / 3 */ + b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3); + + if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { + return res; + } + + q.used = a->used; + q.sign = a->sign; + w = 0; + for (ix = a->used - 1; ix >= 0; ix--) { + w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]); + + if (w >= 3) { + /* multiply w by [1/3] */ + t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT); + + /* now subtract 3 * [w/3] from w, to get the remainder */ + w -= t+t+t; + + /* fixup the remainder as required since + * the optimization is not exact. + */ + while (w >= 3) { + t += 1; + w -= 3; + } + } else { + t = 0; + } + q.dp[ix] = (mp_digit)t; + } + + /* [optional] store the remainder */ + if (d != NULL) { + *d = (mp_digit)w; + } + + /* [optional] store the quotient */ + if (c != NULL) { + mp_clamp(&q); + mp_exch(&q, c); + } + mp_clear(&q); + + return res; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_div_d.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,102 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +static int s_is_power_of_two(mp_digit b, int *p) +{ + int x; + + for (x = 1; x < DIGIT_BIT; x++) { + if (b == (((mp_digit)1)<<x)) { + *p = x; + return 1; + } + } + return 0; +} + +/* single digit division (based on routine from MPI) */ +int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d) +{ + mp_int q; + mp_word w; + mp_digit t; + int res, ix; + + /* cannot divide by zero */ + if (b == 0) { + return MP_VAL; + } + + /* quick outs */ + if (b == 1 || mp_iszero(a) == 1) { + if (d != NULL) { + *d = 0; + } + if (c != NULL) { + return mp_copy(a, c); + } + return MP_OKAY; + } + + /* power of two ? */ + if (s_is_power_of_two(b, &ix) == 1) { + if (d != NULL) { + *d = a->dp[0] & ((1<<ix) - 1); + } + if (c != NULL) { + return mp_div_2d(a, ix, c, NULL); + } + return MP_OKAY; + } + + /* three? */ + if (b == 3) { + return mp_div_3(a, c, d); + } + + /* no easy answer [c'est la vie]. Just division */ + if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { + return res; + } + + q.used = a->used; + q.sign = a->sign; + w = 0; + for (ix = a->used - 1; ix >= 0; ix--) { + w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]); + + if (w >= b) { + t = (mp_digit)(w / b); + w -= ((mp_word)t) * ((mp_word)b); + } else { + t = 0; + } + q.dp[ix] = (mp_digit)t; + } + + if (d != NULL) { + *d = (mp_digit)w; + } + + if (c != NULL) { + mp_clamp(&q); + mp_exch(&q, c); + } + mp_clear(&q); + + return res; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_dr_is_modulus.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,37 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* determines if a number is a valid DR modulus */ +int mp_dr_is_modulus(mp_int *a) +{ + int ix; + + /* must be at least two digits */ + if (a->used < 2) { + return 0; + } + + /* must be of the form b**k - a [a <= b] so all + * but the first digit must be equal to -1 (mod b). + */ + for (ix = 1; ix < a->used; ix++) { + if (a->dp[ix] != MP_MASK) { + return 0; + } + } + return 1; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_dr_reduce.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,88 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* reduce "x" in place modulo "n" using the Diminished Radix algorithm. + * + * Based on algorithm from the paper + * + * "Generating Efficient Primes for Discrete Log Cryptosystems" + * Chae Hoon Lim, Pil Loong Lee, + * POSTECH Information Research Laboratories + * + * The modulus must be of a special format [see manual] + * + * Has been modified to use algorithm 7.10 from the LTM book instead + * + * Input x must be in the range 0 <= x <= (n-1)**2 + */ +int +mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k) +{ + int err, i, m; + mp_word r; + mp_digit mu, *tmpx1, *tmpx2; + + /* m = digits in modulus */ + m = n->used; + + /* ensure that "x" has at least 2m digits */ + if (x->alloc < m + m) { + if ((err = mp_grow (x, m + m)) != MP_OKAY) { + return err; + } + } + +/* top of loop, this is where the code resumes if + * another reduction pass is required. + */ +top: + /* aliases for digits */ + /* alias for lower half of x */ + tmpx1 = x->dp; + + /* alias for upper half of x, or x/B**m */ + tmpx2 = x->dp + m; + + /* set carry to zero */ + mu = 0; + + /* compute (x mod B**m) + k * [x/B**m] inline and inplace */ + for (i = 0; i < m; i++) { + r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu; + *tmpx1++ = (mp_digit)(r & MP_MASK); + mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); + } + + /* set final carry */ + *tmpx1++ = mu; + + /* zero words above m */ + for (i = m + 1; i < x->used; i++) { + *tmpx1++ = 0; + } + + /* clamp, sub and return */ + mp_clamp (x); + + /* if x >= n then subtract and reduce again + * Each successive "recursion" makes the input smaller and smaller. + */ + if (mp_cmp_mag (x, n) != MP_LT) { + s_mp_sub(x, n, x); + goto top; + } + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_dr_setup.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,26 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* determines the setup value */ +void mp_dr_setup(mp_int *a, mp_digit *d) +{ + /* the casts are required if DIGIT_BIT is one less than + * the number of bits in a mp_digit [e.g. DIGIT_BIT==31] + */ + *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - + ((mp_word)a->dp[0])); +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_exch.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,28 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* swap the elements of two integers, for cases where you can't simply swap the + * mp_int pointers around + */ +void +mp_exch (mp_int * a, mp_int * b) +{ + mp_int t; + + t = *a; + *a = *b; + *b = t; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_expt_d.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,51 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* calculate c = a**b using a square-multiply algorithm */ +int mp_expt_d (mp_int * a, mp_digit b, mp_int * c) +{ + int res, x; + mp_int g; + + if ((res = mp_init_copy (&g, a)) != MP_OKAY) { + return res; + } + + /* set initial result */ + mp_set (c, 1); + + for (x = 0; x < (int) DIGIT_BIT; x++) { + /* square */ + if ((res = mp_sqr (c, c)) != MP_OKAY) { + mp_clear (&g); + return res; + } + + /* if the bit is set multiply */ + if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) { + if ((res = mp_mul (c, &g, c)) != MP_OKAY) { + mp_clear (&g); + return res; + } + } + + /* shift to next bit */ + b <<= 1; + } + + mp_clear (&g); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_exptmod.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,78 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + + +/* this is a shell function that calls either the normal or Montgomery + * exptmod functions. Originally the call to the montgomery code was + * embedded in the normal function but that wasted alot of stack space + * for nothing (since 99% of the time the Montgomery code would be called) + */ +int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) +{ + int dr; + + /* modulus P must be positive */ + if (P->sign == MP_NEG) { + return MP_VAL; + } + + /* if exponent X is negative we have to recurse */ + if (X->sign == MP_NEG) { + mp_int tmpG, tmpX; + int err; + + /* first compute 1/G mod P */ + if ((err = mp_init(&tmpG)) != MP_OKAY) { + return err; + } + if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { + mp_clear(&tmpG); + return err; + } + + /* now get |X| */ + if ((err = mp_init(&tmpX)) != MP_OKAY) { + mp_clear(&tmpG); + return err; + } + if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { + mp_clear_multi(&tmpG, &tmpX, NULL); + return err; + } + + /* and now compute (1/G)**|X| instead of G**X [X < 0] */ + err = mp_exptmod(&tmpG, &tmpX, P, Y); + mp_clear_multi(&tmpG, &tmpX, NULL); + return err; + } + + /* is it a DR modulus? */ + dr = mp_dr_is_modulus(P); + + /* if not, is it a uDR modulus? */ + if (dr == 0) { + dr = mp_reduce_is_2k(P) << 1; + } + + /* if the modulus is odd or dr != 0 use the fast method */ + if (mp_isodd (P) == 1 || dr != 0) { + return mp_exptmod_fast (G, X, P, Y, dr); + } else { + /* otherwise use the generic Barrett reduction technique */ + return s_mp_exptmod (G, X, P, Y); + } +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_exptmod_fast.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,287 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 + * + * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. + * The value of k changes based on the size of the exponent. + * + * Uses Montgomery or Diminished Radix reduction [whichever appropriate] + */ + +#ifdef MP_LOW_MEM + #define TAB_SIZE 32 +#else + #define TAB_SIZE 256 +#endif + +int +mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) +{ + mp_int M[TAB_SIZE], res; + mp_digit buf, mp; + int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; + + /* use a pointer to the reduction algorithm. This allows us to use + * one of many reduction algorithms without modding the guts of + * the code with if statements everywhere. + */ + int (*redux)(mp_int*,mp_int*,mp_digit); + + /* find window size */ + x = mp_count_bits (X); + if (x <= 7) { + winsize = 2; + } else if (x <= 36) { + winsize = 3; + } else if (x <= 140) { + winsize = 4; + } else if (x <= 450) { + winsize = 5; + } else if (x <= 1303) { + winsize = 6; + } else if (x <= 3529) { + winsize = 7; + } else { + winsize = 8; + } + +#ifdef MP_LOW_MEM + if (winsize > 5) { + winsize = 5; + } +#endif + + /* init M array */ + /* init first cell */ + if ((err = mp_init(&M[1])) != MP_OKAY) { + return err; + } + + /* now init the second half of the array */ + for (x = 1<<(winsize-1); x < (1 << winsize); x++) { + if ((err = mp_init(&M[x])) != MP_OKAY) { + for (y = 1<<(winsize-1); y < x; y++) { + mp_clear (&M[y]); + } + mp_clear(&M[1]); + return err; + } + } + + /* determine and setup reduction code */ + if (redmode == 0) { + /* now setup montgomery */ + if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) { + goto __M; + } + + /* automatically pick the comba one if available (saves quite a few calls/ifs) */ + if (((P->used * 2 + 1) < MP_WARRAY) && + P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { + redux = fast_mp_montgomery_reduce; + } else { + /* use slower baseline Montgomery method */ + redux = mp_montgomery_reduce; + } + } else if (redmode == 1) { + /* setup DR reduction for moduli of the form B**k - b */ + mp_dr_setup(P, &mp); + redux = mp_dr_reduce; + } else { + /* setup DR reduction for moduli of the form 2**k - b */ + if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { + goto __M; + } + redux = mp_reduce_2k; + } + + /* setup result */ + if ((err = mp_init (&res)) != MP_OKAY) { + goto __M; + } + + /* create M table + * + * The M table contains powers of the input base, e.g. M[x] = G^x mod P + * + * The first half of the table is not computed though accept for M[0] and M[1] + */ + + if (redmode == 0) { + /* now we need R mod m */ + if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) { + goto __RES; + } + + /* now set M[1] to G * R mod m */ + if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) { + goto __RES; + } + } else { + mp_set(&res, 1); + if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { + goto __RES; + } + } + + /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ + if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { + goto __RES; + } + + for (x = 0; x < (winsize - 1); x++) { + if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { + goto __RES; + } + if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) { + goto __RES; + } + } + + /* create upper table */ + for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { + if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { + goto __RES; + } + if ((err = redux (&M[x], P, mp)) != MP_OKAY) { + goto __RES; + } + } + + /* set initial mode and bit cnt */ + mode = 0; + bitcnt = 1; + buf = 0; + digidx = X->used - 1; + bitcpy = 0; + bitbuf = 0; + + for (;;) { + /* grab next digit as required */ + if (--bitcnt == 0) { + /* if digidx == -1 we are out of digits so break */ + if (digidx == -1) { + break; + } + /* read next digit and reset bitcnt */ + buf = X->dp[digidx--]; + bitcnt = (int)DIGIT_BIT; + } + + /* grab the next msb from the exponent */ + y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1; + buf <<= (mp_digit)1; + + /* if the bit is zero and mode == 0 then we ignore it + * These represent the leading zero bits before the first 1 bit + * in the exponent. Technically this opt is not required but it + * does lower the # of trivial squaring/reductions used + */ + if (mode == 0 && y == 0) { + continue; + } + + /* if the bit is zero and mode == 1 then we square */ + if (mode == 1 && y == 0) { + if ((err = mp_sqr (&res, &res)) != MP_OKAY) { + goto __RES; + } + if ((err = redux (&res, P, mp)) != MP_OKAY) { + goto __RES; + } + continue; + } + + /* else we add it to the window */ + bitbuf |= (y << (winsize - ++bitcpy)); + mode = 2; + + if (bitcpy == winsize) { + /* ok window is filled so square as required and multiply */ + /* square first */ + for (x = 0; x < winsize; x++) { + if ((err = mp_sqr (&res, &res)) != MP_OKAY) { + goto __RES; + } + if ((err = redux (&res, P, mp)) != MP_OKAY) { + goto __RES; + } + } + + /* then multiply */ + if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { + goto __RES; + } + if ((err = redux (&res, P, mp)) != MP_OKAY) { + goto __RES; + } + + /* empty window and reset */ + bitcpy = 0; + bitbuf = 0; + mode = 1; + } + } + + /* if bits remain then square/multiply */ + if (mode == 2 && bitcpy > 0) { + /* square then multiply if the bit is set */ + for (x = 0; x < bitcpy; x++) { + if ((err = mp_sqr (&res, &res)) != MP_OKAY) { + goto __RES; + } + if ((err = redux (&res, P, mp)) != MP_OKAY) { + goto __RES; + } + + /* get next bit of the window */ + bitbuf <<= 1; + if ((bitbuf & (1 << winsize)) != 0) { + /* then multiply */ + if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { + goto __RES; + } + if ((err = redux (&res, P, mp)) != MP_OKAY) { + goto __RES; + } + } + } + } + + if (redmode == 0) { + /* fixup result if Montgomery reduction is used + * recall that any value in a Montgomery system is + * actually multiplied by R mod n. So we have + * to reduce one more time to cancel out the factor + * of R. + */ + if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) { + goto __RES; + } + } + + /* swap res with Y */ + mp_exch (&res, Y); + err = MP_OKAY; +__RES:mp_clear (&res); +__M: + mp_clear(&M[1]); + for (x = 1<<(winsize-1); x < (1 << winsize); x++) { + mp_clear (&M[x]); + } + return err; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_exteuclid.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,69 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* Extended euclidean algorithm of (a, b) produces + a*u1 + b*u2 = u3 + */ +int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3) +{ + mp_int u1,u2,u3,v1,v2,v3,t1,t2,t3,q,tmp; + int err; + + if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) { + return err; + } + + /* initialize, (u1,u2,u3) = (1,0,a) */ + mp_set(&u1, 1); + if ((err = mp_copy(a, &u3)) != MP_OKAY) { goto _ERR; } + + /* initialize, (v1,v2,v3) = (0,1,b) */ + mp_set(&v2, 1); + if ((err = mp_copy(b, &v3)) != MP_OKAY) { goto _ERR; } + + /* loop while v3 != 0 */ + while (mp_iszero(&v3) == MP_NO) { + /* q = u3/v3 */ + if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) { goto _ERR; } + + /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */ + if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) { goto _ERR; } + if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) { goto _ERR; } + if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) { goto _ERR; } + if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) { goto _ERR; } + if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) { goto _ERR; } + if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) { goto _ERR; } + + /* (u1,u2,u3) = (v1,v2,v3) */ + if ((err = mp_copy(&v1, &u1)) != MP_OKAY) { goto _ERR; } + if ((err = mp_copy(&v2, &u2)) != MP_OKAY) { goto _ERR; } + if ((err = mp_copy(&v3, &u3)) != MP_OKAY) { goto _ERR; } + + /* (v1,v2,v3) = (t1,t2,t3) */ + if ((err = mp_copy(&t1, &v1)) != MP_OKAY) { goto _ERR; } + if ((err = mp_copy(&t2, &v2)) != MP_OKAY) { goto _ERR; } + if ((err = mp_copy(&t3, &v3)) != MP_OKAY) { goto _ERR; } + } + + /* copy result out */ + if (U1 != NULL) { mp_exch(U1, &u1); } + if (U2 != NULL) { mp_exch(U2, &u2); } + if (U3 != NULL) { mp_exch(U3, &u3); } + + err = MP_OKAY; +_ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL); + return err; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_fread.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,61 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* read a bigint from a file stream in ASCII */ +int mp_fread(mp_int *a, int radix, FILE *stream) +{ + int err, ch, neg, y; + + /* clear a */ + mp_zero(a); + + /* if first digit is - then set negative */ + ch = fgetc(stream); + if (ch == '-') { + neg = MP_NEG; + ch = fgetc(stream); + } else { + neg = MP_ZPOS; + } + + for (;;) { + /* find y in the radix map */ + for (y = 0; y < radix; y++) { + if (mp_s_rmap[y] == ch) { + break; + } + } + if (y == radix) { + break; + } + + /* shift up and add */ + if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) { + return err; + } + if ((err = mp_add_d(a, y, a)) != MP_OKAY) { + return err; + } + + ch = fgetc(stream); + } + if (mp_cmp_d(a, 0) != MP_EQ) { + a->sign = neg; + } + + return MP_OKAY; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_fwrite.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,46 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +int mp_fwrite(mp_int *a, int radix, FILE *stream) +{ + char *buf; + int err, len, x; + + if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) { + return err; + } + + buf = OPT_CAST(char) XMALLOC (len); + if (buf == NULL) { + return MP_MEM; + } + + if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) { + XFREE (buf); + return err; + } + + for (x = 0; x < len; x++) { + if (fputc(buf[x], stream) == EOF) { + XFREE (buf); + return MP_VAL; + } + } + + XFREE (buf); + return MP_OKAY; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_gcd.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,107 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* Greatest Common Divisor using the binary method */ +int mp_gcd (mp_int * a, mp_int * b, mp_int * c) +{ + mp_int u, v; + int k, u_lsb, v_lsb, res; + + /* either zero than gcd is the largest */ + if (mp_iszero (a) == 1 && mp_iszero (b) == 0) { + return mp_abs (b, c); + } + if (mp_iszero (a) == 0 && mp_iszero (b) == 1) { + return mp_abs (a, c); + } + + /* optimized. At this point if a == 0 then + * b must equal zero too + */ + if (mp_iszero (a) == 1) { + mp_zero(c); + return MP_OKAY; + } + + /* get copies of a and b we can modify */ + if ((res = mp_init_copy (&u, a)) != MP_OKAY) { + return res; + } + + if ((res = mp_init_copy (&v, b)) != MP_OKAY) { + goto __U; + } + + /* must be positive for the remainder of the algorithm */ + u.sign = v.sign = MP_ZPOS; + + /* B1. Find the common power of two for u and v */ + u_lsb = mp_cnt_lsb(&u); + v_lsb = mp_cnt_lsb(&v); + k = MIN(u_lsb, v_lsb); + + if (k > 0) { + /* divide the power of two out */ + if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { + goto __V; + } + + if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { + goto __V; + } + } + + /* divide any remaining factors of two out */ + if (u_lsb != k) { + if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { + goto __V; + } + } + + if (v_lsb != k) { + if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { + goto __V; + } + } + + while (mp_iszero(&v) == 0) { + /* make sure v is the largest */ + if (mp_cmp_mag(&u, &v) == MP_GT) { + /* swap u and v to make sure v is >= u */ + mp_exch(&u, &v); + } + + /* subtract smallest from largest */ + if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { + goto __V; + } + + /* Divide out all factors of two */ + if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { + goto __V; + } + } + + /* multiply by 2**k which we divided out at the beginning */ + if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) { + goto __V; + } + c->sign = MP_ZPOS; + res = MP_OKAY; +__V:mp_clear (&u); +__U:mp_clear (&v); + return res; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_get_int.