changeset 284:eed26cff980b

propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 6c790cad5a7fa866ad062cb3a0c279f7ba788583) to branch 'au.asn.ucc.matt.dropbear' (head fff0894a0399405a9410ea1c6d118f342cf2aa64)
author Matt Johnston <matt@ucc.asn.au>
date Wed, 08 Mar 2006 13:23:49 +0000
parents bd240aa12ba7 (current diff) 1f5ec029dfe8 (diff)
children 1b9e69c058d2
files LICENSE Makefile.in TODO bn.tex bn_error.c bn_fast_mp_invmod.c bn_fast_mp_montgomery_reduce.c bn_fast_s_mp_mul_digs.c bn_fast_s_mp_mul_high_digs.c bn_fast_s_mp_sqr.c bn_mp_2expt.c bn_mp_abs.c bn_mp_add.c bn_mp_add_d.c bn_mp_addmod.c bn_mp_and.c bn_mp_clamp.c bn_mp_clear.c bn_mp_clear_multi.c bn_mp_cmp.c bn_mp_cmp_d.c bn_mp_cmp_mag.c bn_mp_cnt_lsb.c bn_mp_copy.c bn_mp_count_bits.c bn_mp_div.c bn_mp_div_2.c bn_mp_div_2d.c bn_mp_div_3.c bn_mp_div_d.c bn_mp_dr_is_modulus.c bn_mp_dr_reduce.c bn_mp_dr_setup.c bn_mp_exch.c bn_mp_expt_d.c bn_mp_exptmod.c bn_mp_exptmod_fast.c bn_mp_exteuclid.c bn_mp_fread.c bn_mp_fwrite.c bn_mp_gcd.c bn_mp_get_int.c bn_mp_grow.c bn_mp_init.c bn_mp_init_copy.c bn_mp_init_multi.c bn_mp_init_set.c bn_mp_init_set_int.c bn_mp_init_size.c bn_mp_invmod.c bn_mp_invmod_slow.c bn_mp_is_square.c bn_mp_jacobi.c bn_mp_karatsuba_mul.c bn_mp_karatsuba_sqr.c bn_mp_lcm.c bn_mp_lshd.c bn_mp_mod.c bn_mp_mod_2d.c bn_mp_mod_d.c bn_mp_montgomery_calc_normalization.c bn_mp_montgomery_reduce.c bn_mp_montgomery_setup.c bn_mp_mul.c bn_mp_mul_2.c bn_mp_mul_2d.c bn_mp_mul_d.c bn_mp_mulmod.c bn_mp_n_root.c bn_mp_neg.c bn_mp_or.c bn_mp_prime_fermat.c bn_mp_prime_is_divisible.c bn_mp_prime_is_prime.c bn_mp_prime_miller_rabin.c bn_mp_prime_next_prime.c bn_mp_prime_rabin_miller_trials.c bn_mp_prime_random_ex.c bn_mp_radix_size.c bn_mp_radix_smap.c bn_mp_rand.c bn_mp_read_radix.c bn_mp_read_signed_bin.c bn_mp_read_unsigned_bin.c bn_mp_reduce.c bn_mp_reduce_2k.c bn_mp_reduce_2k_l.c bn_mp_reduce_2k_setup.c bn_mp_reduce_2k_setup_l.c bn_mp_reduce_is_2k.c bn_mp_reduce_is_2k_l.c bn_mp_reduce_setup.c bn_mp_rshd.c bn_mp_set.c bn_mp_set_int.c bn_mp_shrink.c bn_mp_signed_bin_size.c bn_mp_sqr.c bn_mp_sqrmod.c bn_mp_sqrt.c bn_mp_sub.c bn_mp_sub_d.c bn_mp_submod.c bn_mp_to_signed_bin.c bn_mp_to_signed_bin_n.c bn_mp_to_unsigned_bin.c bn_mp_to_unsigned_bin_n.c bn_mp_toom_mul.c bn_mp_toom_sqr.c bn_mp_toradix.c bn_mp_toradix_n.c bn_mp_unsigned_bin_size.c bn_mp_xor.c bn_mp_zero.c bn_prime_tab.c bn_reverse.c bn_s_mp_add.c bn_s_mp_exptmod.c bn_s_mp_mul_digs.c bn_s_mp_mul_high_digs.c bn_s_mp_sqr.c bn_s_mp_sub.c bncore.c booker.pl callgraph.txt changes.txt demo/demo.c demo/timing.c dep.pl etc/2kprime.1 etc/2kprime.c etc/drprime.c etc/drprimes.28 etc/drprimes.txt etc/makefile etc/makefile.icc etc/makefile.msvc etc/mersenne.c etc/mont.c etc/pprime.c etc/prime.1024 etc/prime.512 etc/timer.asm etc/tune.c gen.pl libtommath/LICENSE libtommath/Makefile.in libtommath/TODO libtommath/bn.tex libtommath/bn_error.c libtommath/bn_fast_mp_invmod.c libtommath/bn_fast_mp_montgomery_reduce.c libtommath/bn_fast_s_mp_mul_digs.c libtommath/bn_fast_s_mp_mul_high_digs.c libtommath/bn_fast_s_mp_sqr.c libtommath/bn_mp_2expt.c libtommath/bn_mp_abs.c libtommath/bn_mp_add.c libtommath/bn_mp_add_d.c libtommath/bn_mp_addmod.c libtommath/bn_mp_and.c libtommath/bn_mp_clamp.c libtommath/bn_mp_clear.c libtommath/bn_mp_clear_multi.c libtommath/bn_mp_cmp.c libtommath/bn_mp_cmp_d.c libtommath/bn_mp_cmp_mag.c libtommath/bn_mp_cnt_lsb.c libtommath/bn_mp_copy.c libtommath/bn_mp_count_bits.c libtommath/bn_mp_div.c libtommath/bn_mp_div_2.c libtommath/bn_mp_div_2d.c libtommath/bn_mp_div_3.c libtommath/bn_mp_div_d.c libtommath/bn_mp_dr_is_modulus.c libtommath/bn_mp_dr_reduce.c libtommath/bn_mp_dr_setup.c libtommath/bn_mp_exch.c libtommath/bn_mp_expt_d.c libtommath/bn_mp_exptmod.c libtommath/bn_mp_exptmod_fast.c libtommath/bn_mp_exteuclid.c libtommath/bn_mp_fread.c libtommath/bn_mp_fwrite.c libtommath/bn_mp_gcd.c libtommath/bn_mp_get_int.c libtommath/bn_mp_grow.c libtommath/bn_mp_init.c libtommath/bn_mp_init_copy.c libtommath/bn_mp_init_multi.c libtommath/bn_mp_init_set.c libtommath/bn_mp_init_set_int.c libtommath/bn_mp_init_size.c libtommath/bn_mp_invmod.c libtommath/bn_mp_invmod_slow.c libtommath/bn_mp_is_square.c libtommath/bn_mp_jacobi.c libtommath/bn_mp_karatsuba_mul.c libtommath/bn_mp_karatsuba_sqr.c libtommath/bn_mp_lcm.c libtommath/bn_mp_lshd.c libtommath/bn_mp_mod.c libtommath/bn_mp_mod_2d.c libtommath/bn_mp_mod_d.c libtommath/bn_mp_montgomery_calc_normalization.c libtommath/bn_mp_montgomery_reduce.c libtommath/bn_mp_montgomery_setup.c libtommath/bn_mp_mul.c libtommath/bn_mp_mul_2.c libtommath/bn_mp_mul_2d.c libtommath/bn_mp_mul_d.c libtommath/bn_mp_mulmod.c libtommath/bn_mp_n_root.c libtommath/bn_mp_neg.c libtommath/bn_mp_or.c libtommath/bn_mp_prime_fermat.c libtommath/bn_mp_prime_is_divisible.c libtommath/bn_mp_prime_is_prime.c libtommath/bn_mp_prime_miller_rabin.c libtommath/bn_mp_prime_next_prime.c libtommath/bn_mp_prime_rabin_miller_trials.c libtommath/bn_mp_prime_random_ex.c libtommath/bn_mp_radix_size.c libtommath/bn_mp_radix_smap.c libtommath/bn_mp_rand.c libtommath/bn_mp_read_radix.c libtommath/bn_mp_read_signed_bin.c libtommath/bn_mp_read_unsigned_bin.c libtommath/bn_mp_reduce.c libtommath/bn_mp_reduce_2k.c libtommath/bn_mp_reduce_2k_l.c libtommath/bn_mp_reduce_2k_setup.c libtommath/bn_mp_reduce_2k_setup_l.c libtommath/bn_mp_reduce_is_2k.c libtommath/bn_mp_reduce_is_2k_l.c libtommath/bn_mp_reduce_setup.c libtommath/bn_mp_rshd.c libtommath/bn_mp_set.c libtommath/bn_mp_set_int.c libtommath/bn_mp_shrink.c libtommath/bn_mp_signed_bin_size.c libtommath/bn_mp_sqr.c libtommath/bn_mp_sqrmod.c libtommath/bn_mp_sqrt.c libtommath/bn_mp_sub.c libtommath/bn_mp_sub_d.c libtommath/bn_mp_submod.c libtommath/bn_mp_to_signed_bin.c libtommath/bn_mp_to_signed_bin_n.c libtommath/bn_mp_to_unsigned_bin.c libtommath/bn_mp_to_unsigned_bin_n.c libtommath/bn_mp_toom_mul.c libtommath/bn_mp_toom_sqr.c libtommath/bn_mp_toradix.c libtommath/bn_mp_toradix_n.c libtommath/bn_mp_unsigned_bin_size.c libtommath/bn_mp_xor.c libtommath/bn_mp_zero.c libtommath/bn_prime_tab.c libtommath/bn_reverse.c libtommath/bn_s_mp_add.c libtommath/bn_s_mp_exptmod.c libtommath/bn_s_mp_mul_digs.c libtommath/bn_s_mp_mul_high_digs.c libtommath/bn_s_mp_sqr.c libtommath/bn_s_mp_sub.c libtommath/bncore.c libtommath/booker.pl libtommath/callgraph.txt libtommath/changes.txt libtommath/demo/demo.c libtommath/demo/timing.c libtommath/dep.pl libtommath/etc/2kprime.1 libtommath/etc/2kprime.c libtommath/etc/drprime.c libtommath/etc/drprimes.28 libtommath/etc/drprimes.txt libtommath/etc/makefile libtommath/etc/makefile.icc libtommath/etc/makefile.msvc libtommath/etc/mersenne.c libtommath/etc/mont.c libtommath/etc/pprime.c libtommath/etc/prime.1024 libtommath/etc/prime.512 libtommath/etc/timer.asm libtommath/etc/tune.c libtommath/gen.pl libtommath/logs/README libtommath/logs/add.log libtommath/logs/addsub.png libtommath/logs/expt.log libtommath/logs/expt.png libtommath/logs/expt_2k.log libtommath/logs/expt_2kl.log libtommath/logs/expt_dr.log libtommath/logs/graphs.dem libtommath/logs/index.html libtommath/logs/invmod.log libtommath/logs/invmod.png libtommath/logs/mult.log libtommath/logs/mult.png libtommath/logs/mult_kara.log libtommath/logs/sqr.log libtommath/logs/sqr.old libtommath/logs/sqr_kara.log libtommath/logs/sub.log libtommath/makefile.bcc libtommath/makefile.cygwin_dll libtommath/makefile.icc libtommath/makefile.msvc libtommath/makefile.shared libtommath/mtest/logtab.h libtommath/mtest/mpi-config.h libtommath/mtest/mpi-types.h libtommath/mtest/mpi.c libtommath/mtest/mpi.h libtommath/mtest/mtest.c libtommath/pics/design_process.sxd libtommath/pics/design_process.tif libtommath/pics/expt_state.sxd libtommath/pics/expt_state.tif libtommath/pics/makefile libtommath/pics/primality.tif libtommath/pics/radix.sxd libtommath/pics/sliding_window.sxd libtommath/pics/sliding_window.tif libtommath/poster.out libtommath/poster.tex libtommath/pre_gen/mpi.c libtommath/pretty.build libtommath/tombc/grammar.txt libtommath/tommath.h libtommath/tommath.out libtommath/tommath.src libtommath/tommath.tex libtommath/tommath_class.h libtommath/tommath_superclass.h logs/README logs/add.log logs/addsub.png logs/expt.log logs/expt.png logs/expt_2k.log logs/expt_2kl.log logs/expt_dr.log logs/graphs.dem logs/index.html logs/invmod.log logs/invmod.png logs/mult.log logs/mult.png logs/mult_kara.log logs/sqr.log logs/sqr.old logs/sqr_kara.log logs/sub.log makefile.bcc makefile.cygwin_dll makefile.icc makefile.msvc makefile.shared mtest/logtab.h mtest/mpi-config.h mtest/mpi-types.h mtest/mpi.c mtest/mpi.h mtest/mtest.c pics/design_process.sxd pics/design_process.tif pics/expt_state.sxd pics/expt_state.tif pics/makefile pics/primality.tif pics/radix.sxd pics/sliding_window.sxd pics/sliding_window.tif poster.out poster.tex pre_gen/mpi.c pretty.build tombc/grammar.txt tommath.h tommath.out tommath.src tommath.tex tommath_class.h tommath_superclass.h
diffstat 514 files changed, 88622 insertions(+), 59576 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/CHANGES	Wed Mar 08 13:23:49 2006 +0000
@@ -0,0 +1,519 @@
+0.47 - Thurs Dec 8 2005
+
+- SECURITY: fix for buffer allocation error in server code, could potentially
+  allow authenticated users to gain elevated privileges. All multi-user systems
+  running the server should upgrade (or apply the patch available on the
+  Dropbear webpage).
+
+- Fix channel handling code so that redirecting to /dev/null doesn't use
+  100% CPU.
+
+- Turn on zlib compression for dbclient.
+
+- Set "low delay" TOS bit, can significantly improve interactivity
+  over some links.
+
+- Added client keyboard-interactive mode support, allows operation with
+  newer OpenSSH servers in default config.
+
+- Log when pubkey auth fails because of bad ~/.ssh/authorized_keys permissions
+
+- Improve logging of assertions
+
+- Added aes-256 cipher and sha1-96 hmac.
+
+- Fix twofish so that it actually works.
+
+- Improve PAM prompt comparison.
+
+- Added -g (dbclient) and -a (dropbear server) options to allow
+  connections to listening forwarded ports from remote machines.
+
+- Various other minor fixes
+
+- Compile fixes for glibc 2.1 (ss_family vs __ss_family) and NetBSD
+  (netinet/in_systm.h needs to be included).
+
+0.46 - Sat July 9 2005
+
+- Fix long-standing bug which caused connections to be closed if an ssh-agent
+  socket was no longer available
+
+- Print a warning if we seem to be blocking on /dev/random 
+  (suggested by Paul Fox)
+
+- Fixed a memory leak in DSS code (thanks to Boris Berezovsky for the patch)
+
+- dbclient -L no longer segfaults, allocate correct buffer size (thanks
+  to David Cook for reporting it, and Christopher Faylor for independently
+  sending in a patch)
+
+- Added RSA blinding to signing code (suggested by Dan Kaminsky)
+
+- Rearranged bignum reading/random generation code
+
+- Reset the non-blocking status on stderr and stdout as well as stdin,
+  fixes a problem where the shell running dbclient will exit (thanks to 
+  Brent Roman for reporting it)
+
+- Fix so that all file descriptors are closed so the child shell doesn't
+  inherit descriptors (thanks to Linden May for the patch)
+
+- Change signkey.c to avoid gcc 4 generating incorrect code
+
+- After both sides of a file descriptor have been shutdown(), close()
+  it to avoid leaking descriptors (thanks to Ari Hyttinen for a patch)
+
+- Update to LibTomCrypt 1.05 and LibTomMath 0.35
+
+0.45 - Mon March 7 2005
+
+- Makefile no longer appends 'static' to statically linked binaries
+
+- Add optional SSH_ASKPASS support to the client
+
+- Respect HOST_LOOKUP option
+
+- Fix accidentally removed "return;" statement which was removed in 0.44
+  (causing clients which sent an empty terminal-modes string to fail to
+  connect - including pssh, ssh.com, danger hiptop). (patches
+  independently from Paul Fox, David Horwitt and Sven-Ola Tuecke)
+
+- Read "y/n" response for fingerprints from /dev/tty directly so that dbclient
+  will work with scp.
+
+0.44 - Mon Jan 3 2005
+
+- SECURITY: Fix for PAM auth so that usernames are logged and conversation
+  function responses are allocated correctly - all 0.44test4 users with PAM
+  compiled in (not default) are advised to upgrade.
+
+- Fix calls to getnameinfo() for compatibility with Solaris
+
+- Pristine compilation works (run 'configure' from a fresh dir and make it
+  there)
+
+- Fixes for compiling with most options disabled.
+
+- Upgraded to LibTomCrypt 0.99 and LibTomMath 0.32
+
+- Make sure that zeroing out of values in LTM and LTC won't get optimised away
+
+- Removed unused functions from loginrec.c
+
+- /dev/random is now the default entropy source rather than /dev/urandom
+
+- Logging of IPs in auth success/failure messages for improved greppability
+
+- Fix dbclient so that "scp -i keyfile" works. (It can handle "-ikeyfile
+  properly)
+
+- Avoid a race in server shell-handling code which prevents the exit-code
+  from being returned to the client in some circumstances.
+
+- Makefile modified so that install target works correctly (doesn't try
+  to install "all" binary) - patch from Juergen Daubert
+
+- Various minor fixes and compile warnings.
+
+0.44test4 - Tue Sept 14 2004 21:15:54 +0800
+
+- Fix inetd mode so it actually loads the hostkeys (oops)
+
+- Changed DROPBEAR_DEFPORT properly everywhere
+
+- Fix a small memory leak in the auth code
+
+- WCOREDUMP is only used on systems which support it (ie not cygwin or AIX)
+
+- Check (and fail for) cases when we can't negotiate algorithms with the
+  remote side successfully (rather than bombing out ungracefully)
+
+- Handle authorized_keys files without a terminating newline
+
+- Fiddle the channel receive window size for possibly better performance
+
+- Added in the PAM authentication code (finally! thanks to Martin Carlsson)
+
+0.44test3 - Fri Aug 27 22:20:54 +0800
+
+- Fixed a bunch of warnings.
+
+- scp works correctly when passed a username (fix for the dbclient program
+  itself as well, "-lmatt" works as well as "-l matt").
+
+- Remove unrequired debian files
+
+- Exit with the remote process's return code for dbclient
+
+- Display stderr messages from the server in the client
+
+- Add circular buffering to the channel code. This should dramatically reduce
+  the amount of backtraffic sent in response to traffic incoming to the
+  Dropbear end - improves high-latency performance (ie dialup).
+
+- Various other related channel-handling fixups.
+
+- Allow leading lines in the banner when connecting to servers
+
+- Fixed printing out errors onto the network socket with stderr (for inetd
+  mode when using xinetd)
+
+- Remove obselete documentation
+
+- Fix a null-pointer exception when trying to free non-existant listeners
+  at cleanup.
+
+- DEBUG_TRACE now only works if you add "-v" to the program commandline
+
+- Don't leave stdin non-blocking on exit - this caused the parent shell
+  of dbclient to close when dbclient exited, for some shells in BusyBox
+
+- Server connections no longer timeout after 5 minutes
+
+- Fixed stupid DSS hostkey typo (server couldn't load host keys)
+
+0.44test2 - Tues Aug 17 2004 17:43:54 +0800
+
+- Fix up dropbearmulti targets in the Makefile - symlinks are now created
+
+- Compile fake-rfc2553 even with dropbearconvert/dropbearkey - this 
+  allows them to work on platforms without a native getaddrinfo()
+
+- Create ~/.ssh/known_hosts properly if it doesn't exist
+
+- Fix basename() function prototype
+
+- Backport some local changes (more #ifdefs for termcodes.c, a fix for missing
+  defines on AIX).
+
+- Let dbclient be run as "ssh"
+
+- Initialise mp_ints by default
+
+0.44test1 - Sun Aug 16 2005 17:43:54 +0800
+
+- TESTING RELEASE - this is the first public release of the client codebase,
+  so there are sure to be bugs to be found. In addition, if you're just using
+  the server portion, the final binary size probably will increase - I'll
+  be trying to get it back down in future releases.
+
+- Dropbear client added - lots of changes to the server code as well to 
+  generalise things
+
+- IPv6 support added for client, server, and forwarding
+
+- New makefile with more generic support for multiple-program binaries
+
+0.43 - Fri Jul 16 2004 17:44:54 +0800
+
+- SECURITY: Don't try to free() uninitialised variables in DSS verification
+  code. Thanks to Arne Bernin for pointing out this bug. This is possibly