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,39 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* get the lower 32-bits of an mp_int */ +unsigned long mp_get_int(mp_int * a) +{ + int i; + unsigned long res; + + if (a->used == 0) { + return 0; + } + + /* get number of digits of the lsb we have to read */ + i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1; + + /* get most significant digit of result */ + res = DIGIT(a,i); + + while (--i >= 0) { + res = (res << DIGIT_BIT) | DIGIT(a,i); + } + + /* force result to 32-bits always so it is consistent on non 32-bit platforms */ + return res & 0xFFFFFFFFUL; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_grow.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,51 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* grow as required */ +int mp_grow (mp_int * a, int size) +{ + int i; + mp_digit *tmp; + + /* if the alloc size is smaller alloc more ram */ + if (a->alloc < size) { + /* ensure there are always at least MP_PREC digits extra on top */ + size += (MP_PREC * 2) - (size % MP_PREC); + + /* reallocate the array a->dp + * + * We store the return in a temporary variable + * in case the operation failed we don't want + * to overwrite the dp member of a. + */ + tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size); + if (tmp == NULL) { + /* reallocation failed but "a" is still valid [can be freed] */ + return MP_MEM; + } + + /* reallocation succeeded so set a->dp */ + a->dp = tmp; + + /* zero excess digits */ + i = a->alloc; + a->alloc = size; + for (; i < a->alloc; i++) { + a->dp[i] = 0; + } + } + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_init.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,33 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* init a new bigint */ +int mp_init (mp_int * a) +{ + /* allocate memory required and clear it */ + a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), MP_PREC); + if (a->dp == NULL) { + return MP_MEM; + } + + /* set the used to zero, allocated digits to the default precision + * and sign to positive */ + a->used = 0; + a->alloc = MP_PREC; + a->sign = MP_ZPOS; + + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_init_copy.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,26 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* creates "a" then copies b into it */ +int mp_init_copy (mp_int * a, mp_int * b) +{ + int res; + + if ((res = mp_init (a)) != MP_OKAY) { + return res; + } + return mp_copy (b, a); +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_init_multi.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,53 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> +#include <stdarg.h> + +int mp_init_multi(mp_int *mp, ...) +{ + mp_err res = MP_OKAY; /* Assume ok until proven otherwise */ + int n = 0; /* Number of ok inits */ + mp_int* cur_arg = mp; + va_list args; + + va_start(args, mp); /* init args to next argument from caller */ + while (cur_arg != NULL) { + if (mp_init(cur_arg) != MP_OKAY) { + /* Oops - error! Back-track and mp_clear what we already + succeeded in init-ing, then return error. + */ + va_list clean_args; + + /* end the current list */ + va_end(args); + + /* now start cleaning up */ + cur_arg = mp; + va_start(clean_args, mp); + while (n--) { + mp_clear(cur_arg); + cur_arg = va_arg(clean_args, mp_int*); + } + va_end(clean_args); + res = MP_MEM; + break; + } + n++; + cur_arg = va_arg(args, mp_int*); + } + va_end(args); + return res; /* Assumed ok, if error flagged above. */ +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_init_set.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,26 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* initialize and set a digit */ +int mp_init_set (mp_int * a, mp_digit b) +{ + int err; + if ((err = mp_init(a)) != MP_OKAY) { + return err; + } + mp_set(a, b); + return err; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_init_set_int.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,25 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* initialize and set a digit */ +int mp_init_set_int (mp_int * a, unsigned long b) +{ + int err; + if ((err = mp_init(a)) != MP_OKAY) { + return err; + } + return mp_set_int(a, b); +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_init_size.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,33 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* init an mp_init for a given size */ +int mp_init_size (mp_int * a, int size) +{ + /* pad size so there are always extra digits */ + size += (MP_PREC * 2) - (size % MP_PREC); + + /* alloc mem */ + a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), size); + if (a->dp == NULL) { + return MP_MEM; + } + a->used = 0; + a->alloc = size; + a->sign = MP_ZPOS; + + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_invmod.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,174 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* hac 14.61, pp608 */ +int mp_invmod (mp_int * a, mp_int * b, mp_int * c) +{ + mp_int x, y, u, v, A, B, C, D; + int res; + + /* b cannot be negative */ + if (b->sign == MP_NEG || mp_iszero(b) == 1) { + return MP_VAL; + } + + /* if the modulus is odd we can use a faster routine instead */ + if (mp_isodd (b) == 1) { + return fast_mp_invmod (a, b, c); + } + + /* init temps */ + if ((res = mp_init_multi(&x, &y, &u, &v, + &A, &B, &C, &D, NULL)) != MP_OKAY) { + return res; + } + + /* x = a, y = b */ + if ((res = mp_copy (a, &x)) != MP_OKAY) { + goto __ERR; + } + if ((res = mp_copy (b, &y)) != MP_OKAY) { + goto __ERR; + } + + /* 2. [modified] if x,y are both even then return an error! */ + if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) { + res = MP_VAL; + goto __ERR; + } + + /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ + if ((res = mp_copy (&x, &u)) != MP_OKAY) { + goto __ERR; + } + if ((res = mp_copy (&y, &v)) != MP_OKAY) { + goto __ERR; + } + mp_set (&A, 1); + mp_set (&D, 1); + +top: + /* 4. while u is even do */ + while (mp_iseven (&u) == 1) { + /* 4.1 u = u/2 */ + if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { + goto __ERR; + } + /* 4.2 if A or B is odd then */ + if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) { + /* A = (A+y)/2, B = (B-x)/2 */ + if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { + goto __ERR; + } + if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { + goto __ERR; + } + } + /* A = A/2, B = B/2 */ + if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { + goto __ERR; + } + if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { + goto __ERR; + } + } + + /* 5. while v is even do */ + while (mp_iseven (&v) == 1) { + /* 5.1 v = v/2 */ + if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { + goto __ERR; + } + /* 5.2 if C or D is odd then */ + if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) { + /* C = (C+y)/2, D = (D-x)/2 */ + if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { + goto __ERR; + } + if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { + goto __ERR; + } + } + /* C = C/2, D = D/2 */ + if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { + goto __ERR; + } + if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { + goto __ERR; + } + } + + /* 6. if u >= v then */ + if (mp_cmp (&u, &v) != MP_LT) { + /* u = u - v, A = A - C, B = B - D */ + if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { + goto __ERR; + } + + if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { + goto __ERR; + } + + if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { + goto __ERR; + } + } else { + /* v - v - u, C = C - A, D = D - B */ + if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { + goto __ERR; + } + + if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { + goto __ERR; + } + + if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { + goto __ERR; + } + } + + /* if not zero goto step 4 */ + if (mp_iszero (&u) == 0) + goto top; + + /* now a = C, b = D, gcd == g*v */ + + /* if v != 1 then there is no inverse */ + if (mp_cmp_d (&v, 1) != MP_EQ) { + res = MP_VAL; + goto __ERR; + } + + /* if its too low */ + while (mp_cmp_d(&C, 0) == MP_LT) { + if ((res = mp_add(&C, b, &C)) != MP_OKAY) { + goto __ERR; + } + } + + /* too big */ + while (mp_cmp_mag(&C, b) != MP_LT) { + if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { + goto __ERR; + } + } + + /* C is now the inverse */ + mp_exch (&C, c); + res = MP_OKAY; +__ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL); + return res; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_is_square.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,103 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* Check if remainders are possible squares - fast exclude non-squares */ +static const char rem_128[128] = { + 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 +}; + +static const char rem_105[105] = { + 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, + 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, + 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, + 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, + 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, + 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1 +}; + +/* Store non-zero to ret if arg is square, and zero if not */ +int mp_is_square(mp_int *arg,int *ret) +{ + int res; + mp_digit c; + mp_int t; + unsigned long r; + + /* Default to Non-square :) */ + *ret = MP_NO; + + if (arg->sign == MP_NEG) { + return MP_VAL; + } + + /* digits used? (TSD) */ + if (arg->used == 0) { + return MP_OKAY; + } + + /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */ + if (rem_128[127 & DIGIT(arg,0)] == 1) { + return MP_OKAY; + } + + /* Next check mod 105 (3*5*7) */ + if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) { + return res; + } + if (rem_105[c] == 1) { + return MP_OKAY; + } + + /* product of primes less than 2^31 */ + if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) { + return res; + } + if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) { + goto ERR; + } + r = mp_get_int(&t); + /* Check for other prime modules, note it's not an ERROR but we must + * free "t" so the easiest way is to goto ERR. We know that res + * is already equal to MP_OKAY from the mp_mod call + */ + if ( (1L<<(r%11)) & 0x5C4L ) goto ERR; + if ( (1L<<(r%13)) & 0x9E4L ) goto ERR; + if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR; + if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR; + if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR; + if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR; + if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR; + + /* Final check - is sqr(sqrt(arg)) == arg ? */ + if ((res = mp_sqrt(arg,&t)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sqr(&t,&t)) != MP_OKAY) { + goto ERR; + } + + *ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO; +ERR:mp_clear(&t); + return res; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_jacobi.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,99 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* computes the jacobi c = (a | n) (or Legendre if n is prime) + * HAC pp. 73 Algorithm 2.149 + */ +int mp_jacobi (mp_int * a, mp_int * p, int *c) +{ + mp_int a1, p1; + int k, s, r, res; + mp_digit residue; + + /* if p <= 0 return MP_VAL */ + if (mp_cmp_d(p, 0) != MP_GT) { + return MP_VAL; + } + + /* step 1. if a == 0, return 0 */ + if (mp_iszero (a) == 1) { + *c = 0; + return MP_OKAY; + } + + /* step 2. if a == 1, return 1 */ + if (mp_cmp_d (a, 1) == MP_EQ) { + *c = 1; + return MP_OKAY; + } + + /* default */ + s = 0; + + /* step 3. write a = a1 * 2**k */ + if ((res = mp_init_copy (&a1, a)) != MP_OKAY) { + return res; + } + + if ((res = mp_init (&p1)) != MP_OKAY) { + goto __A1; + } + + /* divide out larger power of two */ + k = mp_cnt_lsb(&a1); + if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) { + goto __P1; + } + + /* step 4. if e is even set s=1 */ + if ((k & 1) == 0) { + s = 1; + } else { + /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */ + residue = p->dp[0] & 7; + + if (residue == 1 || residue == 7) { + s = 1; + } else if (residue == 3 || residue == 5) { + s = -1; + } + } + + /* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */ + if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) { + s = -s; + } + + /* if a1 == 1 we're done */ + if (mp_cmp_d (&a1, 1) == MP_EQ) { + *c = s; + } else { + /* n1 = n mod a1 */ + if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) { + goto __P1; + } + if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) { + goto __P1; + } + *c = s * r; + } + + /* done */ + res = MP_OKAY; +__P1:mp_clear (&p1); +__A1:mp_clear (&a1); + return res; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_karatsuba_mul.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,164 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* c = |a| * |b| using Karatsuba Multiplication using + * three half size multiplications + * + * Let B represent the radix [e.g. 2**DIGIT_BIT] and + * let n represent half of the number of digits in + * the min(a,b) + * + * a = a1 * B**n + a0 + * b = b1 * B**n + b0 + * + * Then, a * b => + a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0 + * + * Note that a1b1 and a0b0 are used twice and only need to be + * computed once. So in total three half size (half # of + * digit) multiplications are performed, a0b0, a1b1 and + * (a1-b1)(a0-b0) + * + * Note that a multiplication of half the digits requires + * 1/4th the number of single precision multiplications so in + * total after one call 25% of the single precision multiplications + * are saved. Note also that the call to mp_mul can end up back + * in this function if the a0, a1, b0, or b1 are above the threshold. + * This is known as divide-and-conquer and leads to the famous + * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than + * the standard O(N**2) that the baseline/comba methods use. + * Generally though the overhead of this method doesn't pay off + * until a certain size (N ~ 80) is reached. + */ +int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c) +{ + mp_int x0, x1, y0, y1, t1, x0y0, x1y1; + int B, err; + + /* default the return code to an error */ + err = MP_MEM; + + /* min # of digits */ + B = MIN (a->used, b->used); + + /* now divide in two */ + B = B >> 1; + + /* init copy all the temps */ + if (mp_init_size (&x0, B) != MP_OKAY) + goto ERR; + if (mp_init_size (&x1, a->used - B) != MP_OKAY) + goto X0; + if (mp_init_size (&y0, B) != MP_OKAY) + goto X1; + if (mp_init_size (&y1, b->used - B) != MP_OKAY) + goto Y0; + + /* init temps */ + if (mp_init_size (&t1, B * 2) != MP_OKAY) + goto Y1; + if (mp_init_size (&x0y0, B * 2) != MP_OKAY) + goto T1; + if (mp_init_size (&x1y1, B * 2) != MP_OKAY) + goto X0Y0; + + /* now shift the digits */ + x0.sign = x1.sign = a->sign; + y0.sign = y1.sign = b->sign; + + x0.used = y0.used = B; + x1.used = a->used - B; + y1.used = b->used - B; + + { + register int x; + register mp_digit *tmpa, *tmpb, *tmpx, *tmpy; + + /* we copy the digits directly instead of using higher level functions + * since we also need to shift the digits + */ + tmpa = a->dp; + tmpb = b->dp; + + tmpx = x0.dp; + tmpy = y0.dp; + for (x = 0; x < B; x++) { + *tmpx++ = *tmpa++; + *tmpy++ = *tmpb++; + } + + tmpx = x1.dp; + for (x = B; x < a->used; x++) { + *tmpx++ = *tmpa++; + } + + tmpy = y1.dp; + for (x = B; x < b->used; x++) { + *tmpy++ = *tmpb++; + } + } + + /* only need to clamp the lower words since by definition the + * upper words x1/y1 must have a known number of digits + */ + mp_clamp (&x0); + mp_clamp (&y0); + + /* now calc the products x0y0 and x1y1 */ + /* after this x0 is no longer required, free temp [x0==t2]! */ + if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY) + goto X1Y1; /* x0y0 = x0*y0 */ + if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY) + goto X1Y1; /* x1y1 = x1*y1 */ + + /* now calc x1-x0 and y1-y0 */ + if (mp_sub (&x1, &x0, &t1) != MP_OKAY) + goto X1Y1; /* t1 = x1 - x0 */ + if (mp_sub (&y1, &y0, &x0) != MP_OKAY) + goto X1Y1; /* t2 = y1 - y0 */ + if (mp_mul (&t1, &x0, &t1) != MP_OKAY) + goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */ + + /* add x0y0 */ + if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY) + goto X1Y1; /* t2 = x0y0 + x1y1 */ + if (mp_sub (&x0, &t1, &t1) != MP_OKAY) + goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */ + + /* shift by B */ + if (mp_lshd (&t1, B) != MP_OKAY) + goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */ + if (mp_lshd (&x1y1, B * 2) != MP_OKAY) + goto X1Y1; /* x1y1 = x1y1 << 2*B */ + + if (mp_add (&x0y0, &t1, &t1) != MP_OKAY) + goto X1Y1; /* t1 = x0y0 + t1 */ + if (mp_add (&t1, &x1y1, c) != MP_OKAY) + goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */ + + /* Algorithm succeeded set the return code to MP_OKAY */ + err = MP_OKAY; + +X1Y1:mp_clear (&x1y1); +X0Y0:mp_clear (&x0y0); +T1:mp_clear (&t1); +Y1:mp_clear (&y1); +Y0:mp_clear (&y0); +X1:mp_clear (&x1); +X0:mp_clear (&x0); +ERR: + return err; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_karatsuba_sqr.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,115 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* Karatsuba squaring, computes b = a*a using three + * half size squarings + * + * See comments of mp_karatsuba_mul for details. It + * is essentially the same algorithm but merely + * tuned to perform recursive squarings. + */ +int mp_karatsuba_sqr (mp_int * a, mp_int * b) +{ + mp_int x0, x1, t1, t2, x0x0, x1x1; + int B, err; + + err = MP_MEM; + + /* min # of digits */ + B = a->used; + + /* now divide in two */ + B = B >> 1; + + /* init copy all the temps */ + if (mp_init_size (&x0, B) != MP_OKAY) + goto ERR; + if (mp_init_size (&x1, a->used - B) != MP_OKAY) + goto X0; + + /* init temps */ + if (mp_init_size (&t1, a->used * 2) != MP_OKAY) + goto X1; + if (mp_init_size (&t2, a->used * 2) != MP_OKAY) + goto T1; + if (mp_init_size (&x0x0, B * 2) != MP_OKAY) + goto T2; + if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY) + goto X0X0; + + { + register int x; + register mp_digit *dst, *src; + + src = a->dp; + + /* now shift the digits */ + dst = x0.dp; + for (x = 0; x < B; x++) { + *dst++ = *src++; + } + + dst = x1.dp; + for (x = B; x < a->used; x++) { + *dst++ = *src++; + } + } + + x0.used = B; + x1.used = a->used - B; + + mp_clamp (&x0); + + /* now calc the products x0*x0 and x1*x1 */ + if (mp_sqr (&x0, &x0x0) != MP_OKAY) + goto X1X1; /* x0x0 = x0*x0 */ + if (mp_sqr (&x1, &x1x1) != MP_OKAY) + goto X1X1; /* x1x1 = x1*x1 */ + + /* now calc (x1-x0)**2 */ + if (mp_sub (&x1, &x0, &t1) != MP_OKAY) + goto X1X1; /* t1 = x1 - x0 */ + if (mp_sqr (&t1, &t1) != MP_OKAY) + goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */ + + /* add x0y0 */ + if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY) + goto X1X1; /* t2 = x0x0 + x1x1 */ + if (mp_sub (&t2, &t1, &t1) != MP_OKAY) + goto X1X1; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */ + + /* shift by B */ + if (mp_lshd (&t1, B) != MP_OKAY) + goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */ + if (mp_lshd (&x1x1, B * 2) != MP_OKAY) + goto X1X1; /* x1x1 = x1x1 << 2*B */ + + if (mp_add (&x0x0, &t1, &t1) != MP_OKAY) + goto X1X1; /* t1 = x0x0 + t1 */ + if (mp_add (&t1, &x1x1, b) != MP_OKAY) + goto X1X1; /* t1 = x0x0 + t1 + x1x1 */ + + err = MP_OKAY; + +X1X1:mp_clear (&x1x1); +X0X0:mp_clear (&x0x0); +T2:mp_clear (&t2); +T1:mp_clear (&t1); +X1:mp_clear (&x1); +X0:mp_clear (&x0); +ERR: + return err; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_lcm.