+  exploitable, all users with DSS and pubkey-auth compiled in are advised to
+  upgrade.
+
+- Clean up agent forwarding socket files correctly, patch from Gerrit Pape.
+
+- Don't go into an infinite loop when portforwarding to servers which don't
+  send any initial data/banner. Patch from Nikola Vladov
+
+- Fix for network vs. host byte order in logging remote TCP ports, also
+  from Gerrit Pape.
+
+- Initialise many pointers to NULL, for general safety. Also checked cleanup
+  code for mp_ints (related to security issues above).
+
+0.42 - Wed Jun 16 2004 12:44:54 +0800
+
+- Updated to Gerrit Pape's official Debian subdirectory
+
+- Fixed bad check when opening /dev/urandom - thanks to Danny Sung.
+
+- Added -i inetd mode flag, and associated options in options.h . Dropbear
+  can be compiled with either normal mode, inetd, or both modes. Thanks
+  to Gerrit Pape for basic patch and motivation.
+
+- Use <dirent.h> rather than <sys/dir.h> for POSIX compliance. Thanks to Bill
+  Sommerfield.
+
+- Fixed a TCP forwarding (client-local, -L style) bug which caused the whole
+  session to close if the TCP connection failed. Thanks to Andrew Braund for
+  reporting it and helping track it down.
+
+- Re-enable sigpipe for child processes. Thanks to Gerrit Pape for some
+  suggestions, and BSD manpages for a clearer explanation of the behaviour.
+
+- Added manpages, thanks to Gerrit Pape.
+
+- Changed license text for LibTomCrypt and LibTomMath.
+
+- Added strip-static target
+
+- Fixed a bug in agent-forwarding cleanup handler - would segfault
+  (dereferencing a null pointer) if agent forwarding had failed.
+
+- Fix behaviour of authorized_keys parsing, so larger (>1024 bit) DSA keys will
+  work. Thanks to Dr. Markus Waldeck for the report. 
+
+- Fixed local port forwarding code so that the "-j" option will make forwarding
+  attempts fail more gracefully.
+
+- Allow repeated requests in a single session if previous ones fail - this fixes  PuTTY and some other SCP clients, which try SFTP, then fall-back to SCP if it
+  isn't available. Thanks to Stirling Westrup for the report.
+
+- Updated to LibTomCrypt 0.96 and LibTomMath 0.30. The AES code now uses
+  smaller non-precomputed tables if DROPBEAR_SMALL_CODE is defined in
+  options.h, leading to a significant reduction in the binary size.
+
+0.41 - Mon Jan 19 2004 22:40:19 +0800
+
+- Fix in configure so that cross-compiling works, thanks to numerous people for
+  reporting and testing
+
+- Terminal mode parsing now handles empty terminal mode strings (sent by
+  Windows ssh.com clients), thanks to Ricardo Derbes for the report
+
+- Handling is improved for users with no shell specified in /etc/passwd,
+  thanks again to Ricardo Derbes
+
+- Fix for compiling with --disable-syslog, thanks to gordonfh
+
+- Various minor fixes allow scp to work with irix, thanks to Paul Marinceu for
+  fixing it up
+
+- Use <stropts.h> not <sys/stropts.h>, since the former seems more common
+
+0.40 - Tue Jan 13 2004 21:05:19 +0800
+
+- Remote TCP forwarding (-R) style implemented
+
+- Local and remote TCP forwarding can each be disabled at runtime (-k and -j
+  switches)
+
+- Fix for problems detecting openpty() with uClibc - many thanks to various
+  people for reporting and testing fixes, including (in random order) Cristian
+  Ionescu-Idbohrn, James Ewing, Steve Dover, Thomas Lundquist and Frederic
+  Lavernhe
+
+- Improved portability for IRIX, thanks to Paul Marinceu
+
+- AIX and HPUX portability fixes, thanks to Darren Tucker for patches
+
+- prngd should now work correctly, thanks to Darren Tucker for the patch
+
+- scp compilation on systems without strlcpy() is fixed, thanks to Peter
+  Jannesen and David Muse for reporting it (independently and simultaneously :)
+
+- Merged in new LibTomCrypt 0.92 and LibTomMath 0.28
+
+0.39 - Tue Dec 16 2003 15:19:19 +0800
+
+- Better checking of key lengths and parameters for DSS and RSA auth
+
+- Print fingerprint of keys used for pubkey auth
+
+- More consistent logging of usernames and IPs
+
+- Added option to disable password auth (or just for root) at runtime
+
+- Avoid including bignum functions which don't give much speed benefit but
+  take up binary size
+
+- Added a stripped down version of OpenSSH's scp binary
+
+- Added additional supporting functions for Irix, thanks to Paul Marinceu
+
+- Don't check for unused libraries in configure script
+
+- Removed trailing comma in algorithm lists (thanks to Mihnea Stoenescu)
+
+- Fixed up channel close handling, always send close packet in response
+  (also thanks to Mihnea Stoenescu)
+
+- Various makefile improvements for cross-compiling, thanks to Friedrich
+  Lobenstock and Mihnea Stoenescu
+
+- Use daemon() function if available (or our own copy) rather than separate
+  code (thanks to Frédéric Lavernhe for the report and debugging, and Bernard
+  Blackham for his suggestion on what to look at)
+
+- Fixed up support for first_kex_packet_follows, required to talk to ssh.com
+  clients. Thanks to Marian Stagarescu for the bug report.
+
+- Avoid using MAXPATHLEN, pointer from Ian Morris
+
+- Improved input sanity checking
+
+0.38 - Sat Oct 11 2003 16:28:13 +0800
+
+- Default hostkey path changed to /etc/dropbear/dropbear_{rsa,dss}_host_key
+  rather than /etc/dropbear_{rsa,dss}_host_key
+
+- Added SMALL and MULTI text files which have info on compiling for multiple
+  binaries or small binaries
+
+- Allow for commandline definition of some options.h settings
+  (without warnings)
+
+- Be more careful handling EINTR
+
+- More fixes for channel closing
+
+- Added multi-binary support
+
+- Improved logging of IPs, now get logged in all cases
+
+- Don't chew cpu when waiting for version identification string, also
+  make sure that we kick off people if they don't auth within 5 minutes.
+
+- Various small fixes, warnings etc
+
+- Display MOTD if requested - suggested by
+  Trent Lloyd <lathiat at sixlabs.org> and
+  Zach White <zwhite at darkstar.frop.org>
+
+- sftp support works (relies on OpenSSH sftp binary or similar)
+
+- Added --disable-shadow option (requested by the floppyfw guys)
+
+0.37 - Wed Sept 24 2003 19:42:12 +0800
+
+- Various portability fixes, fixes for Solaris 9, Tru64 5.1, Mac OS X 10.2,
+  AIX, BSDs
+
+- Updated LibTomMath to 0.27 and LibTomCrypt to 0.90
+
+- Renamed util.{c,h} to dbutil.{c,h} to avoid conflicts with system util.h
+
+- Added some small changes so it'll work with AIX (plus Linux Affinity).
+  Thanks to Shig for them.
+
+- Improved the closing messages, so a clean exit is "Exited normally"
+
+- Added some more robust integer/size checking in buffer.c as a backstop for
+  integer overflows
+
+- X11 forwarding fixed for OSX, path for xauth changed to /usr/X11R6/bin/xauth
+
+- Channel code handles closing more nicely, doesn't sit waiting for an extra
+  keystroke on BSD/OSX platforms, and data is flushed fully before closing
+  child processes (thanks to 
+  Cristian Ionescu-Idbohrn <cristian.ionescu-idbohrn at axis.com> for
+  pointing that out).
+
+- Changed "DISABLE_TCPFWD" to "ENABLE_TCPFWD" (and for x11/auth) so
+  "disable DISABLE_TCPWD" isn't so confusing.
+
+- Fix authorized_keys handling (don't crash on too-long keys, and
+  use fgetc not getc to avoid strange macro-related issues), thanks to
+  Cristian Ionescu-Idbohrn <cristian.ionescu-idbohrn at axis.com> 
+  and Steve Rodgers <hwstar at cox.net> for reporting and testing.
+
+- Fixes to the README with regard to uClibc systems, thanks to 
+  Cristian Ionescu-Idbohrn <cristian.ionescu-idbohrn at axis.com>,
+  as well as general improvements to documentation (split README/INSTALL)
+
+- Fixed up some compilation problems with dropbearconvert/dropbearkey if
+  DSS or RSA were disabled, reported by Patrik Karlsson <patrik at cqure.net>
+
+- Fix double-free bug for hostkeys, reported by
+  Vincent Sanders <vince at kyllikki.org>
+
+- Fix up missing \ns from dropbearconvert help message,
+  thanks to Mordy Ovits <movits at bloomberg.com> for the patch
+
+0.36 - Tue August 19 2003 12:16:23 +0800
+
+- Fix uninitialised temporary variable in DSS signing code
+  (thanks to Matthew Franz <mdfranz at io.com> for reporting, and the authors
+  of Valgrind for making it easy to track down)
+- Fix remote version-string parsing error
+  (thanks to Bernard Blackham <bernard at blackham.com.au> for noticing)
+- Improved host-algorithm-matching algorithm in algo.c
+- Decreased MAX_STRING_LEN to a more realistic value
+- Fix incorrect version (0.34) in this CHANGES file for the previous release.
+
+0.35 - Sun August 17 2003 05:37:47 +0800
+
+- Fix for remotely exploitable format string buffer overflow.
+  (thanks to Joel Eriksson <je at bitnux.com>)
+
+0.34 - Fri August 15 2003 15:10:00 +0800
+
+- Made syslog optional, both at compile time and as a compile option
+  (suggested by Laurent Bercot <ska at skarnet.org>)
+- Fixup for bad base64 parsing in authorized_keys
+  (noticed by Davyd Madeley <davyd at zdlcomputing.com>)
+- Added initial tcp forwarding code, only -L (local) at this stage
+- Improved "make install" with DESTDIR and changing ownership seperately,
+  don't check for setpgrp on Linux for crosscompiling.
+  (from Erik Andersen <andersen at codepoet.org>)
+- More commenting, fix minor compile warnings, make return values more
+  consistent etc
+- Various signedness fixes
+- Can listen on multiple ports
+- added option to disable openpty with configure script,
+  (from K.-P. Kirchdörfer <kapeka at epost.de>)
+- Various cleanups to bignum code
+  (thanks to Tom St Denis <tomstdenis at iahu.ca>)
+- Fix compile error when disabling RSA
+  (from Marc Kleine-Budde <kleine-budde at gmx.de>)
+- Other cleanups, splitting large functions for packet and kex handling etc
+
+0.33 - Sun June 22 2003 22:24:12 +0800
+
+- Fixed some invalid assertions in the channel code, fixing the server dying
+  when forwarding X11 connections.
+- Add dropbearconvert to convert to/from OpenSSH host keys and Dropbear keys
+- RSA keys now keep p and q parameters for compatibility -- old Dropbear keys
+  still work, but can't be converted to OpenSSH etc.
+- Debian packaging directory added, thanks to 
+  Grahame (grahame at angrygoats.net)
+- 'install' target added to the makefile
+- general tidying, improve consistency of functions etc
+- If RSA or DSS hostkeys don't exist, that algorithm won't be used.
+- Improved RSA and DSS key generation, more efficient and fixed some minor bugs
+  (thanks to Tom St Denis for the advice)
+- Merged new versions of LibTomCrypt (0.86) and LibTomMath (0.21)
+
+0.32 - Sat May 24 2003 12:44:11 +0800
+
+- Don't compile unused code from libtomcrypt (test vectors etc)
+- Updated to libtommath 0.17 and libtomcrypt 0.83. New libtommath results
+  in smaller binary size, due to not linking unrequired code
+- X11 forwarding added
+- Agent forwarding added (for OpenSSH.com ssh client/agent)
+- Fix incorrect buffer freeing when banners are used
+- Hostname resolution works
+- Various minor bugfixes/code size improvements etc
+
+0.31 - Fri May 9 2003 17:57:16 +0800
+
+- Improved syslog messages - IP logging etc
+- Strip control characters from log messages (specified username currently)
+- Login recording (utmp/wtmp) support, so last/w/who work - taken from OpenSSH
+- Shell is started as a proper login shell, so /etc/profile etc is sourced
+- Ptys work on Solaris (2.8 x86 tested) now
+- Fixed bug in specifying the rsa hostkey
+- Fixed bug in compression code, could trigger if compression resulted in
+  larger output than input (uncommon but possible).
+
+0.30 - Thu Apr 17 2003 18:46:15 +0800
+
+- SECURITY: buffer.c had bad checking for buffer increment length - fixed
+- channel code now closes properly on EOF - scp processes don't hang around
+- syslog support added - improved auth/login/failure messages
+- general code tidying, made return codes more consistent
+- Makefile fixed for dependencies and makes libtomcrypt as well
+- Implemented sending SSH_MSG_UNIMPLEMENTED :)
+
+0.29 - Wed Apr 9 2003
+
+- Fixed a stupid bug in 0.28 release, 'newstr = strdup(oldstr)',
+  not 'newstr=oldstr'
+
+0.28 - Sun Apr 6 2003
+
+- Initial public release
+
+Development was started in October 2002
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/INSTALL	Wed Mar 08 13:23:49 2006 +0000
@@ -0,0 +1,79 @@
+Basic Dropbear build instructions:
+
+- Edit options.h to set which features you want.
+- Edit debug.h if you want any debug options (not usually required).
+
+(If using a non-tarball copy, "autoconf; autoheader")
+
+./configure      (optionally with --disable-zlib or --disable-syslog,
+                  or --help for other options)
+
+Now compile:
+
+make PROGRAMS="dropbear dbclient dropbearkey dropbearconvert scp"
+
+And install (/usr/local/bin is usual default):
+
+make PROGRAMS="dropbear dbclient dropbearkey dropbearconvert scp" install
+
+(you can leave items out of the PROGRAMS list to avoid compiling them. If you
+recompile after changing the PROGRAMS list, you *MUST* "make clean" before
+recompiling - bad things will happen otherwise)
+
+See MULTI for instructions on making all-in-one binaries.
+
+If you want to compile statically, add "STATIC=1" to the make command-line.
+
+Binaries can be strippd with "make strip"
+
+============================================================================
+
+If you're compiling for a 386-class CPU, you will probably need to add
+CFLAGS=-DLTC_NO_BSWAP so that libtomcrypt doesn't use 486+ instructions.
+
+============================================================================
+
+Compiling with uClibc:
+
+Firstly, make sure you have at least uclibc 0.9.17, as getusershell() in prior
+versions is broken. Also note that you may get strange issues if your uClibc
+headers don't match the library you are running with, ie the headers might
+say that shadow password support exists, but the libraries don't have it.
+
+Compiling for uClibc should be the same as normal, just set CC to the magic
+uClibc toolchain compiler (ie export CC=i386-uclibc-gcc or whatever).
+You can use "make STATIC=1" to make statically linked binaries, and it is
+advisable to strip the binaries too. If you're looking to make a small binary,
+you should remove unneeded ciphers and MD5, by editing options.h
+
+It is possible to compile zlib in, by copying zlib.h and zconf.h into a
+subdirectory (ie zlibincludes), and 
+
+export CFLAGS="-Izlibincludes -I../zlibincludes"
+export LDFLAGS=/usr/lib/libz.a
+
+before ./configure and make.
+
+If you disable zlib, you must explicitly disable compression for the client -
+OpenSSH is possibly buggy in this regard, it seems you need to disable it
+globally in ~/.ssh/config, not just in the host entry in that file.
+
+You may want to manually disable lastlog recording when using uClibc, configure
+with --disable-lastlog.
+
+One common problem is pty allocation. There are a number of types of pty
+allocation which can be used -- if they work properly, the end result is the
+same for each type. Running configure should detect the best type to use
+automatically, however for some systems, this may be incorrect. Some
+things to note:
+
+    If your system expects /dev/pts to be mounted (this is a uClibc option),
+	make sure that it is.
+
+	Make sure that your libc headers match the library version you are using.
+
+	If openpty() is being used (HAVE_OPENPTY defined in config.h) and it fails,
+	you can try compiling with --disable-openpty. You will probably then need
+	to create all the /dev/pty?? and /dev/tty?? devices, which can be
+	problematic for devfs. In general, openpty() is the best way to allocate
+	PTYs, so it's best to try and get it working.
--- a/LICENSE	Wed Mar 08 13:22:52 2006 +0000
+++ b/LICENSE	Wed Mar 08 13:23:49 2006 +0000
@@ -1,4 +1,89 @@
-LibTomMath is hereby released into the Public Domain.  
+Dropbear contains a number of components from different sources, hence there
+are a few licenses and authors involved. All licenses are fairly 
+non-restrictive.
+
+
+The majority of code is written by Matt Johnston, under the license below.
+
+Portions of the client-mode work are (c) 2004 Mihnea Stoenescu, under the
+same license:
+
+Copyright (c) 2002-2004 Matt Johnston
+Portions copyright (c) 2004 Mihnea Stoenescu
+All rights reserved.
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+
+=====
+
+LibTomCrypt and LibTomMath are written by Tom St Denis, and are Public Domain.
+
+=====
 