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,54 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* computes least common multiple as |a*b|/(a, b) */ +int mp_lcm (mp_int * a, mp_int * b, mp_int * c) +{ + int res; + mp_int t1, t2; + + + if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) { + return res; + } + + /* t1 = get the GCD of the two inputs */ + if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) { + goto __T; + } + + /* divide the smallest by the GCD */ + if (mp_cmp_mag(a, b) == MP_LT) { + /* store quotient in t2 such that t2 * b is the LCM */ + if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) { + goto __T; + } + res = mp_mul(b, &t2, c); + } else { + /* store quotient in t2 such that t2 * a is the LCM */ + if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) { + goto __T; + } + res = mp_mul(a, &t2, c); + } + + /* fix the sign to positive */ + c->sign = MP_ZPOS; + +__T: + mp_clear_multi (&t1, &t2, NULL); + return res; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_lshd.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,61 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* shift left a certain amount of digits */ +int mp_lshd (mp_int * a, int b) +{ + int x, res; + + /* if its less than zero return */ + if (b <= 0) { + return MP_OKAY; + } + + /* grow to fit the new digits */ + if (a->alloc < a->used + b) { + if ((res = mp_grow (a, a->used + b)) != MP_OKAY) { + return res; + } + } + + { + register mp_digit *top, *bottom; + + /* increment the used by the shift amount then copy upwards */ + a->used += b; + + /* top */ + top = a->dp + a->used - 1; + + /* base */ + bottom = a->dp + a->used - 1 - b; + + /* much like mp_rshd this is implemented using a sliding window + * except the window goes the otherway around. Copying from + * the bottom to the top. see bn_mp_rshd.c for more info. + */ + for (x = a->used - 1; x >= b; x--) { + *top-- = *bottom--; + } + + /* zero the lower digits */ + top = a->dp; + for (x = 0; x < b; x++) { + *top++ = 0; + } + } + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_mod.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,42 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* c = a mod b, 0 <= c < b */ +int +mp_mod (mp_int * a, mp_int * b, mp_int * c) +{ + mp_int t; + int res; + + if ((res = mp_init (&t)) != MP_OKAY) { + return res; + } + + if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) { + mp_clear (&t); + return res; + } + + if (t.sign != b->sign) { + res = mp_add (b, &t, c); + } else { + res = MP_OKAY; + mp_exch (&t, c); + } + + mp_clear (&t); + return res; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_mod_2d.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,49 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* calc a value mod 2**b */ +int +mp_mod_2d (mp_int * a, int b, mp_int * c) +{ + int x, res; + + /* if b is <= 0 then zero the int */ + if (b <= 0) { + mp_zero (c); + return MP_OKAY; + } + + /* if the modulus is larger than the value than return */ + if (b > (int) (a->used * DIGIT_BIT)) { + res = mp_copy (a, c); + return res; + } + + /* copy */ + if ((res = mp_copy (a, c)) != MP_OKAY) { + return res; + } + + /* zero digits above the last digit of the modulus */ + for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) { + c->dp[x] = 0; + } + /* clear the digit that is not completely outside/inside the modulus */ + c->dp[b / DIGIT_BIT] &= + (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1)); + mp_clamp (c); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_mod_d.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,21 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +int +mp_mod_d (mp_int * a, mp_digit b, mp_digit * c) +{ + return mp_div_d(a, b, NULL, c); +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_montgomery_calc_normalization.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,53 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* calculates a = B^n mod b for Montgomery reduction + * Where B is the base [e.g. 2^DIGIT_BIT]. + * B^n mod b is computed by first computing + * A = B^(n-1) which doesn't require a reduction but a simple OR. + * then C = A * B = B^n is computed by performing upto DIGIT_BIT + * shifts with subtractions when the result is greater than b. + * + * The method is slightly modified to shift B unconditionally upto just under + * the leading bit of b. This saves alot of multiple precision shifting. + */ +int +mp_montgomery_calc_normalization (mp_int * a, mp_int * b) +{ + int x, bits, res; + + /* how many bits of last digit does b use */ + bits = mp_count_bits (b) % DIGIT_BIT; + + /* compute A = B^(n-1) * 2^(bits-1) */ + if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) { + return res; + } + + /* now compute C = A * B mod b */ + for (x = bits - 1; x < (int)DIGIT_BIT; x++) { + if ((res = mp_mul_2 (a, a)) != MP_OKAY) { + return res; + } + if (mp_cmp_mag (a, b) != MP_LT) { + if ((res = s_mp_sub (a, b, a)) != MP_OKAY) { + return res; + } + } + } + + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_montgomery_reduce.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,112 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* computes xR**-1 == x (mod N) via Montgomery Reduction */ +int +mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) +{ + int ix, res, digs; + mp_digit mu; + + /* can the fast reduction [comba] method be used? + * + * Note that unlike in mp_mul you're safely allowed *less* + * than the available columns [255 per default] since carries + * are fixed up in the inner loop. + */ + digs = n->used * 2 + 1; + if ((digs < MP_WARRAY) && + n->used < + (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { + return fast_mp_montgomery_reduce (x, n, rho); + } + + /* grow the input as required */ + if (x->alloc < digs) { + if ((res = mp_grow (x, digs)) != MP_OKAY) { + return res; + } + } + x->used = digs; + + for (ix = 0; ix < n->used; ix++) { + /* mu = ai * rho mod b + * + * The value of rho must be precalculated via + * bn_mp_montgomery_setup() such that + * it equals -1/n0 mod b this allows the + * following inner loop to reduce the + * input one digit at a time + */ + mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK); + + /* a = a + mu * m * b**i */ + { + register int iy; + register mp_digit *tmpn, *tmpx, u; + register mp_word r; + + /* alias for digits of the modulus */ + tmpn = n->dp; + + /* alias for the digits of x [the input] */ + tmpx = x->dp + ix; + + /* set the carry to zero */ + u = 0; + + /* Multiply and add in place */ + for (iy = 0; iy < n->used; iy++) { + /* compute product and sum */ + r = ((mp_word)mu) * ((mp_word)*tmpn++) + + ((mp_word) u) + ((mp_word) * tmpx); + + /* get carry */ + u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); + + /* fix digit */ + *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK)); + } + /* At this point the ix'th digit of x should be zero */ + + + /* propagate carries upwards as required*/ + while (u) { + *tmpx += u; + u = *tmpx >> DIGIT_BIT; + *tmpx++ &= MP_MASK; + } + } + } + + /* at this point the n.used'th least + * significant digits of x are all zero + * which means we can shift x to the + * right by n.used digits and the + * residue is unchanged. + */ + + /* x = x/b**n.used */ + mp_clamp(x); + mp_rshd (x, n->used); + + /* if x >= n then x = x - n */ + if (mp_cmp_mag (x, n) != MP_LT) { + return s_mp_sub (x, n, x); + } + + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_montgomery_setup.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,53 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* setups the montgomery reduction stuff */ +int +mp_montgomery_setup (mp_int * n, mp_digit * rho) +{ + mp_digit x, b; + +/* fast inversion mod 2**k + * + * Based on the fact that + * + * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n) + * => 2*X*A - X*X*A*A = 1 + * => 2*(1) - (1) = 1 + */ + b = n->dp[0]; + + if ((b & 1) == 0) { + return MP_VAL; + } + + x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ + x *= 2 - b * x; /* here x*a==1 mod 2**8 */ +#if !defined(MP_8BIT) + x *= 2 - b * x; /* here x*a==1 mod 2**16 */ +#endif +#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT)) + x *= 2 - b * x; /* here x*a==1 mod 2**32 */ +#endif +#ifdef MP_64BIT + x *= 2 - b * x; /* here x*a==1 mod 2**64 */ +#endif + + /* rho = -1/m mod b */ + *rho = (((mp_digit) 1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK; + + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_mul.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,48 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* high level multiplication (handles sign) */ +int mp_mul (mp_int * a, mp_int * b, mp_int * c) +{ + int res, neg; + neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; + + /* use Toom-Cook? */ + if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) { + res = mp_toom_mul(a, b, c); + /* use Karatsuba? */ + } else if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) { + res = mp_karatsuba_mul (a, b, c); + } else { + /* can we use the fast multiplier? + * + * The fast multiplier can be used if the output will + * have less than MP_WARRAY digits and the number of + * digits won't affect carry propagation + */ + int digs = a->used + b->used + 1; + + if ((digs < MP_WARRAY) && + MIN(a->used, b->used) <= + (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { + res = fast_s_mp_mul_digs (a, b, c, digs); + } else { + res = s_mp_mul (a, b, c); + } + } + c->sign = neg; + return res; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_mul_2.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,76 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* b = a*2 */ +int mp_mul_2(mp_int * a, mp_int * b) +{ + int x, res, oldused; + + /* grow to accomodate result */ + if (b->alloc < a->used + 1) { + if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) { + return res; + } + } + + oldused = b->used; + b->used = a->used; + + { + register mp_digit r, rr, *tmpa, *tmpb; + + /* alias for source */ + tmpa = a->dp; + + /* alias for dest */ + tmpb = b->dp; + + /* carry */ + r = 0; + for (x = 0; x < a->used; x++) { + + /* get what will be the *next* carry bit from the + * MSB of the current digit + */ + rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1)); + + /* now shift up this digit, add in the carry [from the previous] */ + *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK; + + /* copy the carry that would be from the source + * digit into the next iteration + */ + r = rr; + } + + /* new leading digit? */ + if (r != 0) { + /* add a MSB which is always 1 at this point */ + *tmpb = 1; + ++(b->used); + } + + /* now zero any excess digits on the destination + * that we didn't write to + */ + tmpb = b->dp + b->used; + for (x = b->used; x < oldused; x++) { + *tmpb++ = 0; + } + } + b->sign = a->sign; + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_mul_2d.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,79 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* shift left by a certain bit count */ +int mp_mul_2d (mp_int * a, int b, mp_int * c) +{ + mp_digit d; + int res; + + /* copy */ + if (a != c) { + if ((res = mp_copy (a, c)) != MP_OKAY) { + return res; + } + } + + if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) { + if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) { + return res; + } + } + + /* shift by as many digits in the bit count */ + if (b >= (int)DIGIT_BIT) { + if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) { + return res; + } + } + + /* shift any bit count < DIGIT_BIT */ + d = (mp_digit) (b % DIGIT_BIT); + if (d != 0) { + register mp_digit *tmpc, shift, mask, r, rr; + register int x; + + /* bitmask for carries */ + mask = (((mp_digit)1) << d) - 1; + + /* shift for msbs */ + shift = DIGIT_BIT - d; + + /* alias */ + tmpc = c->dp; + + /* carry */ + r = 0; + for (x = 0; x < c->used; x++) { + /* get the higher bits of the current word */ + rr = (*tmpc >> shift) & mask; + + /* shift the current word and OR in the carry */ + *tmpc = ((*tmpc << d) | r) & MP_MASK; + ++tmpc; + + /* set the carry to the carry bits of the current word */ + r = rr; + } + + /* set final carry */ + if (r != 0) { + c->dp[(c->used)++] = r; + } + } + mp_clamp (c); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_mul_d.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,72 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* multiply by a digit */ +int +mp_mul_d (mp_int * a, mp_digit b, mp_int * c) +{ + mp_digit u, *tmpa, *tmpc; + mp_word r; + int ix, res, olduse; + + /* make sure c is big enough to hold a*b */ + if (c->alloc < a->used + 1) { + if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) { + return res; + } + } + + /* get the original destinations used count */ + olduse = c->used; + + /* set the sign */ + c->sign = a->sign; + + /* alias for a->dp [source] */ + tmpa = a->dp; + + /* alias for c->dp [dest] */ + tmpc = c->dp; + + /* zero carry */ + u = 0; + + /* compute columns */ + for (ix = 0; ix < a->used; ix++) { + /* compute product and carry sum for this term */ + r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b); + + /* mask off higher bits to get a single digit */ + *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK)); + + /* send carry into next iteration */ + u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); + } + + /* store final carry [if any] */ + *tmpc++ = u; + + /* now zero digits above the top */ + while (ix++ < olduse) { + *tmpc++ = 0; + } + + /* set used count */ + c->used = a->used + 1; + mp_clamp(c); + + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_mulmod.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,35 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* d = a * b (mod c) */ +int +mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) +{ + int res; + mp_int t; + + if ((res = mp_init (&t)) != MP_OKAY) { + return res; + } + + if ((res = mp_mul (a, b, &t)) != MP_OKAY) { + mp_clear (&t); + return res; + } + res = mp_mod (&t, c, d); + mp_clear (&t); + return res; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_n_root.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,126 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* find the n'th root of an integer + * + * Result found such that (c)**b <= a and (c+1)**b > a + * + * This algorithm uses Newton's approximation + * x[i+1] = x[i] - f(x[i])/f'(x[i]) + * which will find the root in log(N) time where + * each step involves a fair bit. This is not meant to + * find huge roots [square and cube, etc]. + */ +int mp_n_root (mp_int * a, mp_digit b, mp_int * c) +{ + mp_int t1, t2, t3; + int res, neg; + + /* input must be positive if b is even */ + if ((b & 1) == 0 && a->sign == MP_NEG) { + return MP_VAL; + } + + if ((res = mp_init (&t1)) != MP_OKAY) { + return res; + } + + if ((res = mp_init (&t2)) != MP_OKAY) { + goto __T1; + } + + if ((res = mp_init (&t3)) != MP_OKAY) { + goto __T2; + } + + /* if a is negative fudge the sign but keep track */ + neg = a->sign; + a->sign = MP_ZPOS; + + /* t2 = 2 */ + mp_set (&t2, 2); + + do { + /* t1 = t2 */ + if ((res = mp_copy (&t2, &t1)) != MP_OKAY) { + goto __T3; + } + + /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ + + /* t3 = t1**(b-1) */ + if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) { + goto __T3; + } + + /* numerator */ + /* t2 = t1**b */ + if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) { + goto __T3; + } + + /* t2 = t1**b - a */ + if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) { + goto __T3; + } + + /* denominator */ + /* t3 = t1**(b-1) * b */ + if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) { + goto __T3; + } + + /* t3 = (t1**b - a)/(b * t1**(b-1)) */ + if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) { + goto __T3; + } + + if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) { + goto __T3; + } + } while (mp_cmp (&t1, &t2) != MP_EQ); + + /* result can be off by a few so check */ + for (;;) { + if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) { + goto __T3; + } + + if (mp_cmp (&t2, a) == MP_GT) { + if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) { + goto __T3; + } + } else { + break; + } + } + + /* reset the sign of a first */ + a->sign = neg; + + /* set the result */ + mp_exch (&t1, c); + + /* set the sign of the result */ + c->sign = neg; + + res = MP_OKAY; + +__T3:mp_clear (&t3); +__T2:mp_clear (&t2); +__T1:mp_clear (&t1); + return res; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_neg.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,28 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* b = -a */ +int mp_neg (mp_int * a, mp_int * b) +{ + int res; + if ((res = mp_copy (a, b)) != MP_OKAY) { + return res; + } + if (mp_iszero(b) != MP_YES) { + b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS; + } + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_or.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,44 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* OR two ints together */ +int mp_or (mp_int * a, mp_int * b, mp_int * c) +{ + int res, ix, px; + mp_int t, *x; + + if (a->used > b->used) { + if ((res = mp_init_copy (&t, a)) != MP_OKAY) { + return res; + } + px = b->used; + x = b; + } else { + if ((res = mp_init_copy (&t, b)) != MP_OKAY) { + return res; + } + px = a->used; + x = a; + } + + for (ix = 0; ix < px; ix++) { + t.dp[ix] |= x->dp[ix]; + } + mp_clamp (&t); + mp_exch (c, &t); + mp_clear (&t); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_prime_fermat.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,56 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* performs one Fermat test. + * + * If "a" were prime then b**a == b (mod a) since the order of + * the multiplicative sub-group would be phi(a) = a-1. That means + * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a). + * + * Sets result to 1 if the congruence holds, or zero otherwise. + */ +int mp_prime_fermat (mp_int * a, mp_int * b, int *result) +{ + mp_int t; + int err; + + /* default to composite */ + *result = MP_NO; + + /* ensure b > 1 */ + if (mp_cmp_d(b, 1) != MP_GT) { + return MP_VAL; + } + + /* init t */ + if ((err = mp_init (&t)) != MP_OKAY) { + return err; + } + + /* compute t = b**a mod a */ + if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) { + goto __T; + } + + /* is it equal to b? */ + if (mp_cmp (&t, b) == MP_EQ) { + *result = MP_YES; + } + + err = MP_OKAY; +__T:mp_clear (&t); + return err; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_prime_is_divisible.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,44 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* determines if an integers is divisible by one + * of the first PRIME_SIZE primes or not + * + * sets result to 0 if not, 1 if yes + */ +int mp_prime_is_divisible (mp_int * a, int *result) +{ + int err, ix; + mp_digit res; + + /* default to not */ + *result = MP_NO; + + for (ix = 0; ix < PRIME_SIZE; ix++) { + /* what is a mod __prime_tab[ix] */ + if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) { + return err; + } + + /* is the residue zero? */ + if (res == 0) { + *result = MP_YES; + return MP_OKAY; + } + } + + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_prime_is_prime.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,77 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* performs a variable number of rounds of Miller-Rabin + * + * Probability of error after t rounds is no more than + * (1/4)^t when 1 <= t <= PRIME_SIZE + * + * Sets result to 1 if probably prime, 0 otherwise + */ +int mp_prime_is_prime (mp_int * a, int t, int *result) +{ + mp_int b; + int ix, err, res; + + /* default to no */ + *result = MP_NO; + + /* valid value of t? */ + if (t <= 0 || t > PRIME_SIZE) { + return MP_VAL; + } + + /* is the input equal to one of the primes in the table? */ + for (ix = 0; ix < PRIME_SIZE; ix++) { + if (mp_cmp_d(a, __prime_tab[ix]) == MP_EQ) { + *result = 1; + return MP_OKAY; + } + } + + /* first perform trial division */ + if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) { + return err; + } + + /* return if it was trivially divisible */ + if (res == MP_YES) { + return MP_OKAY; + } + + /* now perform the miller-rabin rounds */ + if ((err = mp_init (&b)) != MP_OKAY) { + return err; + } + + for (ix = 0; ix < t; ix++) { + /* set the prime */ + mp_set (&b, __prime_tab[ix]); + + if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) { + goto __B; + } + + if (res == MP_NO) { + goto __B; + } + } + + /* passed the test */ + *result = MP_YES; +__B:mp_clear (&b); + return err; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_prime_miller_rabin.