--- Tom St Denis
+sshpty.c is taken from OpenSSH 3.5p1, 
+  Copyright (c) 1995 Tatu Ylonen <[email protected]>, Espoo, Finland
+                     All rights reserved
+ "As far as I am concerned, the code I have written for this software
+  can be used freely for any purpose.  Any derived versions of this
+  software must be clearly marked as such, and if the derived work is
+  incompatible with the protocol description in the RFC file, it must be
+  called by a name other than "ssh" or "Secure Shell". "
+
+=====
+
+loginrec.c
+loginrec.h
+atomicio.h
+atomicio.c
+and strlcat() (included in util.c) are from OpenSSH 3.6.1p2, and are licensed
+under the 2 point BSD license.
+
+loginrec is written primarily by Andre Lucas, atomicio.c by Theo de Raadt.
+
+strlcat() is (c) Todd C. Miller
+
+=====
 
+Import code in keyimport.c is modified from PuTTY's import.c, licensed as
+follows:
+
+PuTTY is copyright 1997-2003 Simon Tatham.
+
+Portions copyright Robert de Bath, Joris van Rantwijk, Delian
+Delchev, Andreas Schultz, Jeroen Massar, Wez Furlong, Nicolas Barry,
+Justin Bradford, and CORE SDI S.A.
+
+Permission is hereby granted, free of charge, to any person
+obtaining a copy of this software and associated documentation files
+(the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge,
+publish, distribute, sublicense, and/or sell copies of the Software,
+and to permit persons to whom the Software is furnished to do so,
+subject to the following conditions:
+
+The above copyright notice and this permission notice shall be
+included in all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT.  IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE
+FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
+CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MULTI	Wed Mar 08 13:23:49 2006 +0000
@@ -0,0 +1,26 @@
+Multi-binary compilation
+========================
+
+To compile for systems without much space (floppy distributions etc), you
+can create a single binary. This will save disk space by avoiding repeated
+code between the various parts.
+If you are familiar with "busybox", it's the same principle.
+
+To compile the multi-binary, first "make clean" (if you've compiled
+previously), then
+
+make PROGRAMS="programs you want here" MULTI=1
+
+To use the binary, symlink it from the desired executable:
+
+ln -s dropbearmulti dropbear
+ln -s dropbearmulti dbclient
+etc
+
+then execute as normal:
+
+./dropbear <options here>
+
+"make install" doesn't currently work for multi-binary configuration, though
+in most situations where it is being used, the target and build systems will
+differ.
--- a/Makefile.in	Wed Mar 08 13:22:52 2006 +0000
+++ b/Makefile.in	Wed Mar 08 13:23:49 2006 +0000
@@ -1,165 +1,209 @@
-#Makefile for GCC
+# This Makefile is for Dropbear SSH Server and Client
+# @[email protected]
+
+# invocation:
+# make PROGRAMS="dropbear dbclient scp" MULTI=1 STATIC=1 SCPPROGRESS=1
 #
-#Tom St Denis
+# to make a multiple-program statically linked binary "staticdropbearmulti".
+# This example will include dropbear, scp, dropbearkey, dropbearconvert, and
+# dbclient functionality, and includes the progress-bar functionality in scp.
+# Hopefully that seems intuitive.
+
+ifndef PROGRAMS
+	PROGRAMS=dropbear dbclient dropbearkey dropbearconvert
+endif
+
+LTC=libtomcrypt/libtomcrypt.a
+LTM=libtommath/libtommath.a
+
+COMMONOBJS=dbutil.o buffer.o \
+		dss.o bignum.o \
+		signkey.o rsa.o random.o \
+		queue.o \
+		atomicio.o compat.o  fake-rfc2553.o
+
+SVROBJS=svr-kex.o svr-algo.o svr-auth.o sshpty.o \
+		svr-authpasswd.o svr-authpubkey.o svr-session.o svr-service.o \
+		svr-chansession.o svr-runopts.o svr-agentfwd.o svr-main.o svr-x11fwd.o\
+		svr-tcpfwd.o svr-authpam.o
 
-#version of library 
-VERSION=0.35
+CLIOBJS=cli-algo.o cli-main.o cli-auth.o cli-authpasswd.o cli-kex.o \
+		cli-session.o cli-service.o cli-runopts.o cli-chansession.o \
+		cli-authpubkey.o cli-tcpfwd.o cli-channel.o cli-authinteract.o
+
+CLISVROBJS=common-session.o packet.o common-algo.o common-kex.o \
+			common-channel.o common-chansession.o termcodes.o loginrec.o \
+			tcp-accept.o listener.o process-packet.o \
+			common-runopts.o circbuffer.o
+
+KEYOBJS=dropbearkey.o gendss.o genrsa.o
+
+CONVERTOBJS=dropbearconvert.o keyimport.o
+
+SCPOBJS=scp.o progressmeter.o atomicio.o scpmisc.o
+
+HEADERS=options.h dbutil.h session.h packet.h algo.h ssh.h buffer.h kex.h \
+		dss.h bignum.h signkey.h rsa.h random.h service.h auth.h \
+		debug.h channel.h chansession.h config.h queue.h sshpty.h \
+		termcodes.h gendss.h genrsa.h runopts.h includes.h \
+		loginrec.h atomicio.h x11fwd.h agentfwd.h tcpfwd.h compat.h \
+		listener.h fake-rfc2553.h
+
+dropbearobjs=$(COMMONOBJS) $(CLISVROBJS) $(SVROBJS) 
+dbclientobjs=$(COMMONOBJS) $(CLISVROBJS) $(CLIOBJS)
+dropbearkeyobjs=$(COMMONOBJS) $(KEYOBJS)
+dropbearconvertobjs=$(COMMONOBJS) $(CONVERTOBJS)
+scpobjs=$(SCPOBJS)
 
 [email protected]@
 [email protected]@
 
-# Dropbear takes flags from the toplevel makefile
-CFLAGS += -I$(srcdir)
-
-#CFLAGS  +=  -I./ -Wall -W -Wshadow -Wsign-compare
[email protected]@
+exec_prefix=${prefix}
+bindir=${exec_prefix}/bin
+sbindir=${exec_prefix}/sbin
 
-#for speed 
-#CFLAGS += -O3 -funroll-all-loops
[email protected]@
[email protected]@
[email protected]@
[email protected]@
[email protected]@
[email protected]@
+CFLAGS=-I. -I$(srcdir)/libtomcrypt/src/headers/ @[email protected]
+LIBS=$(LTC) $(LTM) @[email protected]
[email protected]@
 
-#for size 
-#CFLAGS += -Os
[email protected]@
 
-#x86 optimizations [should be valid for any GCC install though]
-#CFLAGS  += -fomit-frame-pointer
-
-#debug
-#CFLAGS += -g3
+# whether we're building client, server, or both for the common objects.
+# evilness so we detect 'dropbear' by itself as a word
+space:= $(empty) $(empty)
+ifneq (,$(strip $(foreach prog, $(PROGRAMS), $(findstring ZdropbearZ, Z$(prog)Z))))
+	CFLAGS+= -DDROPBEAR_SERVER
+endif
+ifneq (,$(strip $(foreach prog, $(PROGRAMS), $(findstring ZdbclientZ, Z$(prog)Z))))
+	CFLAGS+= -DDROPBEAR_CLIENT
+endif
 
-#install as this user
-USER=root
-GROUP=root
 
-default: libtommath.a
+# these are exported so that libtomcrypt's makefile will use them
+export CC
+export CFLAGS
+export RANLIB AR STRIP
 
-#default files to install
-LIBNAME=libtommath.a
-HEADERS=tommath.h tommath_class.h tommath_superclass.h
+ifeq ($(STATIC), 1)
+	LDFLAGS+=-static
+endif
 
-#LIBPATH-The directory for libtommath to be installed to.
-#INCPATH-The directory to install the header files for libtommath.
-#DATAPATH-The directory to install the pdf docs.
-DESTDIR=
-LIBPATH=/usr/lib
-INCPATH=/usr/include
-DATAPATH=/usr/share/doc/libtommath/pdf
+ifeq ($(MULTI), 1)
+	TARGETS=dropbearmulti
+else
+	TARGETS=$(PROGRAMS)
+endif
+
+# for the scp progress meter. The -D doesn't affect anything else.
+ifeq ($(SCPPROGRESS), 1)
+	CFLAGS+=-DPROGRESS_METER
+endif
+
+#%: $(HEADERS)
+#%: $(HEADERS) Makefile
+# TODO
+
+all: $(TARGETS)
 
-OBJECTS=bncore.o bn_mp_init.o bn_mp_clear.o bn_mp_exch.o bn_mp_grow.o bn_mp_shrink.o \
-bn_mp_clamp.o bn_mp_zero.o  bn_mp_set.o bn_mp_set_int.o bn_mp_init_size.o bn_mp_copy.o \
-bn_mp_init_copy.o bn_mp_abs.o bn_mp_neg.o bn_mp_cmp_mag.o bn_mp_cmp.o bn_mp_cmp_d.o \
-bn_mp_rshd.o bn_mp_lshd.o bn_mp_mod_2d.o bn_mp_div_2d.o bn_mp_mul_2d.o bn_mp_div_2.o \
-bn_mp_mul_2.o bn_s_mp_add.o bn_s_mp_sub.o bn_fast_s_mp_mul_digs.o bn_s_mp_mul_digs.o \
-bn_fast_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_s_mp_sqr.o \
-bn_mp_add.o bn_mp_sub.o bn_mp_karatsuba_mul.o bn_mp_mul.o bn_mp_karatsuba_sqr.o \
-bn_mp_sqr.o bn_mp_div.o bn_mp_mod.o bn_mp_add_d.o bn_mp_sub_d.o bn_mp_mul_d.o \
-bn_mp_div_d.o bn_mp_mod_d.o bn_mp_expt_d.o bn_mp_addmod.o bn_mp_submod.o \
-bn_mp_mulmod.o bn_mp_sqrmod.o bn_mp_gcd.o bn_mp_lcm.o bn_fast_mp_invmod.o bn_mp_invmod.o \
-bn_mp_reduce.o bn_mp_montgomery_setup.o bn_fast_mp_montgomery_reduce.o bn_mp_montgomery_reduce.o \
-bn_mp_exptmod_fast.o bn_mp_exptmod.o bn_mp_2expt.o bn_mp_n_root.o bn_mp_jacobi.o bn_reverse.o \
-bn_mp_count_bits.o bn_mp_read_unsigned_bin.o bn_mp_read_signed_bin.o bn_mp_to_unsigned_bin.o \
-bn_mp_to_signed_bin.o bn_mp_unsigned_bin_size.o bn_mp_signed_bin_size.o  \
-bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o bn_mp_montgomery_calc_normalization.o \
-bn_mp_prime_is_divisible.o bn_prime_tab.o bn_mp_prime_fermat.o bn_mp_prime_miller_rabin.o \
-bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \
-bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
-bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
-bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
-bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \
-bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
-bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
-bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
-bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
-bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \
-bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o
+strip: $(TARGETS)
+	$(STRIP) $(addsuffix $(EXEEXT), $(TARGETS))
+
+install: $(addprefix inst_, $(TARGETS))
+
+installdropbearmulti: insdbmulti $(addprefix insmulti, $(PROGRAMS)) 
 
-libtommath.a:  $(OBJECTS)
-	$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
-	$(RANLIB) libtommath.a
+insdbmulti: dropbearmulti
+	$(INSTALL) -d -m 755 $(DESTDIR)$(bindir)
+	$(INSTALL) -m 755 dropbearmulti$(EXEEXT) $(DESTDIR)$(bindir)
+	-chown root $(DESTDIR)$(bindir)/dropbearmulti$(EXEEXT)
+	-chgrp 0 $(DESTDIR)$(bindir)/dropbearmulti$(EXEEXT)
+
+insmultidropbear: dropbearmulti
+	-rm -f $(DESTDIR)$(sbindir)/dropbear$(EXEEXT)
+	-ln -s $(DESTDIR)$(bindir)/dropbearmulti$(EXEEXT) $(DESTDIR)$(sbindir)/dropbear$(EXEEXT) 
+
+insmulti%: dropbearmulti
+	-rm -f $(DESTDIR)$(bindir)/$*$(EXEEXT) 
+	-ln -s $(DESTDIR)$(bindir)/dropbearmulti$(EXEEXT) $(DESTDIR)$(bindir)/$*$(EXEEXT) 
 