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,97 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* Miller-Rabin test of "a" to the base of "b" as described in + * HAC pp. 139 Algorithm 4.24 + * + * Sets result to 0 if definitely composite or 1 if probably prime. + * Randomly the chance of error is no more than 1/4 and often + * very much lower. + */ +int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result) +{ + mp_int n1, y, r; + int s, j, err; + + /* default */ + *result = MP_NO; + + /* ensure b > 1 */ + if (mp_cmp_d(b, 1) != MP_GT) { + return MP_VAL; + } + + /* get n1 = a - 1 */ + if ((err = mp_init_copy (&n1, a)) != MP_OKAY) { + return err; + } + if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) { + goto __N1; + } + + /* set 2**s * r = n1 */ + if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) { + goto __N1; + } + + /* count the number of least significant bits + * which are zero + */ + s = mp_cnt_lsb(&r); + + /* now divide n - 1 by 2**s */ + if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) { + goto __R; + } + + /* compute y = b**r mod a */ + if ((err = mp_init (&y)) != MP_OKAY) { + goto __R; + } + if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) { + goto __Y; + } + + /* if y != 1 and y != n1 do */ + if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) { + j = 1; + /* while j <= s-1 and y != n1 */ + while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) { + if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) { + goto __Y; + } + + /* if y == 1 then composite */ + if (mp_cmp_d (&y, 1) == MP_EQ) { + goto __Y; + } + + ++j; + } + + /* if y != n1 then composite */ + if (mp_cmp (&y, &n1) != MP_EQ) { + goto __Y; + } + } + + /* probably prime now */ + *result = MP_YES; +__Y:mp_clear (&y); +__R:mp_clear (&r); +__N1:mp_clear (&n1); + return err; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_prime_next_prime.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,164 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* finds the next prime after the number "a" using "t" trials + * of Miller-Rabin. + * + * bbs_style = 1 means the prime must be congruent to 3 mod 4 + */ +int mp_prime_next_prime(mp_int *a, int t, int bbs_style) +{ + int err, res, x, y; + mp_digit res_tab[PRIME_SIZE], step, kstep; + mp_int b; + + /* ensure t is valid */ + if (t <= 0 || t > PRIME_SIZE) { + return MP_VAL; + } + + /* force positive */ + a->sign = MP_ZPOS; + + /* simple algo if a is less than the largest prime in the table */ + if (mp_cmp_d(a, __prime_tab[PRIME_SIZE-1]) == MP_LT) { + /* find which prime it is bigger than */ + for (x = PRIME_SIZE - 2; x >= 0; x--) { + if (mp_cmp_d(a, __prime_tab[x]) != MP_LT) { + if (bbs_style == 1) { + /* ok we found a prime smaller or + * equal [so the next is larger] + * + * however, the prime must be + * congruent to 3 mod 4 + */ + if ((__prime_tab[x + 1] & 3) != 3) { + /* scan upwards for a prime congruent to 3 mod 4 */ + for (y = x + 1; y < PRIME_SIZE; y++) { + if ((__prime_tab[y] & 3) == 3) { + mp_set(a, __prime_tab[y]); + return MP_OKAY; + } + } + } + } else { + mp_set(a, __prime_tab[x + 1]); + return MP_OKAY; + } + } + } + /* at this point a maybe 1 */ + if (mp_cmp_d(a, 1) == MP_EQ) { + mp_set(a, 2); + return MP_OKAY; + } + /* fall through to the sieve */ + } + + /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */ + if (bbs_style == 1) { + kstep = 4; + } else { + kstep = 2; + } + + /* at this point we will use a combination of a sieve and Miller-Rabin */ + + if (bbs_style == 1) { + /* if a mod 4 != 3 subtract the correct value to make it so */ + if ((a->dp[0] & 3) != 3) { + if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; }; + } + } else { + if (mp_iseven(a) == 1) { + /* force odd */ + if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { + return err; + } + } + } + + /* generate the restable */ + for (x = 1; x < PRIME_SIZE; x++) { + if ((err = mp_mod_d(a, __prime_tab[x], res_tab + x)) != MP_OKAY) { + return err; + } + } + + /* init temp used for Miller-Rabin Testing */ + if ((err = mp_init(&b)) != MP_OKAY) { + return err; + } + + for (;;) { + /* skip to the next non-trivially divisible candidate */ + step = 0; + do { + /* y == 1 if any residue was zero [e.g. cannot be prime] */ + y = 0; + + /* increase step to next candidate */ + step += kstep; + + /* compute the new residue without using division */ + for (x = 1; x < PRIME_SIZE; x++) { + /* add the step to each residue */ + res_tab[x] += kstep; + + /* subtract the modulus [instead of using division] */ + if (res_tab[x] >= __prime_tab[x]) { + res_tab[x] -= __prime_tab[x]; + } + + /* set flag if zero */ + if (res_tab[x] == 0) { + y = 1; + } + } + } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep)); + + /* add the step */ + if ((err = mp_add_d(a, step, a)) != MP_OKAY) { + goto __ERR; + } + + /* if didn't pass sieve and step == MAX then skip test */ + if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) { + continue; + } + + /* is this prime? */ + for (x = 0; x < t; x++) { + mp_set(&b, __prime_tab[t]); + if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { + goto __ERR; + } + if (res == MP_NO) { + break; + } + } + + if (res == MP_YES) { + break; + } + } + + err = MP_OKAY; +__ERR: + mp_clear(&b); + return err; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_prime_random_ex.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,118 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* makes a truly random prime of a given size (bits), + * + * Flags are as follows: + * + * LTM_PRIME_BBS - make prime congruent to 3 mod 4 + * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) + * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero + * LTM_PRIME_2MSB_ON - make the 2nd highest bit one + * + * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can + * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself + * so it can be NULL + * + */ + +/* This is possibly the mother of all prime generation functions, muahahahahaha! */ +int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat) +{ + unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb; + int res, err, bsize, maskOR_msb_offset; + + /* sanity check the input */ + if (size <= 1 || t <= 0) { + return MP_VAL; + } + + /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */ + if (flags & LTM_PRIME_SAFE) { + flags |= LTM_PRIME_BBS; + } + + /* calc the byte size */ + bsize = (size>>3)+(size&7?1:0); + + /* we need a buffer of bsize bytes */ + tmp = OPT_CAST(unsigned char) XMALLOC(bsize); + if (tmp == NULL) { + return MP_MEM; + } + + /* calc the maskAND value for the MSbyte*/ + maskAND = 0xFF >> (8 - (size & 7)); + + /* calc the maskOR_msb */ + maskOR_msb = 0; + maskOR_msb_offset = (size - 2) >> 3; + if (flags & LTM_PRIME_2MSB_ON) { + maskOR_msb |= 1 << ((size - 2) & 7); + } else if (flags & LTM_PRIME_2MSB_OFF) { + maskAND &= ~(1 << ((size - 2) & 7)); + } + + /* get the maskOR_lsb */ + maskOR_lsb = 0; + if (flags & LTM_PRIME_BBS) { + maskOR_lsb |= 3; + } + + do { + /* read the bytes */ + if (cb(tmp, bsize, dat) != bsize) { + err = MP_VAL; + goto error; + } + + /* work over the MSbyte */ + tmp[0] &= maskAND; + tmp[0] |= 1 << ((size - 1) & 7); + + /* mix in the maskORs */ + tmp[maskOR_msb_offset] |= maskOR_msb; + tmp[bsize-1] |= maskOR_lsb; + + /* read it in */ + if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) { goto error; } + + /* is it prime? */ + if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; } + + if (flags & LTM_PRIME_SAFE) { + /* see if (a-1)/2 is prime */ + if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; } + if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; } + + /* is it prime? */ + if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; } + } + } while (res == MP_NO); + + if (flags & LTM_PRIME_SAFE) { + /* restore a to the original value */ + if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; } + if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; } + } + + err = MP_OKAY; +error: + XFREE(tmp); + return err; +} + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_radix_size.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,65 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* returns size of ASCII reprensentation */ +int mp_radix_size (mp_int * a, int radix, int *size) +{ + int res, digs; + mp_int t; + mp_digit d; + + *size = 0; + + /* special case for binary */ + if (radix == 2) { + *size = mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1; + return MP_OKAY; + } + + /* make sure the radix is in range */ + if (radix < 2 || radix > 64) { + return MP_VAL; + } + + /* init a copy of the input */ + if ((res = mp_init_copy (&t, a)) != MP_OKAY) { + return res; + } + + /* digs is the digit count */ + digs = 0; + + /* if it's negative add one for the sign */ + if (t.sign == MP_NEG) { + ++digs; + t.sign = MP_ZPOS; + } + + /* fetch out all of the digits */ + while (mp_iszero (&t) == 0) { + if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) { + mp_clear (&t); + return res; + } + ++digs; + } + mp_clear (&t); + + /* return digs + 1, the 1 is for the NULL byte that would be required. */ + *size = digs + 1; + return MP_OKAY; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_radix_smap.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,18 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* chars used in radix conversions */ +const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_rand.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,49 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* makes a pseudo-random int of a given size */ +int +mp_rand (mp_int * a, int digits) +{ + int res; + mp_digit d; + + mp_zero (a); + if (digits <= 0) { + return MP_OKAY; + } + + /* first place a random non-zero digit */ + do { + d = ((mp_digit) abs (rand ())); + } while (d == 0); + + if ((res = mp_add_d (a, d, a)) != MP_OKAY) { + return res; + } + + while (digits-- > 0) { + if ((res = mp_lshd (a, 1)) != MP_OKAY) { + return res; + } + + if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) { + return res; + } + } + + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_read_radix.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,76 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* read a string [ASCII] in a given radix */ +int mp_read_radix (mp_int * a, char *str, int radix) +{ + int y, res, neg; + char ch; + + /* make sure the radix is ok */ + if (radix < 2 || radix > 64) { + return MP_VAL; + } + + /* if the leading digit is a + * minus set the sign to negative. + */ + if (*str == '-') { + ++str; + neg = MP_NEG; + } else { + neg = MP_ZPOS; + } + + /* set the integer to the default of zero */ + mp_zero (a); + + /* process each digit of the string */ + while (*str) { + /* if the radix < 36 the conversion is case insensitive + * this allows numbers like 1AB and 1ab to represent the same value + * [e.g. in hex] + */ + ch = (char) ((radix < 36) ? toupper (*str) : *str); + for (y = 0; y < 64; y++) { + if (ch == mp_s_rmap[y]) { + break; + } + } + + /* if the char was found in the map + * and is less than the given radix add it + * to the number, otherwise exit the loop. + */ + if (y < radix) { + if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) { + return res; + } + if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) { + return res; + } + } else { + break; + } + ++str; + } + + /* set the sign only if a != 0 */ + if (mp_iszero(a) != 1) { + a->sign = neg; + } + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_read_signed_bin.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,36 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* read signed bin, big endian, first byte is 0==positive or 1==negative */ +int +mp_read_signed_bin (mp_int * a, unsigned char *b, int c) +{ + int res; + + /* read magnitude */ + if ((res = mp_read_unsigned_bin (a, b + 1, c - 1)) != MP_OKAY) { + return res; + } + + /* first byte is 0 for positive, non-zero for negative */ + if (b[0] == 0) { + a->sign = MP_ZPOS; + } else { + a->sign = MP_NEG; + } + + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_read_unsigned_bin.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,50 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* reads a unsigned char array, assumes the msb is stored first [big endian] */ +int +mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c) +{ + int res; + + /* make sure there are at least two digits */ + if (a->alloc < 2) { + if ((res = mp_grow(a, 2)) != MP_OKAY) { + return res; + } + } + + /* zero the int */ + mp_zero (a); + + /* read the bytes in */ + while (c-- > 0) { + if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) { + return res; + } + +#ifndef MP_8BIT + a->dp[0] |= *b++; + a->used += 1; +#else + a->dp[0] = (*b & MP_MASK); + a->dp[1] |= ((*b++ >> 7U) & 1); + a->used += 2; +#endif + } + mp_clamp (a); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_reduce.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,84 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* reduces x mod m, assumes 0 < x < m**2, mu is + * precomputed via mp_reduce_setup. + * From HAC pp.604 Algorithm 14.42 + */ +int +mp_reduce (mp_int * x, mp_int * m, mp_int * mu) +{ + mp_int q; + int res, um = m->used; + + /* q = x */ + if ((res = mp_init_copy (&q, x)) != MP_OKAY) { + return res; + } + + /* q1 = x / b**(k-1) */ + mp_rshd (&q, um - 1); + + /* according to HAC this optimization is ok */ + if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { + if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) { + goto CLEANUP; + } + } else { + if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) { + goto CLEANUP; + } + } + + /* q3 = q2 / b**(k+1) */ + mp_rshd (&q, um + 1); + + /* x = x mod b**(k+1), quick (no division) */ + if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { + goto CLEANUP; + } + + /* q = q * m mod b**(k+1), quick (no division) */ + if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) { + goto CLEANUP; + } + + /* x = x - q */ + if ((res = mp_sub (x, &q, x)) != MP_OKAY) { + goto CLEANUP; + } + + /* If x < 0, add b**(k+1) to it */ + if (mp_cmp_d (x, 0) == MP_LT) { + mp_set (&q, 1); + if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) + goto CLEANUP; + if ((res = mp_add (x, &q, x)) != MP_OKAY) + goto CLEANUP; + } + + /* Back off if it's too big */ + while (mp_cmp (x, m) != MP_LT) { + if ((res = s_mp_sub (x, m, x)) != MP_OKAY) { + goto CLEANUP; + } + } + +CLEANUP: + mp_clear (&q); + + return res; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_reduce_2k.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,56 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* reduces a modulo n where n is of the form 2**p - d */ +int +mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d) +{ + mp_int q; + int p, res; + + if ((res = mp_init(&q)) != MP_OKAY) { + return res; + } + + p = mp_count_bits(n); +top: + /* q = a/2**p, a = a mod 2**p */ + if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { + goto ERR; + } + + if (d != 1) { + /* q = q * d */ + if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { + goto ERR; + } + } + + /* a = a + q */ + if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { + goto ERR; + } + + if (mp_cmp_mag(a, n) != MP_LT) { + s_mp_sub(a, n, a); + goto top; + } + +ERR: + mp_clear(&q); + return res; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_reduce_2k_setup.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,42 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* determines the setup value */ +int +mp_reduce_2k_setup(mp_int *a, mp_digit *d) +{ + int res, p; + mp_int tmp; + + if ((res = mp_init(&tmp)) != MP_OKAY) { + return res; + } + + p = mp_count_bits(a); + if ((res = mp_2expt(&tmp, p)) != MP_OKAY) { + mp_clear(&tmp); + return res; + } + + if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) { + mp_clear(&tmp); + return res; + } + + *d = tmp.dp[0]; + mp_clear(&tmp); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_reduce_is_2k.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,45 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* determines if mp_reduce_2k can be used */ +int mp_reduce_is_2k(mp_int *a) +{ + int ix, iy, iz, iw; + + if (a->used == 0) { + return 0; + } else if (a->used == 1) { + return 1; + } else if (a->used > 1) { + iy = mp_count_bits(a); + iz = 1; + iw = 1; + + /* Test every bit from the second digit up, must be 1 */ + for (ix = DIGIT_BIT; ix < iy; ix++) { + if ((a->dp[iw] & iz) == 0) { + return 0; + } + iz <<= 1; + if (iz > (int)MP_MASK) { + ++iw; + iz = 1; + } + } + } + return 1; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_reduce_setup.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,29 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* pre-calculate the value required for Barrett reduction + * For a given modulus "b" it calulates the value required in "a" + */ +int +mp_reduce_setup (mp_int * a, mp_int * b) +{ + int res; + + if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) { + return res; + } + return mp_div (a, b, a, NULL); +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_rshd.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,66 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* shift right a certain amount of digits */ +void mp_rshd (mp_int * a, int b) +{ + int x; + + /* if b <= 0 then ignore it */ + if (b <= 0) { + return; + } + + /* if b > used then simply zero it and return */ + if (a->used <= b) { + mp_zero (a); + return; + } + + { + register mp_digit *bottom, *top; + + /* shift the digits down */ + + /* bottom */ + bottom = a->dp; + + /* top [offset into digits] */ + top = a->dp + b; + + /* this is implemented as a sliding window where + * the window is b-digits long and digits from + * the top of the window are copied to the bottom + * + * e.g. + + b-2 | b-1 | b0 | b1 | b2 | ... | bb | ----> + /\ | ----> + \-------------------/ ----> + */ + for (x = 0; x < (a->used - b); x++) { + *bottom++ = *top++; + } + + /* zero the top digits */ + for (; x < a->used; x++) { + *bottom++ = 0; + } + } + + /* remove excess digits */ + a->used -= b; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_set.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,23 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* set to a digit */ +void mp_set (mp_int * a, mp_digit b) +{ + mp_zero (a); + a->dp[0] = b & MP_MASK; + a->used = (a->dp[0] != 0) ? 1 : 0; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_set_int.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,42 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* set a 32-bit const */ +int mp_set_int (mp_int * a, unsigned long b) +{ + int x, res; + + mp_zero (a); + + /* set four bits at a time */ + for (x = 0; x < 8; x++) { + /* shift the number up four bits */ + if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) { + return res; + } + + /* OR in the top four bits of the source */ + a->dp[0] |= (b >> 28) & 15; + + /* shift the source up to the next four bits */ + b <<= 4; + + /* ensure that digits are not clamped off */ + a->used += 1; + } + mp_clamp (a); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_shrink.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,29 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* shrink a bignum */ +int mp_shrink (mp_int * a) +{ + mp_digit *tmp; + if (a->alloc != a->used && a->used > 0) { + if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * a->used)) == NULL) { + return MP_MEM; + } + a->dp = tmp; + a->alloc = a->used; + } + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_signed_bin_size.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,21 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* get the size for an signed equivalent */ +int mp_signed_bin_size (mp_int * a) +{ + return 1 + mp_unsigned_bin_size (a); +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_sqr.