-#make a profiled library (takes a while!!!)
-#
-# This will build the library with profile generation
-# then run the test demo and rebuild the library.
-# 
-# So far I've seen improvements in the MP math
-profiled:
-	make CFLAGS="$(CFLAGS) -fprofile-arcs -DTESTING" timing
-	./ltmtest
-	rm -f *.a *.o ltmtest
-	make CFLAGS="$(CFLAGS) -fbranch-probabilities"
+# dropbear should go in sbin, so it needs a seperate rule
+inst_dropbear: dropbear
+	$(INSTALL) -d -m 755 $(DESTDIR)$(sbindir)
+	$(INSTALL) -m 755 dropbear$(EXEEXT) $(DESTDIR)$(sbindir)
+	-chown root $(DESTDIR)$(sbindir)/dropbear$(EXEEXT)
+	-chgrp 0 $(DESTDIR)$(sbindir)/dropbear$(EXEEXT)
+
+inst_%: $*
+	$(INSTALL) -d -m 755 $(DESTDIR)$(bindir)
+	$(INSTALL) -m 755 $*$(EXEEXT) $(DESTDIR)$(bindir)
+	-chown root $(DESTDIR)$(bindir)/$*$(EXEEXT)
+	-chgrp 0 $(DESTDIR)$(bindir)/$*$(EXEEXT)
+
 
-#make a single object profiled library 
-profiled_single:
-	perl gen.pl
-	$(CC) $(CFLAGS) -fprofile-arcs -DTESTING -c mpi.c -o mpi.o
-	$(CC) $(CFLAGS) -DTESTING -DTIMER demo/timing.c mpi.o -o ltmtest
-	./ltmtest
-	rm -f *.o ltmtest
-	$(CC) $(CFLAGS) -fbranch-probabilities -DTESTING -c mpi.c -o mpi.o
-	$(AR) $(ARFLAGS) libtommath.a mpi.o
-	ranlib libtommath.a	
+# for some reason the rule further down doesn't like $([email protected]) as a prereq.
+dropbear: $(dropbearobjs)
+dbclient: $(dbclientobjs)
+dropbearkey: $(dropbearkeyobjs)
+dropbearconvert: $(dropbearconvertobjs)
+
+dropbear dbclient dropbearkey dropbearconvert: $(HEADERS)  $(LTC) $(LTM) \
+													Makefile
+	$(LD) $(LDFLAGS) -o [email protected]$(EXEEXT) $([email protected]) $(LIBS)
 
-install: libtommath.a
-	install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(LIBPATH)
-	install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(INCPATH)
-	install -g $(GROUP) -o $(USER) $(LIBNAME) $(DESTDIR)$(LIBPATH)
-	install -g $(GROUP) -o $(USER) $(HEADERS) $(DESTDIR)$(INCPATH)
+# scp doesn't use the libs so is special.
+scp: $(SCPOBJS)  $(HEADERS) Makefile
+	$(LD) $(LDFLAGS) -o [email protected]$(EXEEXT) $(SCPOBJS)
+
 
-test: libtommath.a demo/demo.o
-	$(CC) $(CFLAGS) demo/demo.o libtommath.a -o test
-	
-mtest: test	
-	cd mtest ; $(CC) $(CFLAGS) mtest.c -o mtest
-        
-timing: libtommath.a
-	$(CC) $(CFLAGS) -DTIMER demo/timing.c libtommath.a -o ltmtest
+# multi-binary compilation.
+MULTIOBJS=
+ifeq ($(MULTI),1)
+	MULTIOBJS=dbmulti.o $(sort $(foreach prog, $(PROGRAMS), $($(prog)objs)))
+	CFLAGS+=$(addprefix -DDBMULTI_, $(PROGRAMS)) -DDROPBEAR_MULTI
+endif
 
-# makes the LTM book DVI file, requires tetex, perl and makeindex [part of tetex I think]
-docdvi: tommath.src
-	cd pics ; make 
-	echo "hello" > tommath.ind
-	perl booker.pl
-	latex tommath > /dev/null
-	latex tommath > /dev/null
-	makeindex tommath
-	latex tommath > /dev/null
+dropbearmulti: multilink 
+
+multibinary: $(HEADERS) $(MULTIOBJS) $(LTC) $(LTM) Makefile
+	$(LD) $(LDFLAGS) -o dropbearmulti$(EXEEXT) $(MULTIOBJS) $(LIBS)
+
+multilink: multibinary $(addprefix link, $(PROGRAMS))
 
-# poster, makes the single page PDF poster
-poster: poster.tex
-	pdflatex poster
-	rm -f poster.aux poster.log 
+link%:
+	-rm -f $*$(EXEEXT)
+	-ln -s dropbearmulti$(EXEEXT) $*$(EXEEXT)
+
+$(LTC): options.h
+	cd libtomcrypt && $(MAKE) clean && $(MAKE)
+
+$(LTM): options.h
+	cd libtommath && $(MAKE)
 
-# makes the LTM book PDF file, requires tetex, cleans up the LaTeX temp files
-docs:   docdvi
-	dvipdf tommath
-	rm -f tommath.log tommath.aux tommath.dvi tommath.idx tommath.toc tommath.lof tommath.ind tommath.ilg
-	cd pics ; make clean
-	
-#LTM user manual
-mandvi: bn.tex
-	echo "hello" > bn.ind
-	latex bn > /dev/null
-	latex bn > /dev/null
-	makeindex bn
-	latex bn > /dev/null
+ltc-clean:
+	cd libtomcrypt && $(MAKE) clean
+
+ltm-clean:
+	cd libtommath && $(MAKE) clean
+
+sizes: dropbear
+	objdump -t dropbear|grep ".text"|cut -d "." -f 2|sort -rn
+
+clean: ltc-clean ltm-clean thisclean
 
-#LTM user manual [pdf]
-manual:	mandvi
-	pdflatex bn >/dev/null
-	rm -f bn.aux bn.dvi bn.log bn.idx bn.lof bn.out bn.toc
-
-pretty: 
-	perl pretty.build
+thisclean:
+	-rm -f dropbear dbclient dropbearkey dropbearconvert scp scp-progress \
+			dropbearmulti *.o *.da *.bb *.bbg *.prof 
 
-clean:
-	rm -f *.bat *.pdf *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest mtest/mtest.exe \
-        *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c *.da *.dyn *.dpi tommath.tex *.lo *.la
-	rm -rf .libs
-	cd etc && make clean
-	cd pics && make clean
+distclean: clean tidy
+	-rm -f config.h
+	-rm -f Makefile
 
-zipup: clean manual poster docs
-	perl gen.pl ; mv mpi.c pre_gen/ ; \
-	cd .. ; rm -rf ltm* libtommath-$(VERSION) ; mkdir libtommath-$(VERSION) ; \
-	cp -R ./libtommath/* ./libtommath-$(VERSION)/ ; \
-	tar -c libtommath-$(VERSION)/* | bzip2 -9vvc > ltm-$(VERSION).tar.bz2 ; \
-	zip -9 -r ltm-$(VERSION).zip libtommath-$(VERSION)/*
+tidy:
+	-rm -f *~ *.gcov */*~
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/README	Wed Mar 08 13:23:49 2006 +0000
@@ -0,0 +1,74 @@
+This is Dropbear, a smallish SSH 2 server and client.
+
+INSTALL has compilation instructions.
+
+MULTI has instructions on making a multi-purpose binary (ie a single binary
+which performs multiple tasks, to save disk space)
+
+SMALL has some tips on creating small binaries.
+
+See TODO for a few of the things I know need looking at, and please contact
+me if you have any questions/bugs found/features/ideas/comments etc :)
+
+Matt Johnston
[email protected]
+
+
+In the absence of detailed documentation, some notes follow:
+============================================================================
+
+Server public key auth:
+
+You can use ~/.ssh/authorized_keys in the same way as with OpenSSH, just put
+the key entries in that file. They should be of the form:
+
+ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAwVa6M6cGVmUcLl2cFzkxEoJd06Ub4bVDsYrWvXhvUV+ZAM9uGuewZBDoAqNKJxoIn0Hyd0Nk/yU99UVv6NWV/5YSHtnf35LKds56j7cuzoQpFIdjNwdxAN0PCET/MG8qyskG/2IE2DPNIaJ3Wy+Ws4IZEgdJgPlTYUBWWtCWOGc= [email protected]
+
+You must make sure that ~/.ssh, and the key file, are only writable by the
+user.
+
+NOTE: Dropbear ignores authorized_keys options such as those described in the
+OpenSSH sshd manpage, and will not allow a login for these keys. 
+
+============================================================================
+
+Client public key auth:
+
+Dropbear can do public key auth as a client, but you will have to convert
+OpenSSH style keys to Dropbear format, or use dropbearkey to create them.
+
+If you have an OpenSSH-style private key ~/.ssh/id_rsa, you need to do:
+
+dropbearconvert openssh dropbear ~/.ssh/id_rsa  ~/.ssh/id_rsa.db
+dbclient -i ~/.ssh/id_rsa.db <hostname>
+
+Currently encrypted keys aren't supported, neither is agent forwarding. At some
+stage both hopefully will be.
+
+============================================================================
+
+If you want to get the public-key portion of a Dropbear private key, look at
+dropbearkey's '-y' option.
+
+============================================================================
+
+To run the server, you need to generate server keys, this is one-off:
+./dropbearkey -t rsa -f dropbear_rsa_host_key
+./dropbearkey -t dss -f dropbear_dss_host_key
+
+or alternatively convert OpenSSH keys to Dropbear:
+./dropbearconvert openssh dropbear /etc/ssh/ssh_host_dsa_key dropbear_dss_host_key
+
+============================================================================
+
+If the server is run as non-root, you most likely won't be able to allocate a
+pty, and you cannot login as any user other than that running the daemon
+(obviously). Shadow passwords will also be unusable as non-root.
+
+============================================================================
+
+The Dropbear distribution includes a standalone version of OpenSSH's scp
+program. You can compile it with "make scp", you may want to change the path
+of the ssh binary, specified by _PATH_SSH_PROGRAM in options.h . By default
+the progress meter isn't compiled in to save space, you can enable it by 
+adding 'SCPPROGRESS=1' to the make commandline.
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/SMALL	Wed Mar 08 13:23:49 2006 +0000
@@ -0,0 +1,53 @@
+Tips for a small system:
+
+If you only want server functionality (for example), compile with
+	make PROGRAMS=dropbear
+rather than just
+	make dropbear
+so that client functionality in shared portions of Dropbear won't be included.
+The same applies if you are compiling just a client.
+
+---
+
+The following are set in options.h:
+
+	- You can safely disable blowfish and twofish ciphers, and MD5 hmac, without
+	  affecting interoperability
+
+	- If you're compiling statically, you can turn off host lookups
+
+	- You can disable either password or public-key authentication, though note
+	  that the IETF draft states that pubkey authentication is required.
+
+	- Similarly with DSS and RSA, you can disable one of these if you know that
+	  all clients will be able to support a particular one. The IETF draft
+	  states that DSS is required, however you may prefer to use RSA. 
+	  DON'T disable either of these on systems where you aren't 100% sure about
+	  who will be connecting and what clients they will be using.
+
+	- Disabling the MOTD code and SFTP-SERVER may save a small amount of codesize
+
+	- You can disable x11, tcp and agent forwarding as desired. None of these are
+	  essential, although agent-forwarding is often useful even on firewall boxes.
+
+---
+
+If you are compiling statically, you may want to disable zlib, as it will use
+a few tens of kB of binary-size (./configure --disable-zlib).
+
+You can create a combined binary, see the file MULTI, which will put all
+the functions into one binary, avoiding repeated code.
+
+If you're compiling with gcc, you might want to look at gcc's options for
+stripping unused code. The relevant vars to set before configure are:
+
+LDFLAGS=-Wl,--gc-sections
+CFLAGS="-ffunction-sections -fdata-sections"
+
+You can also experiment with optimisation flags such as -Os, note that in some
+cases these flags actually seem to increase size, so experiment before
+deciding.
+
+Of course using small C libraries such as uClibc and dietlibc can also help.
+
+If you have any queries, mail me and I'll see if I can help.
--- a/TODO	Wed Mar 08 13:22:52 2006 +0000
+++ b/TODO	Wed Mar 08 13:23:49 2006 +0000
@@ -1,16 +1,30 @@
-things for book in order of importance...
+Current:
+
+Things which might need doing:
+
+- default private dbclient keys
 
-- Fix up pseudo-code [only] for combas that are not consistent with source
-- Start in chapter 3 [basics] and work up...
-   - re-write to prose [less abrupt]
-   - clean up pseudo code [spacing]
-   - more examples where appropriate and figures
+- Make options.h generated from configure perhaps?
+
+- Improved queueing of unauthed connections
+
+- handle /etc/environment in AIX
+
+- check that there aren't timing issues with valid/invalid user authentication
+  feedback.
 
-Goal:
-   - Get sync done by mid January [roughly 8-12 hours work]
-   - Finish ch3-6 by end of January [roughly 12-16 hours of work]
-   - Finish ch7-end by mid Feb [roughly 20-24 hours of work].
+- Binding to different interfaces
+
+- check PRNG
+- CTR mode
+- SSH_MSG_IGNORE sending to improve CBC security
+- DH Group Exchange possibly, or just add group14 (whatever it's called today)
 
-Goal isn't "first edition" but merely cleaner to read.
+- fix scp.c for IRIX
 
+- Be able to use OpenSSH keys for the client? or at least have some form of 
+  encrypted keys.
 