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,41 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* computes b = a*a */ +int +mp_sqr (mp_int * a, mp_int * b) +{ + int res; + + /* use Toom-Cook? */ + if (a->used >= TOOM_SQR_CUTOFF) { + res = mp_toom_sqr(a, b); + /* Karatsuba? */ + } else if (a->used >= KARATSUBA_SQR_CUTOFF) { + res = mp_karatsuba_sqr (a, b); + } else { + /* can we use the fast comba multiplier? */ + if ((a->used * 2 + 1) < MP_WARRAY && + a->used < + (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) { + res = fast_s_mp_sqr (a, b); + } else { + res = s_mp_sqr (a, b); + } + } + b->sign = MP_ZPOS; + return res; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_sqrmod.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,35 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* c = a * a (mod b) */ +int +mp_sqrmod (mp_int * a, mp_int * b, mp_int * c) +{ + int res; + mp_int t; + + if ((res = mp_init (&t)) != MP_OKAY) { + return res; + } + + if ((res = mp_sqr (a, &t)) != MP_OKAY) { + mp_clear (&t); + return res; + } + res = mp_mod (&t, b, c); + mp_clear (&t); + return res; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_sqrt.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,75 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* this function is less generic than mp_n_root, simpler and faster */ +int mp_sqrt(mp_int *arg, mp_int *ret) +{ + int res; + mp_int t1,t2; + + /* must be positive */ + if (arg->sign == MP_NEG) { + return MP_VAL; + } + + /* easy out */ + if (mp_iszero(arg) == MP_YES) { + mp_zero(ret); + return MP_OKAY; + } + + if ((res = mp_init_copy(&t1, arg)) != MP_OKAY) { + return res; + } + + if ((res = mp_init(&t2)) != MP_OKAY) { + goto E2; + } + + /* First approx. (not very bad for large arg) */ + mp_rshd (&t1,t1.used/2); + + /* t1 > 0 */ + if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) { + goto E1; + } + if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) { + goto E1; + } + if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) { + goto E1; + } + /* And now t1 > sqrt(arg) */ + do { + if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) { + goto E1; + } + if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) { + goto E1; + } + if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) { + goto E1; + } + /* t1 >= sqrt(arg) >= t2 at this point */ + } while (mp_cmp_mag(&t1,&t2) == MP_GT); + + mp_exch(&t1,ret); + +E1: mp_clear(&t2); +E2: mp_clear(&t1); + return res; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_sub.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,53 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* high level subtraction (handles signs) */ +int +mp_sub (mp_int * a, mp_int * b, mp_int * c) +{ + int sa, sb, res; + + sa = a->sign; + sb = b->sign; + + if (sa != sb) { + /* subtract a negative from a positive, OR */ + /* subtract a positive from a negative. */ + /* In either case, ADD their magnitudes, */ + /* and use the sign of the first number. */ + c->sign = sa; + res = s_mp_add (a, b, c); + } else { + /* subtract a positive from a positive, OR */ + /* subtract a negative from a negative. */ + /* First, take the difference between their */ + /* magnitudes, then... */ + if (mp_cmp_mag (a, b) != MP_LT) { + /* Copy the sign from the first */ + c->sign = sa; + /* The first has a larger or equal magnitude */ + res = s_mp_sub (a, b, c); + } else { + /* The result has the *opposite* sign from */ + /* the first number. */ + c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS; + /* The second has a larger magnitude */ + res = s_mp_sub (b, a, c); + } + } + return res; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_sub_d.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,83 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* single digit subtraction */ +int +mp_sub_d (mp_int * a, mp_digit b, mp_int * c) +{ + mp_digit *tmpa, *tmpc, mu; + int res, ix, oldused; + + /* grow c as required */ + if (c->alloc < a->used + 1) { + if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { + return res; + } + } + + /* if a is negative just do an unsigned + * addition [with fudged signs] + */ + if (a->sign == MP_NEG) { + a->sign = MP_ZPOS; + res = mp_add_d(a, b, c); + a->sign = c->sign = MP_NEG; + return res; + } + + /* setup regs */ + oldused = c->used; + tmpa = a->dp; + tmpc = c->dp; + + /* if a <= b simply fix the single digit */ + if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) { + if (a->used == 1) { + *tmpc++ = b - *tmpa; + } else { + *tmpc++ = b; + } + ix = 1; + + /* negative/1digit */ + c->sign = MP_NEG; + c->used = 1; + } else { + /* positive/size */ + c->sign = MP_ZPOS; + c->used = a->used; + + /* subtract first digit */ + *tmpc = *tmpa++ - b; + mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1); + *tmpc++ &= MP_MASK; + + /* handle rest of the digits */ + for (ix = 1; ix < a->used; ix++) { + *tmpc = *tmpa++ - mu; + mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1); + *tmpc++ &= MP_MASK; + } + } + + /* zero excess digits */ + while (ix++ < oldused) { + *tmpc++ = 0; + } + mp_clamp(c); + return MP_OKAY; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_submod.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,36 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* d = a - b (mod c) */ +int +mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) +{ + int res; + mp_int t; + + + if ((res = mp_init (&t)) != MP_OKAY) { + return res; + } + + if ((res = mp_sub (a, b, &t)) != MP_OKAY) { + mp_clear (&t); + return res; + } + res = mp_mod (&t, c, d); + mp_clear (&t); + return res; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_to_signed_bin.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,28 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* store in signed [big endian] format */ +int +mp_to_signed_bin (mp_int * a, unsigned char *b) +{ + int res; + + if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) { + return res; + } + b[0] = (unsigned char) ((a->sign == MP_ZPOS) ? 0 : 1); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_to_unsigned_bin.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,43 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* store in unsigned [big endian] format */ +int +mp_to_unsigned_bin (mp_int * a, unsigned char *b) +{ + int x, res; + mp_int t; + + if ((res = mp_init_copy (&t, a)) != MP_OKAY) { + return res; + } + + x = 0; + while (mp_iszero (&t) == 0) { +#ifndef MP_8BIT + b[x++] = (unsigned char) (t.dp[0] & 255); +#else + b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7)); +#endif + if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) { + mp_clear (&t); + return res; + } + } + bn_reverse (b, x); + mp_clear (&t); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_toom_mul.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,272 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* multiplication using the Toom-Cook 3-way algorithm */ +int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) +{ + mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2; + int res, B; + + /* init temps */ + if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, + &a0, &a1, &a2, &b0, &b1, + &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) { + return res; + } + + /* B */ + B = MIN(a->used, b->used) / 3; + + /* a = a2 * B**2 + a1 * B + a0 */ + if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) { + goto ERR; + } + + if ((res = mp_copy(a, &a1)) != MP_OKAY) { + goto ERR; + } + mp_rshd(&a1, B); + mp_mod_2d(&a1, DIGIT_BIT * B, &a1); + + if ((res = mp_copy(a, &a2)) != MP_OKAY) { + goto ERR; + } + mp_rshd(&a2, B*2); + + /* b = b2 * B**2 + b1 * B + b0 */ + if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) { + goto ERR; + } + + if ((res = mp_copy(b, &b1)) != MP_OKAY) { + goto ERR; + } + mp_rshd(&b1, B); + mp_mod_2d(&b1, DIGIT_BIT * B, &b1); + + if ((res = mp_copy(b, &b2)) != MP_OKAY) { + goto ERR; + } + mp_rshd(&b2, B*2); + + /* w0 = a0*b0 */ + if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) { + goto ERR; + } + + /* w4 = a2 * b2 */ + if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) { + goto ERR; + } + + /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */ + if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) { + goto ERR; + } + + if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) { + goto ERR; + } + + if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) { + goto ERR; + } + + /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */ + if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { + goto ERR; + } + + if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) { + goto ERR; + } + + if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) { + goto ERR; + } + + + /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */ + if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) { + goto ERR; + } + + /* now solve the matrix + + 0 0 0 0 1 + 1 2 4 8 16 + 1 1 1 1 1 + 16 8 4 2 1 + 1 0 0 0 0 + + using 12 subtractions, 4 shifts, + 2 small divisions and 1 small multiplication + */ + + /* r1 - r4 */ + if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3 - r0 */ + if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { + goto ERR; + } + /* r1/2 */ + if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3/2 */ + if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { + goto ERR; + } + /* r2 - r0 - r4 */ + if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { + goto ERR; + } + /* r1 - r2 */ + if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3 - r2 */ + if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { + goto ERR; + } + /* r1 - 8r0 */ + if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3 - 8r4 */ + if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { + goto ERR; + } + /* 3r2 - r1 - r3 */ + if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { + goto ERR; + } + /* r1 - r2 */ + if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3 - r2 */ + if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { + goto ERR; + } + /* r1/3 */ + if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { + goto ERR; + } + /* r3/3 */ + if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { + goto ERR; + } + + /* at this point shift W[n] by B*n */ + if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) { + goto ERR; + } + + if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) { + goto ERR; + } + +ERR: + mp_clear_multi(&w0, &w1, &w2, &w3, &w4, + &a0, &a1, &a2, &b0, &b1, + &b2, &tmp1, &tmp2, NULL); + return res; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_toom_sqr.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,220 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* squaring using Toom-Cook 3-way algorithm */ +int +mp_toom_sqr(mp_int *a, mp_int *b) +{ + mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2; + int res, B; + + /* init temps */ + if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) { + return res; + } + + /* B */ + B = a->used / 3; + + /* a = a2 * B**2 + a1 * B + a0 */ + if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) { + goto ERR; + } + + if ((res = mp_copy(a, &a1)) != MP_OKAY) { + goto ERR; + } + mp_rshd(&a1, B); + mp_mod_2d(&a1, DIGIT_BIT * B, &a1); + + if ((res = mp_copy(a, &a2)) != MP_OKAY) { + goto ERR; + } + mp_rshd(&a2, B*2); + + /* w0 = a0*a0 */ + if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) { + goto ERR; + } + + /* w4 = a2 * a2 */ + if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) { + goto ERR; + } + + /* w1 = (a2 + 2(a1 + 2a0))**2 */ + if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) { + goto ERR; + } + + if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) { + goto ERR; + } + + /* w3 = (a0 + 2(a1 + 2a2))**2 */ + if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { + goto ERR; + } + + if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) { + goto ERR; + } + + + /* w2 = (a2 + a1 + a0)**2 */ + if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) { + goto ERR; + } + + /* now solve the matrix + + 0 0 0 0 1 + 1 2 4 8 16 + 1 1 1 1 1 + 16 8 4 2 1 + 1 0 0 0 0 + + using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication. + */ + + /* r1 - r4 */ + if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3 - r0 */ + if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { + goto ERR; + } + /* r1/2 */ + if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3/2 */ + if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { + goto ERR; + } + /* r2 - r0 - r4 */ + if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { + goto ERR; + } + /* r1 - r2 */ + if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3 - r2 */ + if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { + goto ERR; + } + /* r1 - 8r0 */ + if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3 - 8r4 */ + if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { + goto ERR; + } + /* 3r2 - r1 - r3 */ + if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { + goto ERR; + } + /* r1 - r2 */ + if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3 - r2 */ + if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { + goto ERR; + } + /* r1/3 */ + if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { + goto ERR; + } + /* r3/3 */ + if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { + goto ERR; + } + + /* at this point shift W[n] by B*n */ + if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) { + goto ERR; + } + + if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) { + goto ERR; + } + +ERR: + mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL); + return res; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_toradix.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,69 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* stores a bignum as a ASCII string in a given radix (2..64) */ +int mp_toradix (mp_int * a, char *str, int radix) +{ + int res, digs; + mp_int t; + mp_digit d; + char *_s = str; + + /* check range of the radix */ + if (radix < 2 || radix > 64) { + return MP_VAL; + } + + /* quick out if its zero */ + if (mp_iszero(a) == 1) { + *str++ = '0'; + *str = '\0'; + return MP_OKAY; + } + + if ((res = mp_init_copy (&t, a)) != MP_OKAY) { + return res; + } + + /* if it is negative output a - */ + if (t.sign == MP_NEG) { + ++_s; + *str++ = '-'; + t.sign = MP_ZPOS; + } + + digs = 0; + while (mp_iszero (&t) == 0) { + if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) { + mp_clear (&t); + return res; + } + *str++ = mp_s_rmap[d]; + ++digs; + } + + /* reverse the digits of the string. In this case _s points + * to the first digit [exluding the sign] of the number] + */ + bn_reverse ((unsigned char *)_s, digs); + + /* append a NULL so the string is properly terminated */ + *str = '\0'; + + mp_clear (&t); + return MP_OKAY; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_toradix_n.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,83 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* stores a bignum as a ASCII string in a given radix (2..64) + * + * Stores upto maxlen-1 chars and always a NULL byte + */ +int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen) +{ + int res, digs; + mp_int t; + mp_digit d; + char *_s = str; + + /* check range of the maxlen, radix */ + if (maxlen < 3 || radix < 2 || radix > 64) { + return MP_VAL; + } + + /* quick out if its zero */ + if (mp_iszero(a) == 1) { + *str++ = '0'; + *str = '\0'; + return MP_OKAY; + } + + if ((res = mp_init_copy (&t, a)) != MP_OKAY) { + return res; + } + + /* if it is negative output a - */ + if (t.sign == MP_NEG) { + /* we have to reverse our digits later... but not the - sign!! */ + ++_s; + + /* store the flag and mark the number as positive */ + *str++ = '-'; + t.sign = MP_ZPOS; + + /* subtract a char */ + --maxlen; + } + + digs = 0; + while (mp_iszero (&t) == 0) { + if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) { + mp_clear (&t); + return res; + } + *str++ = mp_s_rmap[d]; + ++digs; + + if (--maxlen == 1) { + /* no more room */ + break; + } + } + + /* reverse the digits of the string. In this case _s points + * to the first digit [exluding the sign] of the number] + */ + bn_reverse ((unsigned char *)_s, digs); + + /* append a NULL so the string is properly terminated */ + *str = '\0'; + + mp_clear (&t); + return MP_OKAY; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_unsigned_bin_size.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,23 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* get the size for an unsigned equivalent */ +int +mp_unsigned_bin_size (mp_int * a) +{ + int size = mp_count_bits (a); + return (size / 8 + ((size & 7) != 0 ? 1 : 0)); +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_xor.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,45 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* XOR two ints together */ +int +mp_xor (mp_int * a, mp_int * b, mp_int * c) +{ + int res, ix, px; + mp_int t, *x; + + if (a->used > b->used) { + if ((res = mp_init_copy (&t, a)) != MP_OKAY) { + return res; + } + px = b->used; + x = b; + } else { + if ((res = mp_init_copy (&t, b)) != MP_OKAY) { + return res; + } + px = a->used; + x = a; + } + + for (ix = 0; ix < px; ix++) { + t.dp[ix] ^= x->dp[ix]; + } + mp_clamp (&t); + mp_exch (c, &t); + mp_clear (&t); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_zero.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,24 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* set to zero */ +void +mp_zero (mp_int * a) +{ + a->sign = MP_ZPOS; + a->used = 0; + memset (a->dp, 0, sizeof (mp_digit) * a->alloc); +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_prime_sizes_tab.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,51 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* this table gives the # of rabin miller trials for a prob of failure lower than 2^-96 */ +static const struct { + int k, t; +} sizes[] = { +{ 128, 28 }, +{ 256, 16 }, +{ 384, 10 }, +{ 512, 7 }, +{ 640, 6 }, +{ 768, 5 }, +{ 896, 4 }, +{ 1024, 4 }, +{ 1152, 3 }, +{ 1280, 3 }, +{ 1408, 3 }, +{ 1536, 3 }, +{ 1664, 3 }, +{ 1792, 2 } }; + +/* returns # of RM trials required for a given bit size */ +int mp_prime_rabin_miller_trials(int size) +{ + int x; + + for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) { + if (sizes[x].k == size) { + return sizes[x].t; + } else if (sizes[x].k > size) { + return (x == 0) ? sizes[0].t : sizes[x - 1].t; + } + } + return 1; +} + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_prime_tab.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,55 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> +const mp_digit __prime_tab[] = { + 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013, + 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035, + 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059, + 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, +#ifndef MP_8BIT + 0x0083, + 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD, + 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF, + 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107, + 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137, + + 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167, + 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199, + 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9, + 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7, + 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239, + 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265, + 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293, + 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF, + + 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301, + 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B, + 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371, + 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD, + 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5, + 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419, + 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449, + 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B, + + 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7, + 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503, + 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529, + 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F, + 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3, + 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7, + 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623, + 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653 +#endif +};