+- Client agent forwarding
+
+- Handle restrictions in ~/.ssh/authorized_keys ?
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/agentfwd.h	Wed Mar 08 13:23:49 2006 +0000
@@ -0,0 +1,43 @@
+/*
+ * Dropbear - a SSH2 server
+ * 
+ * Copyright (c) 2002,2003 Matt Johnston
+ * All rights reserved.
+ * 
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ * 
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ * 
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE. */
+#ifndef _AGENTFWD_H_
+#define _AGENTFWD_H_
+#ifndef DISABLE_AGENTFWD
+
+#include "includes.h"
+#include "chansession.h"
+#include "channel.h"
+
+int agentreq(struct ChanSess * chansess);
+void agentsetauth(struct ChanSess *chansess);
+void agentcleanup(struct ChanSess * chansess);
+void agentset(struct ChanSess *chansess);
+
+#ifdef __hpux
+#define seteuid(a)       setresuid(-1, (a), -1)
+#define setegid(a)       setresgid(-1, (a), -1)
+#endif
+
+#endif /* DROPBEAR_AGENTFWD */
+#endif /* _AGENTFWD_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/algo.h	Wed Mar 08 13:23:49 2006 +0000
@@ -0,0 +1,74 @@
+/*
+ * Dropbear - a SSH2 server
+ * 
+ * Copyright (c) 2002,2003 Matt Johnston
+ * All rights reserved.
+ * 
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ * 
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ * 
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE. */
+
+#ifndef _ALGO_H_
+
+#define _ALGO_H_
+
+#include "includes.h"
+#include "buffer.h"
+
+struct Algo_Type {
+
+	unsigned char *name; /* identifying name */
+	char val; /* a value for this cipher, or -1 for invalid */
+	void *data; /* algorithm specific data */
+	unsigned usable : 1; /* whether we can use this algorithm */
+
+};
+
+typedef struct Algo_Type algo_type;
+
+/* lists mapping ssh types of algorithms to internal values */
+extern algo_type sshkex[];
+extern algo_type sshhostkey[];
+extern algo_type sshciphers[];
+extern algo_type sshhashes[];
+extern algo_type sshcompress[];
+
+extern const struct dropbear_cipher dropbear_nocipher;
+extern const struct dropbear_hash dropbear_nohash;
+
+struct dropbear_cipher {
+	const struct ltc_cipher_descriptor *cipherdesc;
+	unsigned long keysize;
+	unsigned char blocksize;
+};
+
+struct dropbear_hash {
+	const struct ltc_hash_descriptor *hashdesc;
+	unsigned long keysize;
+	unsigned char hashsize;
+};
+
+void crypto_init();
+int have_algo(char* algo, size_t algolen, algo_type algos[]);
+void buf_put_algolist(buffer * buf, algo_type localalgos[]);
+
+algo_type * svr_buf_match_algo(buffer* buf, algo_type localalgos[],
+		int *goodguess);
+algo_type * cli_buf_match_algo(buffer* buf, algo_type localalgos[],
+		int *goodguess);
+
+#endif /* _ALGO_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/atomicio.c	Wed Mar 08 13:23:49 2006 +0000
@@ -0,0 +1,63 @@
+/*
+ * Copied from OpenSSH 3.6.1p2.
+ * 
+ * Copyright (c) 1995,1999 Theo de Raadt.  All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/* RCSID("OpenBSD: atomicio.c,v 1.10 2001/05/08 22:48:07 markus Exp "); */
+
+#include "atomicio.h"
+
+/*
+ * ensure all of data on socket comes through. f==read || f==write
+ */
+ssize_t
+atomicio(f, fd, _s, n)
+	ssize_t (*f) ();
+	int fd;
+	void *_s;
+	size_t n;
+{
+	char *s = _s;
+	ssize_t res;
+	size_t pos = 0;
+
+	while (n > pos) {
+		res = (f) (fd, s + pos, n - pos);
+		switch (res) {
+		case -1:
+#ifdef EWOULDBLOCK
+			if (errno == EINTR || errno == EAGAIN || errno == EWOULDBLOCK)
+#else
+			if (errno == EINTR || errno == EAGAIN)
+#endif
+				continue;
+		case 0:
+			return (res);
+		default:
+			pos += res;
+		}
+	}
+	return (pos);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/atomicio.h	Wed Mar 08 13:23:49 2006 +0000
@@ -0,0 +1,36 @@
+
+/*
+ * Copied from OpenSSH 3.6.1p2, required for loginrec.c
+ *
+ * $OpenBSD: atomicio.h,v 1.4 2001/06/26 06:32:46 itojun Exp $
+ *
+ * Copyright (c) 1995,1999 Theo de Raadt.  All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "includes.h"
+
+/*
+ * Ensure all of data on socket comes through. f==read || f==write
+ */
+ssize_t	atomicio(ssize_t (*)(), int, void *, size_t);
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/auth.h	Wed Mar 08 13:23:49 2006 +0000
@@ -0,0 +1,111 @@
+/*
+ * Dropbear - a SSH2 server
+ * 
+ * Copyright (c) 2002,2003 Matt Johnston
+ * All rights reserved.
+ * 
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ * 
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ * 
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE. */
+
+#ifndef _AUTH_H_
+#define _AUTH_H_
+
+#include "includes.h"
+
+void svr_authinitialise();
+void cli_authinitialise();
+
+/* Server functions */
+void recv_msg_userauth_request();
+void send_msg_userauth_failure(int partial, int incrfail);
+void send_msg_userauth_success();
+void svr_auth_password();
+void svr_auth_pubkey();
+void svr_auth_pam();
+
+/* Client functions */
+void recv_msg_userauth_failure();
+void recv_msg_userauth_success();
+void recv_msg_userauth_specific_60();
+void recv_msg_userauth_pk_ok();
+void recv_msg_userauth_info_request();
+void cli_get_user();
+void cli_auth_getmethods();
+void cli_auth_try();
+void recv_msg_userauth_banner();
+void cli_pubkeyfail();
+void cli_auth_password();
+int cli_auth_pubkey();
+void cli_auth_interactive();
+char* getpass_or_cancel();
+
+
+#define MAX_USERNAME_LEN 25 /* arbitrary for the moment */
+
+#define AUTH_TYPE_NONE      1
+#define AUTH_TYPE_PUBKEY    1 << 1
+#define AUTH_TYPE_PASSWORD  1 << 2
+#define AUTH_TYPE_INTERACT  1 << 3
+
+#define AUTH_METHOD_NONE "none"
+#define AUTH_METHOD_NONE_LEN 4
+#define AUTH_METHOD_PUBKEY "publickey"
+#define AUTH_METHOD_PUBKEY_LEN 9
+#define AUTH_METHOD_PASSWORD "password"
+#define AUTH_METHOD_PASSWORD_LEN 8
+#define AUTH_METHOD_INTERACT "keyboard-interactive"
+#define AUTH_METHOD_INTERACT_LEN 20
+
+
+
+/* This structure is shared between server and client - it contains
+ * relatively little extraneous bits when used for the client rather than the
+ * server */
+struct AuthState {
+
+	char *username; /* This is the username the client presents to check. It
+					   is updated each run through, used for auth checking */
+	unsigned char authtypes; /* Flags indicating which auth types are still 
+								valid */
+	unsigned int failcount; /* Number of (failed) authentication attempts.*/
+	unsigned authdone : 1; /* 0 if we haven't authed, 1 if we have. Applies for
+							  client and server (though has differing [obvious]
+							  meanings). */
+	unsigned perm_warn : 1; /* Server only, set if bad permissions on 
+							   ~/.ssh/authorized_keys have already been
+							   logged. */
+
+	/* These are only used for the server */
+	char *printableuser; /* stripped of control chars, used for logs etc */
+	struct passwd * pw;
+
+};
+
+struct SignKeyList;
+/* A singly linked list of signing keys */
+struct SignKeyList {
+
+	sign_key *key;
+	int type; /* The type of key */
+	struct SignKeyList *next;
+	/* filename? or the buffer? for encrypted keys, so we can later get
+	 * the private key portion */
+
+};
+
+#endif /* _AUTH_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/bignum.c	Wed Mar 08 13:23:49 2006 +0000
@@ -0,0 +1,75 @@
+/*
+ * Dropbear - a SSH2 server
+ * 
+ * Copyright (c) 2002,2003 Matt Johnston
+ * All rights reserved.
+ * 
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ * 
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ * 
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE. */
+
+/* Contains helper functions for mp_int handling */
+
+#include "includes.h"
+#include "dbutil.h"
+
+/* wrapper for mp_init, failing fatally on errors (memory allocation) */
+void m_mp_init(mp_int *mp) {
+
+	if (mp_init(mp) != MP_OKAY) {
+		dropbear_exit("mem alloc error");
+	}
+}
+
+/* simplified duplication of bn_mp_multi's mp_init_multi, but die fatally
+ * on error */
+void m_mp_init_multi(mp_int *mp, ...) 
+{
+    mp_int* cur_arg = mp;
+    va_list args;
+
+    va_start(args, mp);        /* init args to next argument from caller */
+    while (cur_arg != NULL) {
+        if (mp_init(cur_arg) != MP_OKAY) {
+			dropbear_exit("mem alloc error");
+        }
+        cur_arg = va_arg(args, mp_int*);
+    }
+    va_end(args);
+}
+
+void bytes_to_mp(mp_int *mp, const unsigned char* bytes, unsigned int len) {
+
+	if (mp_read_unsigned_bin(mp, (unsigned char*)bytes, len) != MP_OKAY) {
+		dropbear_exit("mem alloc error");
+	}
+}
+
+/* hash the ssh representation of the mp_int mp */
+void sha1_process_mp(hash_state *hs, mp_int *mp) {
+
+	int i;
+	buffer * buf;
+
+	buf = buf_new(512 + 20); /* max buffer is a 4096 bit key, 
+								plus header + some leeway*/
+	buf_putmpint(buf, mp);
+	i = buf->pos;
+	buf_setpos(buf, 0);
+	sha1_process(hs, buf_getptr(buf, i), i);
+	buf_free(buf);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/bignum.h	Wed Mar 08 13:23:49 2006 +0000
@@ -0,0 +1,35 @@
+/*
+ * Dropbear - a SSH2 server
+ * 
+ * Copyright (c) 2002,2003 Matt Johnston
+ * All rights reserved.
+ * 
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ * 
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ * 
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE. */
+
+#ifndef _BIGNUM_H_
+#define _BIGNUM_H_
+
+#include "includes.h"
+
+void m_mp_init(mp_int *mp);
+void m_mp_init_multi(mp_int *mp, ...);
+void bytes_to_mp(mp_int *mp, const unsigned char* bytes, unsigned int len);
+void sha1_process_mp(hash_state *hs, mp_int *mp);
+
+#endif /* _BIGNUM_H_ */
--- a/bn.tex	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1835 +0,0 @@
-\documentclass[b5paper]{book}
-\usepackage{hyperref}
-\usepackage{makeidx}
-\usepackage{amssymb}
-\usepackage{color}
-\usepackage{alltt}
-\usepackage{graphicx}
-\usepackage{layout}
-\def\union{\cup}
-\def\intersect{\cap}
-\def\getsrandom{\stackrel{\rm R}{\gets}}
-\def\cross{\times}
-\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
-\def\catn{$\|$}
-\def\divides{\hspace{0.3em} | \hspace{0.3em}}
-\def\nequiv{\not\equiv}
-\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
-\def\lcm{{\rm lcm}}
-\def\gcd{{\rm gcd}}
-\def\log{{\rm log}}
-\def\ord{{\rm ord}}
-\def\abs{{\mathit abs}}
-\def\rep{{\mathit rep}}
-\def\mod{{\mathit\ mod\ }}
-\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
-\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
-\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
-\def\Or{{\rm\ or\ }}
-\def\And{{\rm\ and\ }}
-\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
-\def\implies{\Rightarrow}
-\def\undefined{{\rm ``undefined"}}
-\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
-\let\oldphi\phi
-\def\phi{\varphi}
-\def\Pr{{\rm Pr}}
-\newcommand{\str}[1]{{\mathbf{#1}}}
-\def\F{{\mathbb F}}
-\def\N{{\mathbb N}}
-\def\Z{{\mathbb Z}}
-\def\R{{\mathbb R}}
-\def\C{{\mathbb C}}
-\def\Q{{\mathbb Q}}
-\definecolor{DGray}{gray}{0.5}
-\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
-\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
-\def\gap{\vspace{0.5ex}}
-\makeindex
-\begin{document}
-\frontmatter
-\pagestyle{empty}
-\title{LibTomMath User Manual \\ v0.35}
-\author{Tom St Denis \\ [email protected]}
-\maketitle
-This text, the library and the accompanying textbook are all hereby placed in the public domain.  This book has been 
-formatted for B5 [176x250] paper using the \LaTeX{} {\em book} macro package.
-
-\vspace{10cm}
-
-\begin{flushright}Open Source.  Open Academia.  Open Minds.
-
-\mbox{ }
-
-Tom St Denis,
-
-Ontario, Canada
-\end{flushright}
-
-\tableofcontents
-\listoffigures
-\mainmatter
-\pagestyle{headings}
-\chapter{Introduction}
-\section{What is LibTomMath?}
-LibTomMath is a library of source code which provides a series of efficient and carefully written functions for manipulating
-large integer numbers.  It was written in portable ISO C source code so that it will build on any platform with a conforming
-C compiler.  
-
-In a nutshell the library was written from scratch with verbose comments to help instruct computer science students how
-to implement ``bignum'' math.  However, the resulting code has proven to be very useful.  It has been used by numerous 
-universities, commercial and open source software developers.  It has been used on a variety of platforms ranging from
-Linux and Windows based x86 to ARM based Gameboys and PPC based MacOS machines.  
-
-\section{License}
-As of the v0.25 the library source code has been placed in the public domain with every new release.  As of the v0.28
-release the textbook ``Implementing Multiple Precision Arithmetic'' has been placed in the public domain with every new
-release as well.  This textbook is meant to compliment the project by providing a more solid walkthrough of the development
-algorithms used in the library.
-
-Since both\footnote{Note that the MPI files under mtest/ are copyrighted by Michael Fromberger.  They are not required to use LibTomMath.} are in the 
-public domain everyone is entitled to do with them as they see fit.
-
-\section{Building LibTomMath}
-
-LibTomMath is meant to be very ``GCC friendly'' as it comes with a makefile well suited for GCC.  However, the library will
-also build in MSVC, Borland C out of the box.  For any other ISO C compiler a makefile will have to be made by the end
-developer.  
-
-\subsection{Static Libraries}
-To build as a static library for GCC issue the following
-\begin{alltt}
-make
-\end{alltt}
-
-command.  This will build the library and archive the object files in ``libtommath.a''.  Now you link against 
-that and include ``tommath.h'' within your programs.  Alternatively to build with MSVC issue the following
-\begin{alltt}
-nmake -f makefile.msvc
-\end{alltt}
-
-This will build the library and archive the object files in ``tommath.lib''.  This has been tested with MSVC 
-version 6.00 with service pack 5.  
-
-\subsection{Shared Libraries}
-To build as a shared library for GCC issue the following
-\begin{alltt}
-make -f makefile.shared
-\end{alltt}
-This requires the ``libtool'' package (common on most Linux/BSD systems).  It will build LibTomMath as both shared
-and static then install (by default) into /usr/lib as well as install the header files in /usr/include.  The shared 
-library (resource) will be called ``libtommath.la'' while the static library called ``libtommath.a''.  Generally 
-you use libtool to link your application against the shared object.  
-
-There is limited support for making a ``DLL'' in windows via the ``makefile.cygwin\_dll'' makefile.  It requires 
-Cygwin to work with since it requires the auto-export/import functionality.  The resulting DLL and import library 
-``libtommath.dll.a'' can be used to link LibTomMath dynamically to any Windows program using Cygwin.
-
-\subsection{Testing}
-To build the library and the test harness type
-
-\begin{alltt}
-make test
-\end{alltt}
-
-This will build the library, ``test'' and ``mtest/mtest''.  The ``test'' program will accept test vectors and verify the
-results.  ``mtest/mtest'' will generate test vectors using the MPI library by Michael Fromberger\footnote{A copy of MPI
-is included in the package}.  Simply pipe mtest into test using
-
-\begin{alltt}
-mtest/mtest | test
-\end{alltt}
-
-If you do not have a ``/dev/urandom'' style RNG source you will have to write your own PRNG and simply pipe that into 
-mtest.  For example, if your PRNG program is called ``myprng'' simply invoke
-
-\begin{alltt}
-myprng | mtest/mtest | test
-\end{alltt}
-
-This will output a row of numbers that are increasing.  Each column is a different test (such as addition, multiplication, etc)
-that is being performed.  The numbers represent how many times the test was invoked.  If an error is detected the program
-will exit with a dump of the relevent numbers it was working with.
-
-\section{Build Configuration}
-LibTomMath can configured at build time in three phases we shall call ``depends'', ``tweaks'' and ``trims''.  
-Each phase changes how the library is built and they are applied one after another respectively.  
-
-To make the system more powerful you can tweak the build process.  Classes are defined in the file
-``tommath\_superclass.h''.  By default, the symbol ``LTM\_ALL'' shall be defined which simply 
-instructs the system to build all of the functions.  This is how LibTomMath used to be packaged.  This will give you 
-access to every function LibTomMath offers.
-
-However, there are cases where such a build is not optional.  For instance, you want to perform RSA operations.  You 
-don't need the vast majority of the library to perform these operations.  Aside from LTM\_ALL there is 
-another pre--defined class ``SC\_RSA\_1'' which works in conjunction with the RSA from LibTomCrypt.  Additional 
-classes can be defined base on the need of the user.
-
-\subsection{Build Depends}
-In the file tommath\_class.h you will see a large list of C ``defines'' followed by a series of ``ifdefs''
-which further define symbols.  All of the symbols (technically they're macros $\ldots$) represent a given C source
-file.  For instance, BN\_MP\_ADD\_C represents the file ``bn\_mp\_add.c''.  When a define has been enabled the
-function in the respective file will be compiled and linked into the library.  Accordingly when the define
-is absent the file will not be compiled and not contribute any size to the library.
-
-You will also note that the header tommath\_class.h is actually recursively included (it includes itself twice).  
-This is to help resolve as many dependencies as possible.  In the last pass the symbol LTM\_LAST will be defined.  
-This is useful for ``trims''.
-
-\subsection{Build Tweaks}
-A tweak is an algorithm ``alternative''.  For example, to provide tradeoffs (usually between size and space).
-They can be enabled at any pass of the configuration phase.
-
-\begin{small}
-\begin{center}
-\begin{tabular}{|l|l|}
-\hline \textbf{Define} & \textbf{Purpose} \\
-\hline BN\_MP\_DIV\_SMALL & Enables a slower, smaller and equally \\
-                          & functional mp\_div() function \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-
-\subsection{Build Trims}
-A trim is a manner of removing functionality from a function that is not required.  For instance, to perform
-RSA cryptography you only require exponentiation with odd moduli so even moduli support can be safely removed.  
-Build trims are meant to be defined on the last pass of the configuration which means they are to be defined
-only if LTM\_LAST has been defined.
-
-\subsubsection{Moduli Related}
-\begin{small}
-\begin{center}
-\begin{tabular}{|l|l|}