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_reverse.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,33 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* reverse an array, used for radix code */ +void +bn_reverse (unsigned char *s, int len) +{ + int ix, iy; + unsigned char t; + + ix = 0; + iy = len - 1; + while (ix < iy) { + t = s[ix]; + s[ix] = s[iy]; + s[iy] = t; + ++ix; + --iy; + } +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_s_mp_add.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,103 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* low level addition, based on HAC pp.594, Algorithm 14.7 */ +int +s_mp_add (mp_int * a, mp_int * b, mp_int * c) +{ + mp_int *x; + int olduse, res, min, max; + + /* find sizes, we let |a| <= |b| which means we have to sort + * them. "x" will point to the input with the most digits + */ + if (a->used > b->used) { + min = b->used; + max = a->used; + x = a; + } else { + min = a->used; + max = b->used; + x = b; + } + + /* init result */ + if (c->alloc < max + 1) { + if ((res = mp_grow (c, max + 1)) != MP_OKAY) { + return res; + } + } + + /* get old used digit count and set new one */ + olduse = c->used; + c->used = max + 1; + + { + register mp_digit u, *tmpa, *tmpb, *tmpc; + register int i; + + /* alias for digit pointers */ + + /* first input */ + tmpa = a->dp; + + /* second input */ + tmpb = b->dp; + + /* destination */ + tmpc = c->dp; + + /* zero the carry */ + u = 0; + for (i = 0; i < min; i++) { + /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ + *tmpc = *tmpa++ + *tmpb++ + u; + + /* U = carry bit of T[i] */ + u = *tmpc >> ((mp_digit)DIGIT_BIT); + + /* take away carry bit from T[i] */ + *tmpc++ &= MP_MASK; + } + + /* now copy higher words if any, that is in A+B + * if A or B has more digits add those in + */ + if (min != max) { + for (; i < max; i++) { + /* T[i] = X[i] + U */ + *tmpc = x->dp[i] + u; + + /* U = carry bit of T[i] */ + u = *tmpc >> ((mp_digit)DIGIT_BIT); + + /* take away carry bit from T[i] */ + *tmpc++ &= MP_MASK; + } + } + + /* add carry */ + *tmpc++ = u; + + /* clear digits above oldused */ + for (i = c->used; i < olduse; i++) { + *tmpc++ = 0; + } + } + + mp_clamp (c); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_s_mp_exptmod.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,234 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +#ifdef MP_LOW_MEM + #define TAB_SIZE 32 +#else + #define TAB_SIZE 256 +#endif + +int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) +{ + mp_int M[TAB_SIZE], res, mu; + mp_digit buf; + int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; + + /* find window size */ + x = mp_count_bits (X); + if (x <= 7) { + winsize = 2; + } else if (x <= 36) { + winsize = 3; + } else if (x <= 140) { + winsize = 4; + } else if (x <= 450) { + winsize = 5; + } else if (x <= 1303) { + winsize = 6; + } else if (x <= 3529) { + winsize = 7; + } else { + winsize = 8; + } + +#ifdef MP_LOW_MEM + if (winsize > 5) { + winsize = 5; + } +#endif + + /* init M array */ + /* init first cell */ + if ((err = mp_init(&M[1])) != MP_OKAY) { + return err; + } + + /* now init the second half of the array */ + for (x = 1<<(winsize-1); x < (1 << winsize); x++) { + if ((err = mp_init(&M[x])) != MP_OKAY) { + for (y = 1<<(winsize-1); y < x; y++) { + mp_clear (&M[y]); + } + mp_clear(&M[1]); + return err; + } + } + + /* create mu, used for Barrett reduction */ + if ((err = mp_init (&mu)) != MP_OKAY) { + goto __M; + } + if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { + goto __MU; + } + + /* create M table + * + * The M table contains powers of the base, + * e.g. M[x] = G**x mod P + * + * The first half of the table is not + * computed though accept for M[0] and M[1] + */ + if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { + goto __MU; + } + + /* compute the value at M[1<<(winsize-1)] by squaring + * M[1] (winsize-1) times + */ + if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { + goto __MU; + } + + for (x = 0; x < (winsize - 1); x++) { + if ((err = mp_sqr (&M[1 << (winsize - 1)], + &M[1 << (winsize - 1)])) != MP_OKAY) { + goto __MU; + } + if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { + goto __MU; + } + } + + /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) + * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) + */ + for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { + if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { + goto __MU; + } + if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) { + goto __MU; + } + } + + /* setup result */ + if ((err = mp_init (&res)) != MP_OKAY) { + goto __MU; + } + mp_set (&res, 1); + + /* set initial mode and bit cnt */ + mode = 0; + bitcnt = 1; + buf = 0; + digidx = X->used - 1; + bitcpy = 0; + bitbuf = 0; + + for (;;) { + /* grab next digit as required */ + if (--bitcnt == 0) { + /* if digidx == -1 we are out of digits */ + if (digidx == -1) { + break; + } + /* read next digit and reset the bitcnt */ + buf = X->dp[digidx--]; + bitcnt = (int) DIGIT_BIT; + } + + /* grab the next msb from the exponent */ + y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; + buf <<= (mp_digit)1; + + /* if the bit is zero and mode == 0 then we ignore it + * These represent the leading zero bits before the first 1 bit + * in the exponent. Technically this opt is not required but it + * does lower the # of trivial squaring/reductions used + */ + if (mode == 0 && y == 0) { + continue; + } + + /* if the bit is zero and mode == 1 then we square */ + if (mode == 1 && y == 0) { + if ((err = mp_sqr (&res, &res)) != MP_OKAY) { + goto __RES; + } + if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { + goto __RES; + } + continue; + } + + /* else we add it to the window */ + bitbuf |= (y << (winsize - ++bitcpy)); + mode = 2; + + if (bitcpy == winsize) { + /* ok window is filled so square as required and multiply */ + /* square first */ + for (x = 0; x < winsize; x++) { + if ((err = mp_sqr (&res, &res)) != MP_OKAY) { + goto __RES; + } + if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { + goto __RES; + } + } + + /* then multiply */ + if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { + goto __RES; + } + if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { + goto __RES; + } + + /* empty window and reset */ + bitcpy = 0; + bitbuf = 0; + mode = 1; + } + } + + /* if bits remain then square/multiply */ + if (mode == 2 && bitcpy > 0) { + /* square then multiply if the bit is set */ + for (x = 0; x < bitcpy; x++) { + if ((err = mp_sqr (&res, &res)) != MP_OKAY) { + goto __RES; + } + if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { + goto __RES; + } + + bitbuf <<= 1; + if ((bitbuf & (1 << winsize)) != 0) { + /* then multiply */ + if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { + goto __RES; + } + if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { + goto __RES; + } + } + } + } + + mp_exch (&res, Y); + err = MP_OKAY; +__RES:mp_clear (&res); +__MU:mp_clear (&mu); +__M: + mp_clear(&M[1]); + for (x = 1<<(winsize-1); x < (1 << winsize); x++) { + mp_clear (&M[x]); + } + return err; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_s_mp_mul_digs.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,85 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* multiplies |a| * |b| and only computes upto digs digits of result + * HAC pp. 595, Algorithm 14.12 Modified so you can control how + * many digits of output are created. + */ +int +s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) +{ + mp_int t; + int res, pa, pb, ix, iy; + mp_digit u; + mp_word r; + mp_digit tmpx, *tmpt, *tmpy; + + /* can we use the fast multiplier? */ + if (((digs) < MP_WARRAY) && + MIN (a->used, b->used) < + (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { + return fast_s_mp_mul_digs (a, b, c, digs); + } + + if ((res = mp_init_size (&t, digs)) != MP_OKAY) { + return res; + } + t.used = digs; + + /* compute the digits of the product directly */ + pa = a->used; + for (ix = 0; ix < pa; ix++) { + /* set the carry to zero */ + u = 0; + + /* limit ourselves to making digs digits of output */ + pb = MIN (b->used, digs - ix); + + /* setup some aliases */ + /* copy of the digit from a used within the nested loop */ + tmpx = a->dp[ix]; + + /* an alias for the destination shifted ix places */ + tmpt = t.dp + ix; + + /* an alias for the digits of b */ + tmpy = b->dp; + + /* compute the columns of the output and propagate the carry */ + for (iy = 0; iy < pb; iy++) { + /* compute the column as a mp_word */ + r = ((mp_word)*tmpt) + + ((mp_word)tmpx) * ((mp_word)*tmpy++) + + ((mp_word) u); + + /* the new column is the lower part of the result */ + *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); + + /* get the carry word from the result */ + u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); + } + /* set carry if it is placed below digs */ + if (ix + iy < digs) { + *tmpt = u; + } + } + + mp_clamp (&t); + mp_exch (&t, c); + + mp_clear (&t); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_s_mp_mul_high_digs.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,73 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* multiplies |a| * |b| and does not compute the lower digs digits + * [meant to get the higher part of the product] + */ +int +s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) +{ + mp_int t; + int res, pa, pb, ix, iy; + mp_digit u; + mp_word r; + mp_digit tmpx, *tmpt, *tmpy; + + /* can we use the fast multiplier? */ + if (((a->used + b->used + 1) < MP_WARRAY) + && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { + return fast_s_mp_mul_high_digs (a, b, c, digs); + } + + if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) { + return res; + } + t.used = a->used + b->used + 1; + + pa = a->used; + pb = b->used; + for (ix = 0; ix < pa; ix++) { + /* clear the carry */ + u = 0; + + /* left hand side of A[ix] * B[iy] */ + tmpx = a->dp[ix]; + + /* alias to the address of where the digits will be stored */ + tmpt = &(t.dp[digs]); + + /* alias for where to read the right hand side from */ + tmpy = b->dp + (digs - ix); + + for (iy = digs - ix; iy < pb; iy++) { + /* calculate the double precision result */ + r = ((mp_word)*tmpt) + + ((mp_word)tmpx) * ((mp_word)*tmpy++) + + ((mp_word) u); + + /* get the lower part */ + *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); + + /* carry the carry */ + u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); + } + *tmpt = u; + } + mp_clamp (&t); + mp_exch (&t, c); + mp_clear (&t); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_s_mp_sqr.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,79 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ +int +s_mp_sqr (mp_int * a, mp_int * b) +{ + mp_int t; + int res, ix, iy, pa; + mp_word r; + mp_digit u, tmpx, *tmpt; + + pa = a->used; + if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) { + return res; + } + + /* default used is maximum possible size */ + t.used = 2*pa + 1; + + for (ix = 0; ix < pa; ix++) { + /* first calculate the digit at 2*ix */ + /* calculate double precision result */ + r = ((mp_word) t.dp[2*ix]) + + ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]); + + /* store lower part in result */ + t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK)); + + /* get the carry */ + u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); + + /* left hand side of A[ix] * A[iy] */ + tmpx = a->dp[ix]; + + /* alias for where to store the results */ + tmpt = t.dp + (2*ix + 1); + + for (iy = ix + 1; iy < pa; iy++) { + /* first calculate the product */ + r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]); + + /* now calculate the double precision result, note we use + * addition instead of *2 since it's easier to optimize + */ + r = ((mp_word) *tmpt) + r + r + ((mp_word) u); + + /* store lower part */ + *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); + + /* get carry */ + u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); + } + /* propagate upwards */ + while (u != ((mp_digit) 0)) { + r = ((mp_word) *tmpt) + ((mp_word) u); + *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); + u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); + } + } + + mp_clamp (&t); + mp_exch (&t, b); + mp_clear (&t); + return MP_OKAY; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_s_mp_sub.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,83 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ +int +s_mp_sub (mp_int * a, mp_int * b, mp_int * c) +{ + int olduse, res, min, max; + + /* find sizes */ + min = b->used; + max = a->used; + + /* init result */ + if (c->alloc < max) { + if ((res = mp_grow (c, max)) != MP_OKAY) { + return res; + } + } + olduse = c->used; + c->used = max; + + { + register mp_digit u, *tmpa, *tmpb, *tmpc; + register int i; + + /* alias for digit pointers */ + tmpa = a->dp; + tmpb = b->dp; + tmpc = c->dp; + + /* set carry to zero */ + u = 0; + for (i = 0; i < min; i++) { + /* T[i] = A[i] - B[i] - U */ + *tmpc = *tmpa++ - *tmpb++ - u; + + /* U = carry bit of T[i] + * Note this saves performing an AND operation since + * if a carry does occur it will propagate all the way to the + * MSB. As a result a single shift is enough to get the carry + */ + u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); + + /* Clear carry from T[i] */ + *tmpc++ &= MP_MASK; + } + + /* now copy higher words if any, e.g. if A has more digits than B */ + for (; i < max; i++) { + /* T[i] = A[i] - U */ + *tmpc = *tmpa++ - u; + + /* U = carry bit of T[i] */ + u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); + + /* Clear carry from T[i] */ + *tmpc++ &= MP_MASK; + } + + /* clear digits above used (since we may not have grown result above) */ + for (i = c->used; i < olduse; i++) { + *tmpc++ = 0; + } + } + + mp_clamp (c); + return MP_OKAY; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bncore.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,31 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + +/* Known optimal configurations + + CPU /Compiler /MUL CUTOFF/SQR CUTOFF +------------------------------------------------------------- + Intel P4 /GCC v3.2 / 70/ 108 + AMD Athlon XP /GCC v3.2 / 109/ 127 + +*/ + +/* configured for a AMD XP Thoroughbred core with etc/tune.c */ +int KARATSUBA_MUL_CUTOFF = 109, /* Min. number of digits before Karatsuba multiplication is used. */ + KARATSUBA_SQR_CUTOFF = 127, /* Min. number of digits before Karatsuba squaring is used. */ + + TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */ + TOOM_SQR_CUTOFF = 400;
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/booker.pl Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,261 @@ +#!/bin/perl +# +#Used to prepare the book "tommath.src" for LaTeX by pre-processing it into a .tex file +# +#Essentially you write the "tommath.src" as normal LaTex except where you want code snippets you put +# +#EXAM,file +# +#This preprocessor will then open "file" and insert it as a verbatim copy. +# +#Tom St Denis + +#get graphics type +if (shift =~ /PDF/) { + $graph = ""; +} else { + $graph = ".ps"; +} + +open(IN,"<tommath.src") or die "Can't open source file"; +open(OUT,">tommath.tex") or die "Can't open destination file"; + +print "Scanning for sections\n"; +$chapter = $section = $subsection = 0; +$x = 0; +while (<IN>) { + print "."; + if (!(++$x % 80)) { print "\n"; } + #update the headings + if (~($_ =~ /\*/)) { + if ($_ =~ /\\chapter{.+}/) { + ++$chapter; + $section = $subsection = 0; + } elsif ($_ =~ /\\section{.+}/) { + ++$section; + $subsection = 0; + } elsif ($_ =~ /\\subsection{.+}/) { + ++$subsection; + } + } + + if ($_ =~ m/MARK/) { + @m = split(",",$_); + chomp(@m[1]); + $index1{@m[1]} = $chapter; + $index2{@m[1]} = $section; + $index3{@m[1]} = $subsection; + } +} +close(IN); + +open(IN,"<tommath.src") or die "Can't open source file"; +$readline = $wroteline = 0; +$srcline = 0; + +while (<IN>) { + ++$readline; + ++$srcline; + + if ($_ =~ m/MARK/) { + } elsif ($_ =~ m/EXAM/ || $_ =~ m/LIST/) { + if ($_ =~ m/EXAM/) { + $skipheader = 1; + } else { + $skipheader = 0; + } + + # EXAM,file + chomp($_); + @m = split(",",$_); + open(SRC,"<$m[1]") or die "Error:$srcline:Can't open source file $m[1]"; + + print "$srcline:Inserting $m[1]:"; + + $line = 0; + $tmp = $m[1]; + $tmp =~ s/_/"\\_"/ge; + print OUT "\\vspace{+3mm}\\begin{small}\n\\hspace{-5.1mm}{\\bf File}: $tmp\n\\vspace{-3mm}\n\\begin{alltt}\n"; + $wroteline += 5; + + if ($skipheader == 1) { + # scan till next end of comment, e.g. skip license + while (<SRC>) { + $text[$line++] = $_; + last if ($_ =~ /tommath\.h/); + } + } + + $inline = 0; + while (<SRC>) { + $text[$line++] = $_; + ++$inline; + chomp($_); + $_ =~ s/\t/" "/ge; + $_ =~ s/{/"^{"/ge; + $_ =~ s/}/"^}"/ge; + $_ =~ s/\\/'\symbol{92}'/ge; + $_ =~ s/\^/"\\"/ge; + + printf OUT ("%03d ", $line); + for ($x = 0; $x < length($_); $x++) { + print OUT chr(vec($_, $x, 8)); + if ($x == 75) { + print OUT "\n "; + ++$wroteline; + } + } + print OUT "\n"; + ++$wroteline; + } + $totlines = $line; + print OUT "\\end{alltt}\n\\end{small}\n"; + close(SRC); + print "$inline lines\n"; + $wroteline += 2; + } elsif ($_ =~ m/@\d+,.+@/) { + # line contains [number,text] + # e.g. @14,for (ix = 0)@ + $txt = $_; + while ($txt =~ m/@\d+,.+@/) { + @m = split("@",$txt); # splits into text, one, two + @parms = split(",",$m[1]); # splits one,two into two elements + + # now search from $parms[0] down for $parms[1] + $found1 = 0; + $found2 = 0; + for ($i = $parms[0]; $i < $totlines && $found1 == 0; $i++) { + if ($text[$i] =~ m/\Q$parms[1]\E/) { + $foundline1 = $i + 1; + $found1 = 1; + } + } + + # now search backwards + for ($i = $parms[0] - 1; $i >= 0 && $found2 == 0; $i--) { + if ($text[$i] =~ m/\Q$parms[1]\E/) { + $foundline2 = $i + 1; + $found2 = 1; + } + } + + # now use the closest match or the first if tied + if ($found1 == 1 && $found2 == 0) { + $found = 1; + $foundline = $foundline1; + } elsif ($found1 == 0 && $found2 == 1) { + $found = 1; + $foundline = $foundline2; + } elsif ($found1 == 1 && $found2 == 1) { + $found = 1; + if (($foundline1 - $parms[0]) <= ($parms[0] - $foundline2)) { + $foundline = $foundline1; + } else { + $foundline = $foundline2; + } + } else { + $found = 0; + } + + # if found replace + if ($found == 1) { + $delta = $parms[0] - $foundline; + print "Found replacement tag for \"$parms[1]\" on line $srcline which refers to line $foundline (delta $delta)\n"; + $_ =~ s/@\Q$m[1]\E@/$foundline/; + } else { + print "ERROR: The tag \"$parms[1]\" on line $srcline was not found in the most recently parsed source!\n"; + } + + # remake the rest of the line + $cnt = @m; + $txt = ""; + for ($i = 2; $i < $cnt; $i++) { + $txt = $txt . $m[$i] . "@"; + } + } + print OUT $_; + ++$wroteline; + } elsif ($_ =~ /~.+~/) { + # line contains a ~text~ pair used to refer to indexing :-) + $txt = $_; + while ($txt =~ /~.+~/) { + @m = split("~", $txt); + + # word is the second position + $word = @m[1]; + $a = $index1{$word}; + $b = $index2{$word}; + $c = $index3{$word}; + + # if chapter (a) is zero it wasn't found + if ($a == 0) { + print "ERROR: the tag \"$word\" on line $srcline was not found previously marked.\n"; + } else { + # format the tag as x, x.y or x.y.z depending on the values + $str = $a; + $str = $str . ".$b" if ($b != 0); + $str = $str . ".$c" if ($c != 0); + + if ($b == 0 && $c == 0) { + # its a chapter + if ($a <= 10) { + if ($a == 1) { + $str = "chapter one"; + } elsif ($a == 2) { + $str = "chapter two"; + } elsif ($a == 3) { + $str = "chapter three"; + } elsif ($a == 4) { + $str = "chapter four"; + } elsif ($a == 5) { + $str = "chapter five"; + } elsif ($a == 6) { + $str = "chapter six"; + } elsif ($a == 7) { + $str = "chapter seven"; + } elsif ($a == 8) { + $str = "chapter eight"; + } elsif ($a == 9) { + $str = "chapter nine"; + } elsif ($a == 2) { + $str = "chapter ten"; + } + } else { + $str = "chapter " . $str; + } + } else { + $str = "section " . $str if ($b != 0 && $c == 0); + $str = "sub-section " . $str if ($b != 0 && $c != 0); + } + + #substitute + $_ =~ s/~\Q$word\E~/$str/; + + print "Found replacement tag for marker \"$word\" on line $srcline which refers to $str\n"; + } + + # remake rest of the line + $cnt = @m; + $txt = ""; + for ($i = 2; $i < $cnt; $i++) { + $txt = $txt . $m[$i] . "~"; + } + } + print OUT $_; + ++$wroteline; + } elsif ($_ =~ m/FIGU/) { + # FIGU,file,caption + chomp($_); + @m = split(",", $_); + print OUT "\\begin{center}\n\\begin{figure}[here]\n\\includegraphics{pics/$m[1]$graph}\n"; + print OUT "\\caption{$m[2]}\n\\label{pic:$m[1]}\n\\end{figure}\n\\end{center}\n"; + $wroteline += 4; + } else { + print OUT $_; + ++$wroteline; + } +} +print "Read $readline lines, wrote $wroteline lines\n"; + +close (OUT); +close (IN);
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/changes.txt Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,304 @@ +April 11th, 2004 +v0.30 -- Added "mp_toradix_n" which stores upto "n-1" least significant digits of an mp_int + -- Johan Lindh sent a patch so MSVC wouldn't whine about redefining malloc [in weird dll modes] + -- Henrik Goldman spotted a missing OPT_CAST in mp_fwrite() + -- Tuned tommath.h so that when MP_LOW_MEM is defined MP_PREC shall be reduced. + [I also allow MP_PREC to be externally defined now] + -- Sped up mp_cnt_lsb() by using a 4x4 table [e.g. 4x speedup] + -- Added mp_prime_random_ex() which is a more versatile prime generator accurate to + exact bit lengths (unlike the deprecated but still available mp_prime_random() which + is only accurate to byte lengths). See the new LTM_PRIME_* flags ;-) + -- Alex Polushin contributed an optimized mp_sqrt() as well as mp_get_int() and mp_is_square(). + I've cleaned them all up to be a little more consistent [along with one bug fix] for this release. + -- Added mp_init_set and mp_init_set_int to initialize and set small constants with one function + call. + -- Removed /etclib directory [um LibTomPoly deprecates this]. + -- Fixed mp_mod() so the sign of the result agrees with the sign of the modulus. + ++ N.B. My semester is almost up so expect updates to the textbook to be posted to the libtomcrypt.org + website. + +Jan 25th, 2004 +v0.29 ++ Note: "Henrik" from the v0.28 changelog refers to Henrik Goldman ;-) + -- Added fix to mp_shrink to prevent a realloc when used == 0 [e.g. realloc zero bytes???] + -- Made the mp_prime_rabin_miller_trials() function internal table smaller and also + set the minimum number of tests to two (sounds a bit safer). + -- Added a mp_exteuclid() which computes the extended euclidean algorithm. + -- Fixed a memory leak in s_mp_exptmod() [called when Barrett reduction is to be used] which would arise + if a multiplication or subsequent reduction failed [would not free the temp result]. + -- Made an API change to mp_radix_size(). It now returns an error code and stores the required size + through an "int star" passed to it. + +Dec 24th, 2003 +v0.28 -- Henrik Goldman suggested I add casts to the montomgery code [stores into mu...] so compilers wouldn't + spew [erroneous] diagnostics... fixed. + -- Henrik Goldman also spotted two typos. One in mp_radix_size() and another in mp_toradix(). + -- Added fix to mp_shrink() to avoid a memory leak. + -- Added mp_prime_random() which requires a callback to make truly random primes of a given nature + (idea from chat with Niels Ferguson at Crypto'03) + -- Picked up a second wind. I'm filled with Gooo. Mission Gooo! + -- Removed divisions from mp_reduce_is_2k() + -- Sped up mp_div_d() [general case] to use only one division per digit instead of two. + -- Added the heap macros from LTC to LTM. Now you can easily [by editing four lines of tommath.h] + change the name of the heap functions used in LTM [also compatible with LTC via MPI mode] + -- Added bn_prime_rabin_miller_trials() which gives the number of Rabin-Miller trials to achieve + a failure rate of less than 2^-96 + -- fixed bug in fast_mp_invmod(). The initial testing logic was wrong. An invalid input is not when + "a" and "b" are even it's when "b" is even [the algo is for odd moduli only]. + -- Started a new manual [finally]. It is incomplete and will be finished as time goes on. I had to stop + adding full demos around half way in chapter three so I could at least get a good portion of the + manual done. If you really need help using the library you can always email me! + -- My Textbook is now included as part of the package [all Public Domain] + +Sept 19th, 2003 +v0.27 -- Removed changes.txt~ which was made by accident since "kate" decided it was + a good time to re-enable backups... [kde is fun!] + -- In mp_grow() "a->dp" is not overwritten by realloc call [re: memory leak] + Now if mp_grow() fails the mp_int is still valid and can be cleared via + mp_clear() to reclaim the memory. + -- Henrik Goldman found a buffer overflow bug in mp_add_d(). Fixed. + -- Cleaned up mp_mul_d() to be much easier to read and follow. + +Aug 29th, 2003 +v0.26 -- Fixed typo that caused warning with GCC 3.2 + -- Martin Marcel noticed a bug in mp_neg() that allowed negative zeroes. + Also, Martin is the fellow who noted the bugs in mp_gcd() of 0.24/0.25. + -- Martin Marcel noticed an optimization [and slight bug] in mp_lcm(). + -- Added fix to mp_read_unsigned_bin to prevent a buffer overflow. + -- Beefed up the comments in the baseline multipliers [and montgomery] + -- Added "mont" demo to the makefile.msvc in etc/ + -- Optimized sign compares in mp_cmp from 4 to 2 cases. + +Aug 4th, 2003 +v0.25 -- Fix to mp_gcd again... oops (0,-a) == (-a, 0) == a + -- Fix to mp_clear which didn't reset the sign [Greg Rose] + -- Added mp_error_to_string() to convert return codes to strings. [Greg Rose] + -- Optimized fast_mp_invmod() to do the test for invalid inputs [both even] + first so temps don't have to be initialized if it's going to fail. + -- Optimized mp_gcd() by removing mp_div_2d calls for when one of the inputs + is odd. + -- Tons of new comments, some indentation fixups, etc. + -- mp_jacobi() returns MP_VAL if the modulus is less than or equal to zero. + -- fixed two typos in the header of each file :-) + -- LibTomMath is officially Public Domain [see LICENSE] + +July 15th, 2003 +v0.24 -- Optimized mp_add_d and mp_sub_d to not allocate temporary variables + -- Fixed mp_gcd() so the gcd of 0,0 is 0. Allows the gcd operation to be chained + e.g. (0,0,a) == a [instead of 1] + -- Should be one of the last release for a while. Working on LibTomMath book now. + -- optimized the pprime demo [/etc/pprime.c] to first make a huge table of single + digit primes then it reads them randomly instead of randomly choosing/testing single + digit primes. + +July 12th, 2003 +v0.23 -- Optimized mp_prime_next_prime() to not use mp_mod [via is_divisible()] in each + iteration. Instead now a smaller table is kept of the residues which can be updated + without division. + -- Fixed a bug in next_prime() where an input of zero would be treated as odd and + have two added to it [to move to the next odd]. + -- fixed a bug in prime_fermat() and prime_miller_rabin() which allowed the base + to be negative, zero or one. Normally the test is only valid if the base is + greater than one. + -- changed the next_prime() prototype to accept a new parameter "bbs_style" which + will find the next prime congruent to 3 mod 4. The default [bbs_style==0] will + make primes which are either congruent to 1 or 3 mod 4. + -- fixed mp_read_unsigned_bin() so that it doesn't include both code for + the case DIGIT_BIT < 8 and >= 8 + -- optimized div_d() to easy out on division by 1 [or if a == 0] and use + logical shifts if the divisor is a power of two. + -- the default DIGIT_BIT type was not int for non-default builds. Fixed. + +July 2nd, 2003 +v0.22 -- Fixed up mp_invmod so the result is properly in range now [was always congruent to the inverse...] + -- Fixed up s_mp_exptmod and mp_exptmod_fast so the lower half of the pre-computed table isn't allocated + which makes the algorithm use half as much ram. + -- Fixed the install script not to make the book :-) [which isn't included anyways] + -- added mp_cnt_lsb() which counts how many of the lsbs are zero + -- optimized mp_gcd() to use the new mp_cnt_lsb() to replace multiple divisions by two by a single division. + -- applied similar optimization to mp_prime_miller_rabin(). + -- Fixed a bug in both mp_invmod() and fast_mp_invmod() which tested for odd + via "mp_iseven() == 0" which is not valid [since zero is not even either]. + +June 19th, 2003 +v0.21 -- Fixed bug in mp_mul_d which would not handle sign correctly [would not always forward it] + -- Removed the #line lines from gen.pl [was in violation of ISO C] + +June 8th, 2003 +v0.20 -- Removed the book from the package. Added the TDCAL license document. + -- This release is officially pure-bred TDCAL again [last officially TDCAL based release was v0.16] + +June 6th, 2003 +v0.19 -- Fixed a bug in mp_montgomery_reduce() which was introduced when I tweaked mp_rshd() in the previous release. + Essentially the digits were not trimmed before the compare which cause a subtraction to occur all the time. + -- Fixed up etc/tune.c a bit to stop testing new cutoffs after 16 failures [to find more optimal points]. + Brute force ho! + + +May 29th, 2003 +v0.18 -- Fixed a bug in s_mp_sqr which would handle carries properly just not very elegantly. + (e.g. correct result, just bad looking code) + -- Fixed bug in mp_sqr which still had a 512 constant instead of MP_WARRAY + -- Added Toom-Cook multipliers [needs tuning!] + -- Added efficient divide by 3 algorithm mp_div_3 + -- Re-wrote mp_div_d to be faster than calling mp_div + -- Added in a donated BCC makefile and a single page LTM poster ([email protected]) + -- Added mp_reduce_2k which reduces an input modulo n = 2**p - k for any single digit k + -- Made the exptmod system be aware of the 2k reduction algorithms. + -- Rewrote mp_dr_reduce to be smaller, simpler and easier to understand. + +May 17th, 2003 +v0.17 -- Benjamin Goldberg submitted optimized mp_add and mp_sub routines. A new gen.pl as well + as several smaller suggestions. Thanks! + -- removed call to mp_cmp in inner loop of mp_div and put mp_cmp_mag in its place :-) + -- Fixed bug in mp_exptmod that would cause it to fail for odd moduli when DIGIT_BIT != 28 + -- mp_exptmod now also returns errors if the modulus is negative and will handle negative exponents + -- mp_prime_is_prime will now return true if the input is one of the primes in the prime table + -- Damian M Gryski ([email protected]) found a index out of bounds error in the + mp_fast_s_mp_mul_high_digs function which didn't come up before. (fixed) + -- Refactored the DR reduction code so there is only one function per file. + -- Fixed bug in the mp_mul() which would erroneously avoid the faster multiplier [comba] when it was + allowed. The bug would not cause the incorrect value to be produced just less efficient (fixed) + -- Fixed similar bug in the Montgomery reduction code. + -- Added tons of (mp_digit) casts so the 7/15/28/31 bit digit code will work flawlessly out of the box. + Also added limited support for 64-bit machines with a 60-bit digit. Both thanks to Tom Wu ([email protected]) + -- Added new comments here and there, cleaned up some code [style stuff] + -- Fixed a lingering typo in mp_exptmod* that would set bitcnt to zero then one. Very silly stuff :-) + -- Fixed up mp_exptmod_fast so it would set "redux" to the comba Montgomery reduction if allowed. This + saves quite a few calls and if statements. + -- Added etc/mont.c a test of the Montgomery reduction [assuming all else works :-| ] + -- Fixed up etc/tune.c to use a wider test range [more appropriate] also added a x86 based addition which + uses RDTSC for high precision timing. + -- Updated demo/demo.c to remove MPI stuff [won't work anyways], made the tests run for 2 seconds each so its + not so insanely slow. Also made the output space delimited [and fixed up various errors] + -- Added logs directory, logs/graph.dem which will use gnuplot to make a series of PNG files + that go with the pre-made index.html. You have to build [via make timing] and run ltmtest first in the + root of the package. + -- Fixed a bug in mp_sub and mp_add where "-a - -a" or "-a + a" would produce -0 as the result [obviously invalid]. + -- Fixed a bug in mp_rshd. If the count == a.used it should zero/return [instead of shifting] + -- Fixed a "off-by-one" bug in mp_mul2d. The initial size check on alloc would be off by one if the residue + shifting caused a carry. + -- Fixed a bug where s_mp_mul_digs() would not call the Comba based routine if allowed. This made Barrett reduction + slower than it had to be. + +Mar 29th, 2003 +v0.16 -- Sped up mp_div by making normalization one shift call + -- Sped up mp_mul_2d/mp_div_2d by aliasing pointers :-) + -- Cleaned up mp_gcd to use the macros for odd/even detection + -- Added comments here and there, mostly there but occasionally here too. + +Mar 22nd, 2003 +v0.15 -- Added series of prime testing routines to lib + -- Fixed up etc/tune.c + -- Added DR reduction algorithm + -- Beefed up the manual more. + -- Fixed up demo/demo.c so it doesn't have so many warnings and it does the full series of + tests + -- Added "pre-gen" directory which will hold a "gen.pl"'ed copy of the entire lib [done at + zipup time so its always the latest] + -- Added conditional casts for C++ users [boo!] + +Mar 15th, 2003 +v0.14 -- Tons of manual updates + -- cleaned up the directory + -- added MSVC makefiles + -- source changes [that I don't recall] + -- Fixed up the lshd/rshd code to use pointer aliasing + -- Fixed up the mul_2d and div_2d to not call rshd/lshd unless needed + -- Fixed up etc/tune.c a tad + -- fixed up demo/demo.c to output comma-delimited results of timing + also fixed up timing demo to use a finer granularity for various functions + -- fixed up demo/demo.c testing to pause during testing so my Duron won't catch on fire + [stays around 31-35C during testing :-)] + +Feb 13th, 2003 +v0.13 -- tons of minor speed-ups in low level add, sub, mul_2 and div_2 which propagate + to other functions like mp_invmod, mp_div, etc... + -- Sped up mp_exptmod_fast by using new code to find R mod m [e.g. B^n mod m] + -- minor fixes + +Jan 17th, 2003 +v0.12 -- re-wrote the majority of the makefile so its more portable and will + install via "make install" on most *nix platforms + -- Re-packaged all the source as seperate files. Means the library a single + file packagage any more. Instead of just adding "bn.c" you have to add + libtommath.a + -- Renamed "bn.h" to "tommath.h" + -- Changes to the manual to reflect all of this + -- Used GNU Indent to clean up the source + +Jan 15th, 2003 +v0.11 -- More subtle fixes + -- Moved to gentoo linux [hurrah!] so made *nix specific fixes to the make process + -- Sped up the montgomery reduction code quite a bit + -- fixed up demo so when building timing for the x86 it assumes ELF format now + +Jan 9th, 2003 +v0.10 -- Pekka Riikonen suggested fixes to the radix conversion code. + -- Added baseline montgomery and comba montgomery reductions, sped up exptmods + [to a point, see bn.h for MONTGOMERY_EXPT_CUTOFF] + +Jan 6th, 2003 +v0.09 -- Updated the manual to reflect recent changes. :-) + -- Added Jacobi function (mp_jacobi) to supplement the number theory side of the lib + -- Added a Mersenne prime finder demo in ./etc/mersenne.c + +Jan 2nd, 2003 +v0.08 -- Sped up the multipliers by moving the inner loop variables into a smaller scope + -- Corrected a bunch of small "warnings" + -- Added more comments + -- Made "mtest" be able to use /dev/random, /dev/urandom or stdin for RNG data + -- Corrected some bugs where error messages were potentially ignored + -- add etc/pprime.c program which makes numbers which are provably prime. + +Jan 1st, 2003 +v0.07 -- Removed alot of heap operations from core functions to speed them up + -- Added a root finding function [and mp_sqrt macro like from MPI] + -- Added more to manual + +Dec 31st, 2002 +v0.06 -- Sped up the s_mp_add, s_mp_sub which inturn sped up mp_invmod, mp_exptmod, etc... + -- Cleaned up the header a bit more + +Dec 30th, 2002 +v0.05 -- Builds with MSVC out of the box + -- Fixed a bug in mp_invmod w.r.t. even moduli + -- Made mp_toradix and mp_read_radix use char instead of unsigned char arrays + -- Fixed up exptmod to use fewer multiplications + -- Fixed up mp_init_size to use only one heap operation + -- Note there is a slight "off-by-one" bug in the library somewhere + without the padding (see the source for comment) the library + crashes in libtomcrypt. Anyways a reasonable workaround is to pad the + numbers which will always correct it since as the numbers grow the padding + will still be beyond the end of the number + -- Added more to the manual + +Dec 29th, 2002 +v0.04 -- Fixed a memory leak in mp_to_unsigned_bin + -- optimized invmod code + -- Fixed bug in mp_div + -- use exchange instead of copy for results + -- added a bit more to the manual + +Dec 27th, 2002 +v0.03 -- Sped up s_mp_mul_high_digs by not computing the carries of the lower digits + -- Fixed a bug where mp_set_int wouldn't zero the value first and set the used member. + -- fixed a bug in s_mp_mul_high_digs where the limit placed on the result digits was not calculated properly + -- fixed bugs in add/sub/mul/sqr_mod functions where if the modulus and dest were the same it wouldn't work + -- fixed a bug in mp_mod and mp_mod_d concerning negative inputs + -- mp_mul_d didn't preserve sign + -- Many many many many fixes + -- Works in LibTomCrypt now :-) + -- Added iterations to the timing demos... more accurate. + -- Tom needs a job. + +Dec 26th, 2002 +v0.02 -- Fixed a few "slips" in the manual. This is "LibTomMath" afterall :-) + -- Added mp_cmp_mag, mp_neg, mp_abs and mp_radix_size that were missing. + -- Sped up the fast [comba] multipliers more [yahoo!] + +Dec 25th,2002 +v0.01 -- Initial release. Gimme a break. + -- Todo list, + add details to manual [e.g. algorithms] + more comments in code + example programs