-\hline \textbf{Restriction} & \textbf{Undefine} \\
-\hline Exponentiation with odd moduli only & BN\_S\_MP\_EXPTMOD\_C \\
-                                           & BN\_MP\_REDUCE\_C \\
-                                           & BN\_MP\_REDUCE\_SETUP\_C \\
-                                           & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
-                                           & BN\_FAST\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
-\hline Exponentiation with random odd moduli & (The above plus the following) \\
-                                           & BN\_MP\_REDUCE\_2K\_C \\
-                                           & BN\_MP\_REDUCE\_2K\_SETUP\_C \\
-                                           & BN\_MP\_REDUCE\_IS\_2K\_C \\
-                                           & BN\_MP\_DR\_IS\_MODULUS\_C \\
-                                           & BN\_MP\_DR\_REDUCE\_C \\
-                                           & BN\_MP\_DR\_SETUP\_C \\
-\hline Modular inverse odd moduli only     & BN\_MP\_INVMOD\_SLOW\_C \\
-\hline Modular inverse (both, smaller/slower) & BN\_FAST\_MP\_INVMOD\_C \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-
-\subsubsection{Operand Size Related}
-\begin{small}
-\begin{center}
-\begin{tabular}{|l|l|}
-\hline \textbf{Restriction} & \textbf{Undefine} \\
-\hline Moduli $\le 2560$ bits              & BN\_MP\_MONTGOMERY\_REDUCE\_C \\
-                                           & BN\_S\_MP\_MUL\_DIGS\_C \\
-                                           & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
-                                           & BN\_S\_MP\_SQR\_C \\
-\hline Polynomial Schmolynomial            & BN\_MP\_KARATSUBA\_MUL\_C \\
-                                           & BN\_MP\_KARATSUBA\_SQR\_C \\
-                                           & BN\_MP\_TOOM\_MUL\_C \\ 
-                                           & BN\_MP\_TOOM\_SQR\_C \\
-
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-
-
-\section{Purpose of LibTomMath}
-Unlike  GNU MP (GMP) Library, LIP, OpenSSL or various other commercial kits (Miracl), LibTomMath was not written with 
-bleeding edge performance in mind.  First and foremost LibTomMath was written to be entirely open.  Not only is the 
-source code public domain (unlike various other GPL/etc licensed code), not only is the code freely downloadable but the
-source code is also accessible for computer science students attempting to learn ``BigNum'' or multiple precision
-arithmetic techniques. 
-
-LibTomMath was written to be an instructive collection of source code.  This is why there are many comments, only one
-function per source file and often I use a ``middle-road'' approach where I don't cut corners for an extra 2\% speed
-increase.
-
-Source code alone cannot really teach how the algorithms work which is why I also wrote a textbook that accompanies
-the library (beat that!).
-
-So you may be thinking ``should I use LibTomMath?'' and the answer is a definite maybe.  Let me tabulate what I think
-are the pros and cons of LibTomMath by comparing it to the math routines from GnuPG\footnote{GnuPG v1.2.3 versus LibTomMath v0.28}.
-
-\newpage\begin{figure}[here]
-\begin{small}
-\begin{center}
-\begin{tabular}{|l|c|c|l|}
-\hline \textbf{Criteria} & \textbf{Pro} & \textbf{Con} & \textbf{Notes} \\
-\hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath  $ = 71.97$ \\
-\hline Commented function prototypes & X && GnuPG function names are cryptic. \\
-\hline Speed && X & LibTomMath is slower.  \\
-\hline Totally free & X & & GPL has unfavourable restrictions.\\
-\hline Large function base & X & & GnuPG is barebones. \\
-\hline Five modular reduction algorithms & X & & Faster modular exponentiation for a variety of moduli. \\
-\hline Portable & X & & GnuPG requires configuration to build. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{LibTomMath Valuation}
-\end{figure}
-
-It may seem odd to compare LibTomMath to GnuPG since the math in GnuPG is only a small portion of the entire application. 
-However, LibTomMath was written with cryptography in mind.  It provides essentially all of the functions a cryptosystem
-would require when working with large integers.  
-
-So it may feel tempting to just rip the math code out of GnuPG (or GnuMP where it was taken from originally) in your
-own application but I think there are reasons not to.  While LibTomMath is slower than libraries such as GnuMP it is
-not normally significantly slower.  On x86 machines the difference is normally a factor of two when performing modular
-exponentiations.  It depends largely on the processor, compiler and the moduli being used.
-
-Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern.  However,
-on the other side of the coin LibTomMath offers you a totally free (public domain) well structured math library
-that is very flexible, complete and performs well in resource contrained environments.  Fast RSA for example can
-be performed with as little as 8KB of ram for data (again depending on build options).  
-
-\chapter{Getting Started with LibTomMath}
-\section{Building Programs}
-In order to use LibTomMath you must include ``tommath.h'' and link against the appropriate library file (typically 
-libtommath.a).  There is no library initialization required and the entire library is thread safe.
-
-\section{Return Codes}
-There are three possible return codes a function may return.
-
-\index{MP\_OKAY}\index{MP\_YES}\index{MP\_NO}\index{MP\_VAL}\index{MP\_MEM}
-\begin{figure}[here!]
-\begin{center}
-\begin{small}
-\begin{tabular}{|l|l|}
-\hline \textbf{Code} & \textbf{Meaning} \\
-\hline MP\_OKAY & The function succeeded. \\
-\hline MP\_VAL  & The function input was invalid. \\
-\hline MP\_MEM  & Heap memory exhausted. \\
-\hline &\\
-\hline MP\_YES  & Response is yes. \\
-\hline MP\_NO   & Response is no. \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Return Codes}
-\end{figure}
-
-The last two codes listed are not actually ``return'ed'' by a function.  They are placed in an integer (the caller must
-provide the address of an integer it can store to) which the caller can access.  To convert one of the three return codes
-to a string use the following function.
-
-\index{mp\_error\_to\_string}
-\begin{alltt}
-char *mp_error_to_string(int code);
-\end{alltt}
-
-This will return a pointer to a string which describes the given error code.  It will not work for the return codes 
-MP\_YES and MP\_NO.  
-
-\section{Data Types}
-The basic ``multiple precision integer'' type is known as the ``mp\_int'' within LibTomMath.  This data type is used to
-organize all of the data required to manipulate the integer it represents.  Within LibTomMath it has been prototyped
-as the following.
-
-\index{mp\_int}
-\begin{alltt}
-typedef struct  \{
-    int used, alloc, sign;
-    mp_digit *dp;
-\} mp_int;
-\end{alltt}
-
-Where ``mp\_digit'' is a data type that represents individual digits of the integer.  By default, an mp\_digit is the
-ISO C ``unsigned long'' data type and each digit is $28-$bits long.  The mp\_digit type can be configured to suit other
-platforms by defining the appropriate macros.  
-
-All LTM functions that use the mp\_int type will expect a pointer to mp\_int structure.  You must allocate memory to
-hold the structure itself by yourself (whether off stack or heap it doesn't matter).  The very first thing that must be
-done to use an mp\_int is that it must be initialized.
-
-\section{Function Organization}
-
-The arithmetic functions of the library are all organized to have the same style prototype.  That is source operands
-are passed on the left and the destination is on the right.  For instance,
-
-\begin{alltt}
-mp_add(&a, &b, &c);       /* c = a + b */
-mp_mul(&a, &a, &c);       /* c = a * a */
-mp_div(&a, &b, &c, &d);   /* c = [a/b], d = a mod b */
-\end{alltt}
-
-Another feature of the way the functions have been implemented is that source operands can be destination operands as well.
-For instance,
-
-\begin{alltt}
-mp_add(&a, &b, &b);       /* b = a + b */
-mp_div(&a, &b, &a, &c);   /* a = [a/b], c = a mod b */
-\end{alltt}
-
-This allows operands to be re-used which can make programming simpler.
-
-\section{Initialization}
-\subsection{Single Initialization}
-A single mp\_int can be initialized with the ``mp\_init'' function. 
-
-\index{mp\_init}
-\begin{alltt}
-int mp_init (mp_int * a);
-\end{alltt}
-
-This function expects a pointer to an mp\_int structure and will initialize the members of the structure so the mp\_int
-represents the default integer which is zero.  If the functions returns MP\_OKAY then the mp\_int is ready to be used
-by the other LibTomMath functions.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   if ((result = mp_init(&number)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
- 
-   /* use the number */
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\subsection{Single Free}
-When you are finished with an mp\_int it is ideal to return the heap it used back to the system.  The following function 
-provides this functionality.
-
-\index{mp\_clear}
-\begin{alltt}
-void mp_clear (mp_int * a);
-\end{alltt}
-
-The function expects a pointer to a previously initialized mp\_int structure and frees the heap it uses.  It sets the 
-pointer\footnote{The ``dp'' member.} within the mp\_int to \textbf{NULL} which is used to prevent double free situations. 
-Is is legal to call mp\_clear() twice on the same mp\_int in a row.  
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   if ((result = mp_init(&number)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
- 
-   /* use the number */
-
-   /* We're done with it. */
-   mp_clear(&number);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\subsection{Multiple Initializations}
-Certain algorithms require more than one large integer.  In these instances it is ideal to initialize all of the mp\_int
-variables in an ``all or nothing'' fashion.  That is, they are either all initialized successfully or they are all
-not initialized.
-
-The  mp\_init\_multi() function provides this functionality.
-
-\index{mp\_init\_multi} \index{mp\_clear\_multi}
-\begin{alltt}
-int mp_init_multi(mp_int *mp, ...);
-\end{alltt}
-
-It accepts a \textbf{NULL} terminated list of pointers to mp\_int structures.  It will attempt to initialize them all
-at once.  If the function returns MP\_OKAY then all of the mp\_int variables are ready to use, otherwise none of them
-are available for use.  A complementary mp\_clear\_multi() function allows multiple mp\_int variables to be free'd 
-from the heap at the same time.  
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int num1, num2, num3;
-   int result;
-
-   if ((result = mp_init_multi(&num1, 
-                               &num2,
-                               &num3, NULL)) != MP\_OKAY) \{      
-      printf("Error initializing the numbers.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
- 
-   /* use the numbers */
-
-   /* We're done with them. */
-   mp_clear_multi(&num1, &num2, &num3, NULL);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\subsection{Other Initializers}
-To initialized and make a copy of an mp\_int the mp\_init\_copy() function has been provided.  
-
-\index{mp\_init\_copy}
-\begin{alltt}
-int mp_init_copy (mp_int * a, mp_int * b);
-\end{alltt}
-
-This function will initialize $a$ and make it a copy of $b$ if all goes well.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int num1, num2;
-   int result;
-
-   /* initialize and do work on num1 ... */
-
-   /* We want a copy of num1 in num2 now */
-   if ((result = mp_init_copy(&num2, &num1)) != MP_OKAY) \{
-     printf("Error initializing the copy.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
- 
-   /* now num2 is ready and contains a copy of num1 */
-
-   /* We're done with them. */
-   mp_clear_multi(&num1, &num2, NULL);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-Another less common initializer is mp\_init\_size() which allows the user to initialize an mp\_int with a given
-default number of digits.  By default, all initializers allocate \textbf{MP\_PREC} digits.  This function lets
-you override this behaviour.
-
-\index{mp\_init\_size}
-\begin{alltt}
-int mp_init_size (mp_int * a, int size);
-\end{alltt}
-
-The $size$ parameter must be greater than zero.  If the function succeeds the mp\_int $a$ will be initialized
-to have $size$ digits (which are all initially zero).  
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   /* we need a 60-digit number */
-   if ((result = mp_init_size(&number, 60)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
- 
-   /* use the number */
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\section{Maintenance Functions}
-
-\subsection{Reducing Memory Usage}
-When an mp\_int is in a state where it won't be changed again\footnote{A Diffie-Hellman modulus for instance.} excess
-digits can be removed to return memory to the heap with the mp\_shrink() function.
-
-\index{mp\_shrink}
-\begin{alltt}
-int mp_shrink (mp_int * a);
-\end{alltt}
-
-This will remove excess digits of the mp\_int $a$.  If the operation fails the mp\_int should be intact without the
-excess digits being removed.  Note that you can use a shrunk mp\_int in further computations, however, such operations
-will require heap operations which can be slow.  It is not ideal to shrink mp\_int variables that you will further
-modify in the system (unless you are seriously low on memory).  
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   if ((result = mp_init(&number)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
- 
-   /* use the number [e.g. pre-computation]  */
-
-   /* We're done with it for now. */
-   if ((result = mp_shrink(&number)) != MP_OKAY) \{
-      printf("Error shrinking the number.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* use it .... */
-
-
-   /* we're done with it. */ 
-   mp_clear(&number);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\subsection{Adding additional digits}
-
-Within the mp\_int structure are two parameters which control the limitations of the array of digits that represent
-the integer the mp\_int is meant to equal.   The \textit{used} parameter dictates how many digits are significant, that is,
-contribute to the value of the mp\_int.  The \textit{alloc} parameter dictates how many digits are currently available in
-the array.  If you need to perform an operation that requires more digits you will have to mp\_grow() the mp\_int to
-your desired size.  
-
-\index{mp\_grow}
-\begin{alltt}
-int mp_grow (mp_int * a, int size);
-\end{alltt}
-
-This will grow the array of digits of $a$ to $size$.  If the \textit{alloc} parameter is already bigger than
-$size$ the function will not do anything.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   if ((result = mp_init(&number)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
- 
-   /* use the number */
-
-   /* We need to add 20 digits to the number  */
-   if ((result = mp_grow(&number, number.alloc + 20)) != MP_OKAY) \{
-      printf("Error growing the number.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-
-   /* use the number */
-
-   /* we're done with it. */ 
-   mp_clear(&number);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\chapter{Basic Operations}
-\section{Small Constants}
-Setting mp\_ints to small constants is a relatively common operation.  To accomodate these instances there are two
-small constant assignment functions.  The first function is used to set a single digit constant while the second sets
-an ISO C style ``unsigned long'' constant.  The reason for both functions is efficiency.  Setting a single digit is quick but the
-domain of a digit can change (it's always at least $0 \ldots 127$).  
-
-\subsection{Single Digit}
-
-Setting a single digit can be accomplished with the following function.
-
-\index{mp\_set}
-\begin{alltt}
-void mp_set (mp_int * a, mp_digit b);
-\end{alltt}
-
-This will zero the contents of $a$ and make it represent an integer equal to the value of $b$.  Note that this
-function has a return type of \textbf{void}.  It cannot cause an error so it is safe to assume the function
-succeeded.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   if ((result = mp_init(&number)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
- 
-   /* set the number to 5 */
-   mp_set(&number, 5);
-
-   /* we're done with it. */ 
-   mp_clear(&number);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\subsection{Long Constants}
-
-To set a constant that is the size of an ISO C ``unsigned long'' and larger than a single digit the following function 
-can be used.
-
-\index{mp\_set\_int}
-\begin{alltt}
-int mp_set_int (mp_int * a, unsigned long b);
-\end{alltt}
-
-This will assign the value of the 32-bit variable $b$ to the mp\_int $a$.  Unlike mp\_set() this function will always
-accept a 32-bit input regardless of the size of a single digit.  However, since the value may span several digits 
-this function can fail if it runs out of heap memory.
-
-To get the ``unsigned long'' copy of an mp\_int the following function can be used.
-
-\index{mp\_get\_int}
-\begin{alltt}
-unsigned long mp_get_int (mp_int * a);
-\end{alltt}
-
-This will return the 32 least significant bits of the mp\_int $a$.  
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   if ((result = mp_init(&number)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
- 
-   /* set the number to 654321 (note this is bigger than 127) */
-   if ((result = mp_set_int(&number, 654321)) != MP_OKAY) \{
-      printf("Error setting the value of the number.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   printf("number == \%lu", mp_get_int(&number));
-
-   /* we're done with it. */ 
-   mp_clear(&number);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-This should output the following if the program succeeds.
-
-\begin{alltt}
-number == 654321
-\end{alltt}
-
-\subsection{Initialize and Setting Constants}
-To both initialize and set small constants the following two functions are available.
-\index{mp\_init\_set} \index{mp\_init\_set\_int}
-\begin{alltt}
-int mp_init_set (mp_int * a, mp_digit b);
-int mp_init_set_int (mp_int * a, unsigned long b);
-\end{alltt}
-
-Both functions work like the previous counterparts except they first mp\_init $a$ before setting the values.  
-
-\begin{alltt}
-int main(void)
-\{
-   mp_int number1, number2;
-   int    result;
-
-   /* initialize and set a single digit */
-   if ((result = mp_init_set(&number1, 100)) != MP_OKAY) \{
-      printf("Error setting number1: \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}             
-
-   /* initialize and set a long */
-   if ((result = mp_init_set_int(&number2, 1023)) != MP_OKAY) \{
-      printf("Error setting number2: \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* display */
-   printf("Number1, Number2 == \%lu, \%lu",
-          mp_get_int(&number1), mp_get_int(&number2));
-
-   /* clear */
-   mp_clear_multi(&number1, &number2, NULL);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt}
-
-If this program succeeds it shall output.
-\begin{alltt}
-Number1, Number2 == 100, 1023
-\end{alltt}
-
-\section{Comparisons}
-
-Comparisons in LibTomMath are always performed in a ``left to right'' fashion.  There are three possible return codes
-for any comparison.
-
-\index{MP\_GT} \index{MP\_EQ} \index{MP\_LT}
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{|c|c|}
-\hline \textbf{Result Code} & \textbf{Meaning} \\
-\hline MP\_GT & $a > b$ \\
-\hline MP\_EQ & $a = b$ \\
-\hline MP\_LT & $a < b$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Comparison Codes for $a, b$}
-\label{fig:CMP}
-\end{figure}
-
-In figure \ref{fig:CMP} two integers $a$ and $b$ are being compared.  In this case $a$ is said to be ``to the left'' of 
-$b$.  
-
-\subsection{Unsigned comparison}
-
-An unsigned comparison considers only the digits themselves and not the associated \textit{sign} flag of the 
-mp\_int structures.  This is analogous to an absolute comparison.  The function mp\_cmp\_mag() will compare two
-mp\_int variables based on their digits only. 
-
-\index{mp\_cmp\_mag}
-\begin{alltt}
-int mp_cmp_mag(mp_int * a, mp_int * b);
-\end{alltt}
-This will compare $a$ to $b$ placing $a$ to the left of $b$.  This function cannot fail and will return one of the
-three compare codes listed in figure \ref{fig:CMP}.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number1, number2;
-   int result;
-
-   if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
-      printf("Error initializing the numbers.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
- 
-   /* set the number1 to 5 */
-   mp_set(&number1, 5);
-  
-   /* set the number2 to -6 */
-   mp_set(&number2, 6);
-   if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
-      printf("Error negating number2.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   switch(mp_cmp_mag(&number1, &number2)) \{
-       case MP_GT:  printf("|number1| > |number2|"); break;
-       case MP_EQ:  printf("|number1| = |number2|"); break;
-       case MP_LT:  printf("|number1| < |number2|"); break;
-   \}
-
-   /* we're done with it. */ 
-   mp_clear_multi(&number1, &number2, NULL);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes 
-successfully it should print the following.
-
-\begin{alltt}
-|number1| < |number2|
-\end{alltt}
-
-This is because $\vert -6 \vert = 6$ and obviously $5 < 6$.
-
-\subsection{Signed comparison}
-
-To compare two mp\_int variables based on their signed value the mp\_cmp() function is provided.
-
-\index{mp\_cmp}
-\begin{alltt}
-int mp_cmp(mp_int * a, mp_int * b);
-\end{alltt}
-
-This will compare $a$ to the left of $b$.  It will first compare the signs of the two mp\_int variables.  If they
-differ it will return immediately based on their signs.  If the signs are equal then it will compare the digits
-individually.  This function will return one of the compare conditions codes listed in figure \ref{fig:CMP}.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number1, number2;
-   int result;
-
-   if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
-      printf("Error initializing the numbers.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
- 
-   /* set the number1 to 5 */
-   mp_set(&number1, 5);
-  
-   /* set the number2 to -6 */
-   mp_set(&number2, 6);
-   if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
-      printf("Error negating number2.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   switch(mp_cmp(&number1, &number2)) \{
-       case MP_GT:  printf("number1 > number2"); break;
-       case MP_EQ:  printf("number1 = number2"); break;
-       case MP_LT:  printf("number1 < number2"); break;
-   \}
-
-   /* we're done with it. */ 
-   mp_clear_multi(&number1, &number2, NULL);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes 
-successfully it should print the following.
-
-\begin{alltt}
-number1 > number2
-\end{alltt}
-
-\subsection{Single Digit}
-
-To compare a single digit against an mp\_int the following function has been provided.
-
-\index{mp\_cmp\_d}
-\begin{alltt}
-int mp_cmp_d(mp_int * a, mp_digit b);
-\end{alltt}
-
-This will compare $a$ to the left of $b$ using a signed comparison.  Note that it will always treat $b$ as 
-positive.  This function is rather handy when you have to compare against small values such as $1$ (which often
-comes up in cryptography).  The function cannot fail and will return one of the tree compare condition codes
-listed in figure \ref{fig:CMP}.
-
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   if ((result = mp_init(&number)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
- 
-   /* set the number to 5 */
-   mp_set(&number, 5);
-
-   switch(mp_cmp_d(&number, 7)) \{
-       case MP_GT:  printf("number > 7"); break;
-       case MP_EQ:  printf("number = 7"); break;
-       case MP_LT:  printf("number < 7"); break;
-   \}
-
-   /* we're done with it. */ 
-   mp_clear(&number);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-If this program functions properly it will print out the following.
-
-\begin{alltt}
-number < 7
-\end{alltt}
-
-\section{Logical Operations}
-
-Logical operations are operations that can be performed either with simple shifts or boolean operators such as
-AND, XOR and OR directly.  These operations are very quick.
-
-\subsection{Multiplication by two}
-
-Multiplications and divisions by any power of two can be performed with quick logical shifts either left or
-right depending on the operation.  
-
-When multiplying or dividing by two a special case routine can be used which are as follows.
-\index{mp\_mul\_2} \index{mp\_div\_2}
-\begin{alltt}
-int mp_mul_2(mp_int * a, mp_int * b);
-int mp_div_2(mp_int * a, mp_int * b);
-\end{alltt}
-
-The former will assign twice $a$ to $b$ while the latter will assign half $a$ to $b$.  These functions are fast
-since the shift counts and maskes are hardcoded into the routines.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   if ((result = mp_init(&number)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
- 
-   /* set the number to 5 */
-   mp_set(&number, 5);
-
-   /* multiply by two */
-   if ((result = mp\_mul\_2(&number, &number)) != MP_OKAY) \{
-      printf("Error multiplying the number.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-   switch(mp_cmp_d(&number, 7)) \{
-       case MP_GT:  printf("2*number > 7"); break;
-       case MP_EQ:  printf("2*number = 7"); break;
-       case MP_LT:  printf("2*number < 7"); break;
-   \}
-
-   /* now divide by two */
-   if ((result = mp\_div\_2(&number, &number)) != MP_OKAY) \{
-      printf("Error dividing the number.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-   switch(mp_cmp_d(&number, 7)) \{
-       case MP_GT:  printf("2*number/2 > 7"); break;
-       case MP_EQ:  printf("2*number/2 = 7"); break;
-       case MP_LT:  printf("2*number/2 < 7"); break;
-   \}
-
-   /* we're done with it. */ 
-   mp_clear(&number);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-If this program is successful it will print out the following text.
-
-\begin{alltt}
-2*number > 7
-2*number/2 < 7
-\end{alltt}
-
-Since $10 > 7$ and $5 < 7$.  To multiply by a power of two the following function can be used.
-
-\index{mp\_mul\_2d}
-\begin{alltt}
-int mp_mul_2d(mp_int * a, int b, mp_int * c);
-\end{alltt}
-
-This will multiply $a$ by $2^b$ and store the result in ``c''.  If the value of $b$ is less than or equal to 
-zero the function will copy $a$ to ``c'' without performing any further actions.  
-
-To divide by a power of two use the following.
-
-\index{mp\_div\_2d}
-\begin{alltt}
-int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d);
-\end{alltt}
-Which will divide $a$ by $2^b$, store the quotient in ``c'' and the remainder in ``d'.  If $b \le 0$ then the
-function simply copies $a$ over to ``c'' and zeroes $d$.  The variable $d$ may be passed as a \textbf{NULL}
-value to signal that the remainder is not desired.
-
-\subsection{Polynomial Basis Operations}
-
-Strictly speaking the organization of the integers within the mp\_int structures is what is known as a 
-``polynomial basis''.  This simply means a field element is stored by divisions of a radix.  For example, if
-$f(x) = \sum_{i=0}^{k} y_ix^k$ for any vector $\vec y$ then the array of digits in $\vec y$ are said to be 
-the polynomial basis representation of $z$ if $f(\beta) = z$ for a given radix $\beta$.  
-
-To multiply by the polynomial $g(x) = x$ all you have todo is shift the digits of the basis left one place.  The
-following function provides this operation.
-
-\index{mp\_lshd}
-\begin{alltt}
-int mp_lshd (mp_int * a, int b);
-\end{alltt}
-
-This will multiply $a$ in place by $x^b$ which is equivalent to shifting the digits left $b$ places and inserting zeroes
-in the least significant digits.  Similarly to divide by a power of $x$ the following function is provided.
-
-\index{mp\_rshd}
-\begin{alltt}
-void mp_rshd (mp_int * a, int b)
-\end{alltt}
-This will divide $a$ in place by $x^b$ and discard the remainder.  This function cannot fail as it performs the operations
-in place and no new digits are required to complete it.
-
-\subsection{AND, OR and XOR Operations}
-
-While AND, OR and XOR operations are not typical ``bignum functions'' they can be useful in several instances.  The
-three functions are prototyped as follows.
-
-\index{mp\_or} \index{mp\_and} \index{mp\_xor}
-\begin{alltt}
-int mp_or  (mp_int * a, mp_int * b, mp_int * c);
-int mp_and (mp_int * a, mp_int * b, mp_int * c);
-int mp_xor (mp_int * a, mp_int * b, mp_int * c);
-\end{alltt}
-
-Which compute $c = a \odot b$ where $\odot$ is one of OR, AND or XOR.  
-
-\section{Addition and Subtraction}
-
-To compute an addition or subtraction the following two functions can be used.
-
-\index{mp\_add} \index{mp\_sub}
-\begin{alltt}
-int mp_add (mp_int * a, mp_int * b, mp_int * c);
-int mp_sub (mp_int * a, mp_int * b, mp_int * c)
-\end{alltt}
-
-Which perform $c = a \odot b$ where $\odot$ is one of signed addition or subtraction.  The operations are fully sign
-aware.
-
-\section{Sign Manipulation}
-\subsection{Negation}
-\label{sec:NEG}
-Simple integer negation can be performed with the following.
-
-\index{mp\_neg}
-\begin{alltt}
-int mp_neg (mp_int * a, mp_int * b);
-\end{alltt}
-
-Which assigns $-a$ to $b$.  
-
-\subsection{Absolute}
-Simple integer absolutes can be performed with the following.
-
-\index{mp\_neg}
-\begin{alltt}
-int mp_abs (mp_int * a, mp_int * b);
-\end{alltt}
-
-Which assigns $\vert a \vert$ to $b$.  
-
-\section{Integer Division and Remainder}
-To perform a complete and general integer division with remainder use the following function.
-
-\index{mp\_div}
-\begin{alltt}
-int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d);
-\end{alltt}
-                                                        
-This divides $a$ by $b$ and stores the quotient in $c$ and $d$.  The signed quotient is computed such that 
-$bc + d = a$.  Note that either of $c$ or $d$ can be set to \textbf{NULL} if their value is not required.  If 
-$b$ is zero the function returns \textbf{MP\_VAL}.  
-
-
-\chapter{Multiplication and Squaring}
-\section{Multiplication}
-A full signed integer multiplication can be performed with the following.
-\index{mp\_mul}
-\begin{alltt}
-int mp_mul (mp_int * a, mp_int * b, mp_int * c);
-\end{alltt}
-Which assigns the full signed product $ab$ to $c$.  This function actually breaks into one of four cases which are 
-specific multiplication routines optimized for given parameters.  First there are the Toom-Cook multiplications which
-should only be used with very large inputs.  This is followed by the Karatsuba multiplications which are for moderate
-sized inputs.  Then followed by the Comba and baseline multipliers.
-
-Fortunately for the developer you don't really need to know this unless you really want to fine tune the system.  mp\_mul()
-will determine on its own\footnote{Some tweaking may be required.} what routine to use automatically when it is called.
-
-\begin{alltt}
-int main(void)
-\{
-   mp_int number1, number2;
-   int result;
-
-   /* Initialize the numbers */
-   if ((result = mp_init_multi(&number1, 
-                               &number2, NULL)) != MP_OKAY) \{
-      printf("Error initializing the numbers.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* set the terms */
-   if ((result = mp_set_int(&number, 257)) != MP_OKAY) \{
-      printf("Error setting number1.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
- 
-   if ((result = mp_set_int(&number2, 1023)) != MP_OKAY) \{
-      printf("Error setting number2.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* multiply them */
-   if ((result = mp_mul(&number1, &number2,
-                        &number1)) != MP_OKAY) \{
-      printf("Error multiplying terms.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* display */
-   printf("number1 * number2 == \%lu", mp_get_int(&number1));
-
-   /* free terms and return */
-   mp_clear_multi(&number1, &number2, NULL);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt}   
-
-If this program succeeds it shall output the following.
-
-\begin{alltt}
-number1 * number2 == 262911
-\end{alltt}
-
-\section{Squaring}
-Since squaring can be performed faster than multiplication it is performed it's own function instead of just using
-mp\_mul().
-
-\index{mp\_sqr}
-\begin{alltt}
-int mp_sqr (mp_int * a, mp_int * b);
-\end{alltt}
-
-Will square $a$ and store it in $b$.  Like the case of multiplication there are four different squaring
-algorithms all which can be called from mp\_sqr().  It is ideal to use mp\_sqr over mp\_mul when squaring terms because
-of the speed difference.  
-
-\section{Tuning Polynomial Basis Routines}
-
-Both of the Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that
-the Comba and baseline algorithms use.  At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectively they require 
-considerably less work.  For example, a 10000-digit multiplication would take roughly 724,000 single precision
-multiplications with Toom-Cook or 100,000,000 single precision multiplications with the standard Comba (a factor
-of 138).
-
-So why not always use Karatsuba or Toom-Cook?   The simple answer is that they have so much overhead that they're not
-actually faster than Comba until you hit distinct  ``cutoff'' points.  For Karatsuba with the default configuration, 
-GCC 3.3.1 and an Athlon XP processor the cutoff point is roughly 110 digits (about 70 for the Intel P4).  That is, at 
-110 digits Karatsuba and Comba multiplications just about break even and for 110+ digits Karatsuba is faster.
-
-Toom-Cook has incredible overhead and is probably only useful for very large inputs.  So far no known cutoff points 
-exist and for the most part I just set the cutoff points very high to make sure they're not called.
-
-A demo program in the ``etc/'' directory of the project called ``tune.c'' can be used to find the cutoff points.  This
-can be built with GCC as follows
-
-\begin{alltt}
-make XXX
-\end{alltt}
-Where ``XXX'' is one of the following entries from the table \ref{fig:tuning}.
-
-\begin{figure}[here]
-\begin{center}
-\begin{small}
-\begin{tabular}{|l|l|}
-\hline \textbf{Value of XXX} & \textbf{Meaning} \\
-\hline tune & Builds portable tuning application \\
-\hline tune86 & Builds x86 (pentium and up) program for COFF \\
-\hline tune86c & Builds x86 program for Cygwin \\
-\hline tune86l & Builds x86 program for Linux (ELF format) \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Build Names for Tuning Programs}
-\label{fig:tuning}
-\end{figure}
-
-When the program is running it will output a series of measurements for different cutoff points.  It will first find
-good Karatsuba squaring and multiplication points.  Then it proceeds to find Toom-Cook points.  Note that the Toom-Cook
-tuning takes a very long time as the cutoff points are likely to be very high.
-
-\chapter{Modular Reduction}
-
-Modular reduction is process of taking the remainder of one quantity divided by another.  Expressed 
-as (\ref{eqn:mod}) the modular reduction is equivalent to the remainder of $b$ divided by $c$.  
-
-\begin{equation}
-a \equiv b \mbox{ (mod }c\mbox{)}
-\label{eqn:mod}
-\end{equation}
-
-Of particular interest to cryptography are reductions where $b$ is limited to the range $0 \le b < c^2$ since particularly 
-fast reduction algorithms can be written for the limited range.  
-
-Note that one of the four optimized reduction algorithms are automatically chosen in the modular exponentiation
-algorithm mp\_exptmod when an appropriate modulus is detected.  
-
-\section{Straight Division}
-In order to effect an arbitrary modular reduction the following algorithm is provided.
-
-\index{mp\_mod}
-\begin{alltt}
-int mp_mod(mp_int *a, mp_int *b, mp_int *c);
-\end{alltt}
-
-This reduces $a$ modulo $b$ and stores the result in $c$.  The sign of $c$ shall agree with the sign 
-of $b$.  This algorithm accepts an input $a$ of any range and is not limited by $0 \le a < b^2$.
-
-\section{Barrett Reduction}
-
-Barrett reduction is a generic optimized reduction algorithm that requires pre--computation to achieve
-a decent speedup over straight division.  First a $\mu$ value must be precomputed with the following function.
-
-\index{mp\_reduce\_setup}
-\begin{alltt}
-int mp_reduce_setup(mp_int *a, mp_int *b);
-\end{alltt}
-
-Given a modulus in $b$ this produces the required $\mu$ value in $a$.  For any given modulus this only has to
-be computed once.  Modular reduction can now be performed with the following.
-
-\index{mp\_reduce}
-\begin{alltt}
-int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
-\end{alltt}
-
-This will reduce $a$ in place modulo $b$ with the precomputed $\mu$ value in $c$.  $a$ must be in the range