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/demo/demo.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,785 @@ +#include <time.h> + +#define TESTING + +#ifdef IOWNANATHLON +#include <unistd.h> +#define SLEEP sleep(4) +#else +#define SLEEP +#endif + +#include "tommath.h" + +#ifdef TIMER +ulong64 _tt; + +#if defined(__i386__) || defined(_M_IX86) || defined(_M_AMD64) +/* RDTSC from Scott Duplichan */ +static ulong64 TIMFUNC (void) + { + #if defined __GNUC__ + #ifdef __i386__ + ulong64 a; + __asm__ __volatile__ ("rdtsc ":"=A" (a)); + return a; + #else /* gcc-IA64 version */ + unsigned long result; + __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory"); + while (__builtin_expect ((int) result == -1, 0)) + __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory"); + return result; + #endif + + // Microsoft and Intel Windows compilers + #elif defined _M_IX86 + __asm rdtsc + #elif defined _M_AMD64 + return __rdtsc (); + #elif defined _M_IA64 + #if defined __INTEL_COMPILER + #include <ia64intrin.h> + #endif + return __getReg (3116); + #else + #error need rdtsc function for this build + #endif + } +#else +#define TIMFUNC clock +#endif + +ulong64 rdtsc(void) { return TIMFUNC() - _tt; } +void reset(void) { _tt = TIMFUNC(); } + +#endif + +void ndraw(mp_int *a, char *name) +{ + char buf[4096]; + printf("%s: ", name); + mp_toradix(a, buf, 64); + printf("%s\n", buf); +} + +static void draw(mp_int *a) +{ + ndraw(a, ""); +} + + +unsigned long lfsr = 0xAAAAAAAAUL; + +int lbit(void) +{ + if (lfsr & 0x80000000UL) { + lfsr = ((lfsr << 1) ^ 0x8000001BUL) & 0xFFFFFFFFUL; + return 1; + } else { + lfsr <<= 1; + return 0; + } +} + +int myrng(unsigned char *dst, int len, void *dat) +{ + int x; + for (x = 0; x < len; x++) dst[x] = rand() & 0xFF; + return len; +} + + +#define DO2(x) x; x; +#define DO4(x) DO2(x); DO2(x); +#define DO8(x) DO4(x); DO4(x); +#define DO(x) DO8(x); DO8(x); + + char cmd[4096], buf[4096]; +int main(void) +{ + mp_int a, b, c, d, e, f; + unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n, + div2_n, mul2_n, add_d_n, sub_d_n, t; + unsigned rr; + int i, n, err, cnt, ix, old_kara_m, old_kara_s; + +#ifdef TIMER + ulong64 tt, CLK_PER_SEC; + FILE *log, *logb, *logc; +#endif + + mp_init(&a); + mp_init(&b); + mp_init(&c); + mp_init(&d); + mp_init(&e); + mp_init(&f); + + srand(time(NULL)); + +#ifdef TESTING + // test mp_get_int + printf("Testing: mp_get_int\n"); + for(i=0;i<1000;++i) { + t = (unsigned long)rand()*rand()+1; + mp_set_int(&a,t); + if (t!=mp_get_int(&a)) { + printf("mp_get_int() bad result!\n"); + return 1; + } + } + mp_set_int(&a,0); + if (mp_get_int(&a)!=0) + { printf("mp_get_int() bad result!\n"); + return 1; + } + mp_set_int(&a,0xffffffff); + if (mp_get_int(&a)!=0xffffffff) + { printf("mp_get_int() bad result!\n"); + return 1; + } + + // test mp_sqrt + printf("Testing: mp_sqrt\n"); + for (i=0;i<10000;++i) { + printf("%6d\r", i); fflush(stdout); + n = (rand()&15)+1; + mp_rand(&a,n); + if (mp_sqrt(&a,&b) != MP_OKAY) + { printf("mp_sqrt() error!\n"); + return 1; + } + mp_n_root(&a,2,&a); + if (mp_cmp_mag(&b,&a) != MP_EQ) + { printf("mp_sqrt() bad result!\n"); + return 1; + } + } + + printf("\nTesting: mp_is_square\n"); + for (i=0;i<100000;++i) { + printf("%6d\r", i); fflush(stdout); + + /* test mp_is_square false negatives */ + n = (rand()&7)+1; + mp_rand(&a,n); + mp_sqr(&a,&a); + if (mp_is_square(&a,&n)!=MP_OKAY) { + printf("fn:mp_is_square() error!\n"); + return 1; + } + if (n==0) { + printf("fn:mp_is_square() bad result!\n"); + return 1; + } + + /* test for false positives */ + mp_add_d(&a, 1, &a); + if (mp_is_square(&a,&n)!=MP_OKAY) { + printf("fp:mp_is_square() error!\n"); + return 1; + } + if (n==1) { + printf("fp:mp_is_square() bad result!\n"); + return 1; + } + + } + printf("\n\n"); +#endif + +#ifdef TESTING + /* test for size */ + for (ix = 16; ix < 512; ix++) { + printf("Testing (not safe-prime): %9d bits \r", ix); fflush(stdout); + err = mp_prime_random_ex(&a, 8, ix, (rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON, myrng, NULL); + if (err != MP_OKAY) { + printf("failed with err code %d\n", err); + return EXIT_FAILURE; + } + if (mp_count_bits(&a) != ix) { + printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix); + return EXIT_FAILURE; + } + } + + for (ix = 16; ix < 512; ix++) { + printf("Testing ( safe-prime): %9d bits \r", ix); fflush(stdout); + err = mp_prime_random_ex(&a, 8, ix, ((rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON)|LTM_PRIME_SAFE, myrng, NULL); + if (err != MP_OKAY) { + printf("failed with err code %d\n", err); + return EXIT_FAILURE; + } + if (mp_count_bits(&a) != ix) { + printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix); + return EXIT_FAILURE; + } + /* let's see if it's really a safe prime */ + mp_sub_d(&a, 1, &a); + mp_div_2(&a, &a); + mp_prime_is_prime(&a, 8, &cnt); + if (cnt != MP_YES) { + printf("sub is not prime!\n"); + return EXIT_FAILURE; + } + } + + printf("\n\n"); +#endif + +#ifdef TESTING + mp_read_radix(&a, "123456", 10); + mp_toradix_n(&a, buf, 10, 3); + printf("a == %s\n", buf); + mp_toradix_n(&a, buf, 10, 4); + printf("a == %s\n", buf); + mp_toradix_n(&a, buf, 10, 30); + printf("a == %s\n", buf); +#endif + + +#if 0 + for (;;) { + fgets(buf, sizeof(buf), stdin); + mp_read_radix(&a, buf, 10); + mp_prime_next_prime(&a, 5, 1); + mp_toradix(&a, buf, 10); + printf("%s, %lu\n", buf, a.dp[0] & 3); + } +#endif + +#if 0 +{ + mp_word aa, bb; + + for (;;) { + aa = abs(rand()) & MP_MASK; + bb = abs(rand()) & MP_MASK; + if (MULT(aa,bb) != (aa*bb)) { + printf("%llu * %llu == %llu or %llu?\n", aa, bb, (ulong64)MULT(aa,bb), (ulong64)(aa*bb)); + return 0; + } + } +} +#endif + +#ifdef TESTING + /* test mp_cnt_lsb */ + printf("testing mp_cnt_lsb...\n"); + mp_set(&a, 1); + for (ix = 0; ix < 1024; ix++) { + if (mp_cnt_lsb(&a) != ix) { + printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a)); + return 0; + } + mp_mul_2(&a, &a); + } +#endif + +/* test mp_reduce_2k */ +#ifdef TESTING + printf("Testing mp_reduce_2k...\n"); + for (cnt = 3; cnt <= 384; ++cnt) { + mp_digit tmp; + mp_2expt(&a, cnt); + mp_sub_d(&a, 2, &a); /* a = 2**cnt - 2 */ + + + printf("\nTesting %4d bits", cnt); + printf("(%d)", mp_reduce_is_2k(&a)); + mp_reduce_2k_setup(&a, &tmp); + printf("(%d)", tmp); + for (ix = 0; ix < 10000; ix++) { + if (!(ix & 127)) {printf("."); fflush(stdout); } + mp_rand(&b, (cnt/DIGIT_BIT + 1) * 2); + mp_copy(&c, &b); + mp_mod(&c, &a, &c); + mp_reduce_2k(&b, &a, 1); + if (mp_cmp(&c, &b)) { + printf("FAILED\n"); + exit(0); + } + } + } +#endif + + +/* test mp_div_3 */ +#ifdef TESTING + printf("Testing mp_div_3...\n"); + mp_set(&d, 3); + for (cnt = 0; cnt < 1000000; ) { + mp_digit r1, r2; + + if (!(++cnt & 127)) printf("%9d\r", cnt); + mp_rand(&a, abs(rand()) % 128 + 1); + mp_div(&a, &d, &b, &e); + mp_div_3(&a, &c, &r2); + + if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) { + printf("\n\nmp_div_3 => Failure\n"); + } + } + printf("\n\nPassed div_3 testing\n"); +#endif + +/* test the DR reduction */ +#ifdef TESTING + printf("testing mp_dr_reduce...\n"); + for (cnt = 2; cnt < 128; cnt++) { + printf("%d digit modulus\n", cnt); + mp_grow(&a, cnt); + mp_zero(&a); + for (ix = 1; ix < cnt; ix++) { + a.dp[ix] = MP_MASK; + } + a.used = cnt; + mp_prime_next_prime(&a, 3, 0); + + mp_rand(&b, cnt - 1); + mp_copy(&b, &c); + + rr = 0; + do { + if (!(rr & 127)) { printf("%9lu\r", rr); fflush(stdout); } + mp_sqr(&b, &b); mp_add_d(&b, 1, &b); + mp_copy(&b, &c); + + mp_mod(&b, &a, &b); + mp_dr_reduce(&c, &a, (1<<DIGIT_BIT)-a.dp[0]); + + if (mp_cmp(&b, &c) != MP_EQ) { + printf("Failed on trial %lu\n", rr); exit(-1); + + } + } while (++rr < 100000); + printf("Passed DR test for %d digits\n", cnt); + } +#endif + +#ifdef TIMER + /* temp. turn off TOOM */ + TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000; + + reset(); + sleep(1); + CLK_PER_SEC = rdtsc(); + + printf("CLK_PER_SEC == %lu\n", CLK_PER_SEC); + + + log = fopen("logs/add.log", "w"); + for (cnt = 8; cnt <= 128; cnt += 8) { + SLEEP; + mp_rand(&a, cnt); + mp_rand(&b, cnt); + reset(); + rr = 0; + do { + DO(mp_add(&a,&b,&c)); + rr += 16; + } while (rdtsc() < (CLK_PER_SEC * 2)); + tt = rdtsc(); + printf("Adding\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); + fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log); + } + fclose(log); + + log = fopen("logs/sub.log", "w"); + for (cnt = 8; cnt <= 128; cnt += 8) { + SLEEP; + mp_rand(&a, cnt); + mp_rand(&b, cnt); + reset(); + rr = 0; + do { + DO(mp_sub(&a,&b,&c)); + rr += 16; + } while (rdtsc() < (CLK_PER_SEC * 2)); + tt = rdtsc(); + printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); + fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log); + } + fclose(log); + + /* do mult/square twice, first without karatsuba and second with */ +mult_test: + old_kara_m = KARATSUBA_MUL_CUTOFF; + old_kara_s = KARATSUBA_SQR_CUTOFF; + for (ix = 0; ix < 2; ix++) { + printf("With%s Karatsuba\n", (ix==0)?"out":""); + + KARATSUBA_MUL_CUTOFF = (ix==0)?9999:old_kara_m; + KARATSUBA_SQR_CUTOFF = (ix==0)?9999:old_kara_s; + + log = fopen((ix==0)?"logs/mult.log":"logs/mult_kara.log", "w"); + for (cnt = 32; cnt <= 288; cnt += 8) { + SLEEP; + mp_rand(&a, cnt); + mp_rand(&b, cnt); + reset(); + rr = 0; + do { + DO(mp_mul(&a, &b, &c)); + rr += 16; + } while (rdtsc() < (CLK_PER_SEC * 2)); + tt = rdtsc(); + printf("Multiplying\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); + fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log); + } + fclose(log); + + log = fopen((ix==0)?"logs/sqr.log":"logs/sqr_kara.log", "w"); + for (cnt = 32; cnt <= 288; cnt += 8) { + SLEEP; + mp_rand(&a, cnt); + reset(); + rr = 0; + do { + DO(mp_sqr(&a, &b)); + rr += 16; + } while (rdtsc() < (CLK_PER_SEC * 2)); + tt = rdtsc(); + printf("Squaring\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); + fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log); + } + fclose(log); + + } +expt_test: + { + char *primes[] = { + /* 2K moduli mersenne primes */ + "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", + "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127", + "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087", + "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007", + "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071", + "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991", + + /* DR moduli */ + "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079", + "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039", + "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431", + "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783", + "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147", + "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503", + "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679", + + /* generic unrestricted moduli */ + "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203", + "2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487", + "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319", + "47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887", + "436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227", + "11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207", + "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979", + NULL + }; + log = fopen("logs/expt.log", "w"); + logb = fopen("logs/expt_dr.log", "w"); + logc = fopen("logs/expt_2k.log", "w"); + for (n = 0; primes[n]; n++) { + SLEEP; + mp_read_radix(&a, primes[n], 10); + mp_zero(&b); + for (rr = 0; rr < mp_count_bits(&a); rr++) { + mp_mul_2(&b, &b); + b.dp[0] |= lbit(); + b.used += 1; + } + mp_sub_d(&a, 1, &c); + mp_mod(&b, &c, &b); + mp_set(&c, 3); + reset(); + rr = 0; + do { + DO(mp_exptmod(&c, &b, &a, &d)); + rr += 16; + } while (rdtsc() < (CLK_PER_SEC * 2)); + tt = rdtsc(); + mp_sub_d(&a, 1, &e); + mp_sub(&e, &b, &b); + mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */ + mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */ + if (mp_cmp_d(&d, 1)) { + printf("Different (%d)!!!\n", mp_count_bits(&a)); + draw(&d); + exit(0); + } + printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); + fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt); + } + } + fclose(log); + fclose(logb); + fclose(logc); + + log = fopen("logs/invmod.log", "w"); + for (cnt = 4; cnt <= 128; cnt += 4) { + SLEEP; + mp_rand(&a, cnt); + mp_rand(&b, cnt); + + do { + mp_add_d(&b, 1, &b); + mp_gcd(&a, &b, &c); + } while (mp_cmp_d(&c, 1) != MP_EQ); + + reset(); + rr = 0; + do { + DO(mp_invmod(&b, &a, &c)); + rr += 16; + } while (rdtsc() < (CLK_PER_SEC * 2)); + tt = rdtsc(); + mp_mulmod(&b, &c, &a, &d); + if (mp_cmp_d(&d, 1) != MP_EQ) { + printf("Failed to invert\n"); + return 0; + } + printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); + fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt); + } + fclose(log); + + return 0; + +#endif + + div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n = + sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n = sub_d_n= 0; + + /* force KARA and TOOM to enable despite cutoffs */ + KARATSUBA_SQR_CUTOFF = KARATSUBA_MUL_CUTOFF = 110; + TOOM_SQR_CUTOFF = TOOM_MUL_CUTOFF = 150; + + for (;;) { + /* randomly clear and re-init one variable, this has the affect of triming the alloc space */ + switch (abs(rand()) % 7) { + case 0: mp_clear(&a); mp_init(&a); break; + case 1: mp_clear(&b); mp_init(&b); break; + case 2: mp_clear(&c); mp_init(&c); break; + case 3: mp_clear(&d); mp_init(&d); break; + case 4: mp_clear(&e); mp_init(&e); break; + case 5: mp_clear(&f); mp_init(&f); break; + case 6: break; /* don't clear any */ + } + + + printf("%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu ", add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, expt_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n); + fgets(cmd, 4095, stdin); + cmd[strlen(cmd)-1] = 0; + printf("%s ]\r",cmd); fflush(stdout); + if (!strcmp(cmd, "mul2d")) { ++mul2d_n; + fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); + fgets(buf, 4095, stdin); sscanf(buf, "%d", &rr); + fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); + + mp_mul_2d(&a, rr, &a); + a.sign = b.sign; + if (mp_cmp(&a, &b) != MP_EQ) { + printf("mul2d failed, rr == %d\n",rr); + draw(&a); + draw(&b); + return 0; + } + } else if (!strcmp(cmd, "div2d")) { ++div2d_n; + fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); + fgets(buf, 4095, stdin); sscanf(buf, "%d", &rr); + fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); + + mp_div_2d(&a, rr, &a, &e); + a.sign = b.sign; + if (a.used == b.used && a.used == 0) { a.sign = b.sign = MP_ZPOS; } + if (mp_cmp(&a, &b) != MP_EQ) { + printf("div2d failed, rr == %d\n",rr); + draw(&a); + draw(&b); + return 0; + } + } else if (!strcmp(cmd, "add")) { ++add_n; + fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); + mp_copy(&a, &d); + mp_add(&d, &b, &d); + if (mp_cmp(&c, &d) != MP_EQ) { + printf("add %lu failure!\n", add_n); +draw(&a);draw(&b);draw(&c);draw(&d); + return 0; + } + + /* test the sign/unsigned storage functions */ + + rr = mp_signed_bin_size(&c); + mp_to_signed_bin(&c, (unsigned char *)cmd); + memset(cmd+rr, rand()&255, sizeof(cmd)-rr); + mp_read_signed_bin(&d, (unsigned char *)cmd, rr); + if (mp_cmp(&c, &d) != MP_EQ) { + printf("mp_signed_bin failure!\n"); + draw(&c); + draw(&d); + return 0; + } + + + rr = mp_unsigned_bin_size(&c); + mp_to_unsigned_bin(&c, (unsigned char *)cmd); + memset(cmd+rr, rand()&255, sizeof(cmd)-rr); + mp_read_unsigned_bin(&d, (unsigned char *)cmd, rr); + if (mp_cmp_mag(&c, &d) != MP_EQ) { + printf("mp_unsigned_bin failure!\n"); + draw(&c); + draw(&d); + return 0; + } + + } else if (!strcmp(cmd, "sub")) { ++sub_n; + fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); + mp_copy(&a, &d); + mp_sub(&d, &b, &d); + if (mp_cmp(&c, &d) != MP_EQ) { + printf("sub %lu failure!\n", sub_n); +draw(&a);draw(&b);draw(&c);draw(&d); + return 0; + } + } else if (!strcmp(cmd, "mul")) { ++mul_n; + fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); + mp_copy(&a, &d); + mp_mul(&d, &b, &d); + if (mp_cmp(&c, &d) != MP_EQ) { + printf("mul %lu failure!\n", mul_n); +draw(&a);draw(&b);draw(&c);draw(&d); + return 0; + } + } else if (!strcmp(cmd, "div")) { ++div_n; + fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&d, buf, 64); + + mp_div(&a, &b, &e, &f); + if (mp_cmp(&c, &e) != MP_EQ || mp_cmp(&d, &f) != MP_EQ) { + printf("div %lu failure!\n", div_n); +draw(&a);draw(&b);draw(&c);draw(&d); draw(&e); draw(&f); + return 0; + } + + } else if (!strcmp(cmd, "sqr")) { ++sqr_n; + fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); + mp_copy(&a, &c); + mp_sqr(&c, &c); + if (mp_cmp(&b, &c) != MP_EQ) { + printf("sqr %lu failure!\n", sqr_n); +draw(&a);draw(&b);draw(&c); + return 0; + } + } else if (!strcmp(cmd, "gcd")) { ++gcd_n; + fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); + mp_copy(&a, &d); + mp_gcd(&d, &b, &d); + d.sign = c.sign; + if (mp_cmp(&c, &d) != MP_EQ) { + printf("gcd %lu failure!\n", gcd_n); +draw(&a);draw(&b);draw(&c);draw(&d); + return 0; + } + } else if (!strcmp(cmd, "lcm")) { ++lcm_n; + fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); + mp_copy(&a, &d); + mp_lcm(&d, &b, &d); + d.sign = c.sign; + if (mp_cmp(&c, &d) != MP_EQ) { + printf("lcm %lu failure!\n", lcm_n); + draw(&a);draw(&b);draw(&c);draw(&d); + return 0; + } + } else if (!strcmp(cmd, "expt")) { ++expt_n; + fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&d, buf, 64); + mp_copy(&a, &e); + mp_exptmod(&e, &b, &c, &e); + if (mp_cmp(&d, &e) != MP_EQ) { + printf("expt %lu failure!\n", expt_n); + draw(&a);draw(&b);draw(&c);draw(&d); draw(&e); + return 0; + } + } else if (!strcmp(cmd, "invmod")) { ++inv_n; + fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); + mp_invmod(&a, &b, &d); + mp_mulmod(&d,&a,&b,&e); + if (mp_cmp_d(&e, 1) != MP_EQ) { + printf("inv [wrong value from MPI?!] failure\n"); + draw(&a);draw(&b);draw(&c);draw(&d); + mp_gcd(&a, &b, &e); + draw(&e); + return 0; + } + + } else if (!strcmp(cmd, "div2")) { ++div2_n; + fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); + mp_div_2(&a, &c); + if (mp_cmp(&c, &b) != MP_EQ) { + printf("div_2 %lu failure\n", div2_n); + draw(&a); + draw(&b); + draw(&c); + return 0; + } + } else if (!strcmp(cmd, "mul2")) { ++mul2_n; + fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); + fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); + mp_mul_2(&a, &c); + if (mp_cmp(&c, &b) != MP_EQ) { + printf("mul_2 %lu failure\n", mul2_n); + draw(&a); + draw(&b); + draw(&c); + return 0; + } + } else if (!strcmp(cmd, "add_d")) { ++add_d_n; + fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); + fgets(buf, 4095, stdin); sscanf(buf, "%d", &ix); + fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); + mp_add_d(&a, ix, &c); + if (mp_cmp(&b, &c) != MP_EQ) { + printf("add_d %lu failure\n", add_d_n); + draw(&a); + draw(&b); + draw(&c); + printf("d == %d\n", ix); + return 0; + } + } else if (!strcmp(cmd, "sub_d")) { ++sub_d_n; + fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); + fgets(buf, 4095, stdin); sscanf(buf, "%d", &ix); + fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); + mp_sub_d(&a, ix, &c); + if (mp_cmp(&b, &c) != MP_EQ) { + printf("sub_d %lu failure\n", sub_d_n); + draw(&a); + draw(&b); + draw(&c); + printf("d == %d\n", ix); + return 0; + } + } + } + return 0; +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/etc/2kprime.1 Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,2 @@ +256-bits (k = 36113) = 115792089237316195423570985008687907853269984665640564039457584007913129603823 +512-bits (k = 38117) = 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006045979
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/etc/2kprime.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,80 @@ +/* Makes safe primes of a 2k nature */ +#include <tommath.h> +#include <time.h> + +int sizes[] = {256, 512, 768, 1024, 1536, 2048, 3072, 4096}; + +int main(void) +{ + char buf[2000]; + int x, y; + mp_int q, p; + FILE *out; + clock_t t1; + mp_digit z; + + mp_init_multi(&q, &p, NULL); + + out = fopen("2kprime.1", "w"); + for (x = 0; x < (int)(sizeof(sizes) / sizeof(sizes[0])); x++) { + top: + mp_2expt(&q, sizes[x]); + mp_add_d(&q, 3, &q); + z = -3; + + t1 = clock(); + for(;;) { + mp_sub_d(&q, 4, &q); + z += 4; + + if (z > MP_MASK) { + printf("No primes of size %d found\n", sizes[x]); + break; + } + + if (clock() - t1 > CLOCKS_PER_SEC) { + printf("."); fflush(stdout); +// sleep((clock() - t1 + CLOCKS_PER_SEC/2)/CLOCKS_PER_SEC); + t1 = clock(); + } + + /* quick test on q */ + mp_prime_is_prime(&q, 1, &y); + if (y == 0) { + continue; + } + + /* find (q-1)/2 */ + mp_sub_d(&q, 1, &p); + mp_div_2(&p, &p); + mp_prime_is_prime(&p, 3, &y); + if (y == 0) { + continue; + } + + /* test on q */ + mp_prime_is_prime(&q, 3, &y); + if (y == 0) { + continue; + } + + break; + } + + if (y == 0) { + ++sizes[x]; + goto top; + } + + mp_toradix(&q, buf, 10); + printf("\n\n%d-bits (k = %lu) = %s\n", sizes[x], z, buf); + fprintf(out, "%d-bits (k = %lu) = %s\n", sizes[x], z, buf); fflush(out); + } + + return 0; +} + + + + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/etc/drprime.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,60 @@ +/* Makes safe primes of a DR nature */ +#include <tommath.h> + +int sizes[] = { 1+256/DIGIT_BIT, 1+512/DIGIT_BIT, 1+768/DIGIT_BIT, 1+1024/DIGIT_BIT, 1+2048/DIGIT_BIT, 1+4096/DIGIT_BIT }; +int main(void) +{ + int res, x, y; + char buf[4096]; + FILE *out; + mp_int a, b; + + mp_init(&a); + mp_init(&b); + + out = fopen("drprimes.txt", "w"); + for (x = 0; x < (int)(sizeof(sizes)/sizeof(sizes[0])); x++) { + top: + printf("Seeking a %d-bit safe prime\n", sizes[x] * DIGIT_BIT); + mp_grow(&a, sizes[x]); + mp_zero(&a); + for (y = 1; y < sizes[x]; y++) { + a.dp[y] = MP_MASK; + } + + /* make a DR modulus */ + a.dp[0] = -1; + a.used = sizes[x]; + + /* now loop */ + res = 0; + for (;;) { + a.dp[0] += 4; + if (a.dp[0] >= MP_MASK) break; + mp_prime_is_prime(&a, 1, &res); + if (res == 0) continue; + printf("."); fflush(stdout); + mp_sub_d(&a, 1, &b); + mp_div_2(&b, &b);