-$0 \le a < b^2$.
-
-\begin{alltt}
-int main(void)
-\{
-   mp_int   a, b, c, mu;
-   int      result;
-
-   /* initialize a,b to desired values, mp_init mu, 
-    * c and set c to 1...we want to compute a^3 mod b 
-    */
-
-   /* get mu value */
-   if ((result = mp_reduce_setup(&mu, b)) != MP_OKAY) \{
-      printf("Error getting mu.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* square a to get c = a^2 */
-   if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
-      printf("Error squaring.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* now reduce `c' modulo b */
-   if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
-      printf("Error reducing.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-   
-   /* multiply a to get c = a^3 */
-   if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
-      printf("Error reducing.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* now reduce `c' modulo b  */
-   if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
-      printf("Error reducing.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-  
-   /* c now equals a^3 mod b */
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} 
-
-This program will calculate $a^3 \mbox{ mod }b$ if all the functions succeed.  
-
-\section{Montgomery Reduction}
-
-Montgomery is a specialized reduction algorithm for any odd moduli.  Like Barrett reduction a pre--computation
-step is required.  This is accomplished with the following.
-
-\index{mp\_montgomery\_setup}
-\begin{alltt}
-int mp_montgomery_setup(mp_int *a, mp_digit *mp);
-\end{alltt}
-
-For the given odd moduli $a$ the precomputation value is placed in $mp$.  The reduction is computed with the 
-following.
-
-\index{mp\_montgomery\_reduce}
-\begin{alltt}
-int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
-\end{alltt}
-This reduces $a$ in place modulo $m$ with the pre--computed value $mp$.   $a$ must be in the range
-$0 \le a < b^2$.
-
-Montgomery reduction is faster than Barrett reduction for moduli smaller than the ``comba'' limit.  With the default
-setup for instance, the limit is $127$ digits ($3556$--bits).   Note that this function is not limited to
-$127$ digits just that it falls back to a baseline algorithm after that point.  
-
-An important observation is that this reduction does not return $a \mbox{ mod }m$ but $aR^{-1} \mbox{ mod }m$ 
-where $R = \beta^n$, $n$ is the n number of digits in $m$ and $\beta$ is radix used (default is $2^{28}$).  
-
-To quickly calculate $R$ the following function was provided.
-
-\index{mp\_montgomery\_calc\_normalization}
-\begin{alltt}
-int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
-\end{alltt}
-Which calculates $a = R$ for the odd moduli $b$ without using multiplication or division.  
-
-The normal modus operandi for Montgomery reductions is to normalize the integers before entering the system.  For
-example, to calculate $a^3 \mbox { mod }b$ using Montgomery reduction the value of $a$ can be normalized by
-multiplying it by $R$.  Consider the following code snippet.
-
-\begin{alltt}
-int main(void)
-\{
-   mp_int   a, b, c, R;
-   mp_digit mp;
-   int      result;
-
-   /* initialize a,b to desired values, 
-    * mp_init R, c and set c to 1.... 
-    */
-
-   /* get normalization */
-   if ((result = mp_montgomery_calc_normalization(&R, b)) != MP_OKAY) \{
-      printf("Error getting norm.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* get mp value */
-   if ((result = mp_montgomery_setup(&c, &mp)) != MP_OKAY) \{
-      printf("Error setting up montgomery.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* normalize `a' so now a is equal to aR */
-   if ((result = mp_mulmod(&a, &R, &b, &a)) != MP_OKAY) \{
-      printf("Error computing aR.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* square a to get c = a^2R^2 */
-   if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
-      printf("Error squaring.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* now reduce `c' back down to c = a^2R^2 * R^-1 == a^2R */
-   if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
-      printf("Error reducing.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-   
-   /* multiply a to get c = a^3R^2 */
-   if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
-      printf("Error reducing.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* now reduce `c' back down to c = a^3R^2 * R^-1 == a^3R */
-   if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
-      printf("Error reducing.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-   
-   /* now reduce (again) `c' back down to c = a^3R * R^-1 == a^3 */
-   if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
-      printf("Error reducing.  \%s", 
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* c now equals a^3 mod b */
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} 
-
-This particular example does not look too efficient but it demonstrates the point of the algorithm.  By 
-normalizing the inputs the reduced results are always of the form $aR$ for some variable $a$.  This allows
-a single final reduction to correct for the normalization and the fast reduction used within the algorithm.
-
-For more details consider examining the file \textit{bn\_mp\_exptmod\_fast.c}.
-
-\section{Restricted Dimminished Radix}
-
-``Dimminished Radix'' reduction refers to reduction with respect to moduli that are ameniable to simple
-digit shifting and small multiplications.  In this case the ``restricted'' variant refers to moduli of the
-form $\beta^k - p$ for some $k \ge 0$ and $0 < p < \beta$ where $\beta$ is the radix (default to $2^{28}$).  
-
-As in the case of Montgomery reduction there is a pre--computation phase required for a given modulus.
-
-\index{mp\_dr\_setup}
-\begin{alltt}
-void mp_dr_setup(mp_int *a, mp_digit *d);
-\end{alltt}
-
-This computes the value required for the modulus $a$ and stores it in $d$.  This function cannot fail
-and does not return any error codes.  After the pre--computation a reduction can be performed with the
-following.
-
-\index{mp\_dr\_reduce}
-\begin{alltt}
-int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
-\end{alltt}
-
-This reduces $a$ in place modulo $b$ with the pre--computed value $mp$.  $b$ must be of a restricted
-dimminished radix form and $a$ must be in the range $0 \le a < b^2$.  Dimminished radix reductions are 
-much faster than both Barrett and Montgomery reductions as they have a much lower asymtotic running time.  
-
-Since the moduli are restricted this algorithm is not particularly useful for something like Rabin, RSA or
-BBS cryptographic purposes.  This reduction algorithm is useful for Diffie-Hellman and ECC where fixed
-primes are acceptable.  
-
-Note that unlike Montgomery reduction there is no normalization process.  The result of this function is
-equal to the correct residue.
-
-\section{Unrestricted Dimminshed Radix}
-
-Unrestricted reductions work much like the restricted counterparts except in this case the moduli is of the 
-form $2^k - p$ for $0 < p < \beta$.  In this sense the unrestricted reductions are more flexible as they 
-can be applied to a wider range of numbers.  
-
-\index{mp\_reduce\_2k\_setup}
-\begin{alltt}
-int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
-\end{alltt}
-
-This will compute the required $d$ value for the given moduli $a$.  
-
-\index{mp\_reduce\_2k}
-\begin{alltt}
-int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
-\end{alltt}
-
-This will reduce $a$ in place modulo $n$ with the pre--computed value $d$.  From my experience this routine is 
-slower than mp\_dr\_reduce but faster for most moduli sizes than the Montgomery reduction.  
-
-\chapter{Exponentiation}
-\section{Single Digit Exponentiation}
-\index{mp\_expt\_d}
-\begin{alltt}
-int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
-\end{alltt}
-This computes $c = a^b$ using a simple binary left-to-right algorithm.  It is faster than repeated multiplications by 
-$a$ for all values of $b$ greater than three.  
-
-\section{Modular Exponentiation}
-\index{mp\_exptmod}
-\begin{alltt}
-int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
-\end{alltt}
-This computes $Y \equiv G^X \mbox{ (mod }P\mbox{)}$ using a variable width sliding window algorithm.  This function
-will automatically detect the fastest modular reduction technique to use during the operation.  For negative values of 
-$X$ the operation is performed as $Y \equiv (G^{-1} \mbox{ mod }P)^{\vert X \vert} \mbox{ (mod }P\mbox{)}$ provided that 
-$gcd(G, P) = 1$.
-
-This function is actually a shell around the two internal exponentiation functions.  This routine will automatically
-detect when Barrett, Montgomery, Restricted and Unrestricted Dimminished Radix based exponentiation can be used.  Generally
-moduli of the a ``restricted dimminished radix'' form lead to the fastest modular exponentiations.  Followed by Montgomery
-and the other two algorithms.
-
-\section{Root Finding}
-\index{mp\_n\_root}
-\begin{alltt}
-int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
-\end{alltt}
-This computes $c = a^{1/b}$ such that $c^b \le a$ and $(c+1)^b > a$.  The implementation of this function is not 
-ideal for values of $b$ greater than three.  It will work but become very slow.  So unless you are working with very small
-numbers (less than 1000 bits) I'd avoid $b > 3$ situations.  Will return a positive root only for even roots and return
-a root with the sign of the input for odd roots.  For example, performing $4^{1/2}$ will return $2$ whereas $(-8)^{1/3}$ 
-will return $-2$.  
-
-This algorithm uses the ``Newton Approximation'' method and will converge on the correct root fairly quickly.  Since
-the algorithm requires raising $a$ to the power of $b$ it is not ideal to attempt to find roots for large
-values of $b$.  If particularly large roots are required then a factor method could be used instead.  For example,
-$a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$ or simply 
-$\left ( \left ( \left ( a^{1/2} \right )^{1/2} \right )^{1/2} \right )^{1/2}$
-
-\chapter{Prime Numbers}
-\section{Trial Division}
-\index{mp\_prime\_is\_divisible}
-\begin{alltt}
-int mp_prime_is_divisible (mp_int * a, int *result)
-\end{alltt}
-This will attempt to evenly divide $a$ by a list of primes\footnote{Default is the first 256 primes.} and store the 
-outcome in ``result''.  That is if $result = 0$ then $a$ is not divisible by the primes, otherwise it is.  Note that 
-if the function does not return \textbf{MP\_OKAY} the value in ``result'' should be considered undefined\footnote{Currently
-the default is to set it to zero first.}.
-
-\section{Fermat Test}
-\index{mp\_prime\_fermat}
-\begin{alltt}
-int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
-\end{alltt}
-Performs a Fermat primality test to the base $b$.  That is it computes $b^a \mbox{ mod }a$ and tests whether the value is
-equal to $b$ or not.  If the values are equal then $a$ is probably prime and $result$ is set to one.  Otherwise $result$
-is set to zero.
-
-\section{Miller-Rabin Test}
-\index{mp\_prime\_miller\_rabin}
-\begin{alltt}
-int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
-\end{alltt}
-Performs a Miller-Rabin test to the base $b$ of $a$.  This test is much stronger than the Fermat test and is very hard to
-fool (besides with Carmichael numbers).  If $a$ passes the test (therefore is probably prime) $result$ is set to one.  
-Otherwise $result$ is set to zero.  
-
-Note that is suggested that you use the Miller-Rabin test instead of the Fermat test since all of the failures of 
-Miller-Rabin are a subset of the failures of the Fermat test.
-
-\subsection{Required Number of Tests}
-Generally to ensure a number is very likely to be prime you have to perform the Miller-Rabin with at least a half-dozen
-or so unique bases.  However, it has been proven that the probability of failure goes down as the size of the input goes up.
-This is why a simple function has been provided to help out.
-
-\index{mp\_prime\_rabin\_miller\_trials}
-\begin{alltt}
-int mp_prime_rabin_miller_trials(int size)
-\end{alltt}
-This returns the number of trials required for a $2^{-96}$ (or lower) probability of failure for a given ``size'' expressed
-in bits.  This comes in handy specially since larger numbers are slower to test.  For example, a 512-bit number would
-require ten tests whereas a 1024-bit number would only require four tests. 
-
-You should always still perform a trial division before a Miller-Rabin test though.
-
-\section{Primality Testing}
-\index{mp\_prime\_is\_prime}
-\begin{alltt}
-int mp_prime_is_prime (mp_int * a, int t, int *result)
-\end{alltt}
-This will perform a trial division followed by $t$ rounds of Miller-Rabin tests on $a$ and store the result in $result$.  
-If $a$ passes all of the tests $result$ is set to one, otherwise it is set to zero.  Note that $t$ is bounded by 
-$1 \le t < PRIME\_SIZE$ where $PRIME\_SIZE$ is the number of primes in the prime number table (by default this is $256$).
-
-\section{Next Prime}
-\index{mp\_prime\_next\_prime}
-\begin{alltt}
-int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
-\end{alltt}
-This finds the next prime after $a$ that passes mp\_prime\_is\_prime() with $t$ tests.  Set $bbs\_style$ to one if you 
-want only the next prime congruent to $3 \mbox{ mod } 4$, otherwise set it to zero to find any next prime.  
-
-\section{Random Primes}
-\index{mp\_prime\_random}
-\begin{alltt}
-int mp_prime_random(mp_int *a, int t, int size, int bbs, 
-                    ltm_prime_callback cb, void *dat)
-\end{alltt}
-This will find a prime greater than $256^{size}$ which can be ``bbs\_style'' or not depending on $bbs$ and must pass
-$t$ rounds of tests.  The ``ltm\_prime\_callback'' is a typedef for 
-
-\begin{alltt}
-typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
-\end{alltt}
-
-Which is a function that must read $len$ bytes (and return the amount stored) into $dst$.  The $dat$ variable is simply
-copied from the original input.  It can be used to pass RNG context data to the callback.  The function 
-mp\_prime\_random() is more suitable for generating primes which must be secret (as in the case of RSA) since there 
-is no skew on the least significant bits.
-
-\textit{Note:}  As of v0.30 of the LibTomMath library this function has been deprecated.  It is still available
-but users are encouraged to use the new mp\_prime\_random\_ex() function instead.
-
-\subsection{Extended Generation}
-\index{mp\_prime\_random\_ex}
-\begin{alltt}
-int mp_prime_random_ex(mp_int *a,    int t, 
-                       int     size, int flags, 
-                       ltm_prime_callback cb, void *dat);
-\end{alltt}
-This will generate a prime in $a$ using $t$ tests of the primality testing algorithms.  The variable $size$
-specifies the bit length of the prime desired.  The variable $flags$ specifies one of several options available
-(see fig. \ref{fig:primeopts}) which can be OR'ed together.  The callback parameters are used as in 
-mp\_prime\_random().
-
-\begin{figure}[here]
-\begin{center}
-\begin{small}
-\begin{tabular}{|r|l|}
-\hline \textbf{Flag}         & \textbf{Meaning} \\
-\hline LTM\_PRIME\_BBS       & Make the prime congruent to $3$ modulo $4$ \\
-\hline LTM\_PRIME\_SAFE      & Make a prime $p$ such that $(p - 1)/2$ is also prime. \\
-                             & This option implies LTM\_PRIME\_BBS as well. \\
-\hline LTM\_PRIME\_2MSB\_OFF & Makes sure that the bit adjacent to the most significant bit \\
-                             & Is forced to zero.  \\
-\hline LTM\_PRIME\_2MSB\_ON  & Makes sure that the bit adjacent to the most significant bit \\
-                             & Is forced to one. \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Primality Generation Options}
-\label{fig:primeopts}
-\end{figure}
-
-\chapter{Input and Output}
-\section{ASCII Conversions}
-\subsection{To ASCII}
-\index{mp\_toradix}
-\begin{alltt}
-int mp_toradix (mp_int * a, char *str, int radix);
-\end{alltt}
-This still store $a$ in ``str'' as a base-``radix'' string of ASCII chars.  This function appends a NUL character
-to terminate the string.  Valid values of ``radix'' line in the range $[2, 64]$.  To determine the size (exact) required
-by the conversion before storing any data use the following function.
-
-\index{mp\_radix\_size}
-\begin{alltt}
-int mp_radix_size (mp_int * a, int radix, int *size)
-\end{alltt}
-This stores in ``size'' the number of characters (including space for the NUL terminator) required.  Upon error this 
-function returns an error code and ``size'' will be zero.  
-
-\subsection{From ASCII}
-\index{mp\_read\_radix}
-\begin{alltt}
-int mp_read_radix (mp_int * a, char *str, int radix);
-\end{alltt}
-This will read the base-``radix'' NUL terminated string from ``str'' into $a$.  It will stop reading when it reads a
-character it does not recognize (which happens to include th NUL char... imagine that...).  A single leading $-$ sign
-can be used to denote a negative number.
-
-\section{Binary Conversions}
-
-Converting an mp\_int to and from binary is another keen idea.
-
-\index{mp\_unsigned\_bin\_size}
-\begin{alltt}
-int mp_unsigned_bin_size(mp_int *a);
-\end{alltt}
-
-This will return the number of bytes (octets) required to store the unsigned copy of the integer $a$.
-
-\index{mp\_to\_unsigned\_bin}
-\begin{alltt}
-int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
-\end{alltt}
-This will store $a$ into the buffer $b$ in big--endian format.  Fortunately this is exactly what DER (or is it ASN?)
-requires.  It does not store the sign of the integer.
-
-\index{mp\_read\_unsigned\_bin}
-\begin{alltt}
-int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
-\end{alltt}
-This will read in an unsigned big--endian array of bytes (octets) from $b$ of length $c$ into $a$.  The resulting
-integer $a$ will always be positive.
-
-For those who acknowledge the existence of negative numbers (heretic!) there are ``signed'' versions of the
-previous functions.
-
-\begin{alltt}
-int mp_signed_bin_size(mp_int *a);
-int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
-int mp_to_signed_bin(mp_int *a, unsigned char *b);
-\end{alltt}
-They operate essentially the same as the unsigned copies except they prefix the data with zero or non--zero
-byte depending on the sign.  If the sign is zpos (e.g. not negative) the prefix is zero, otherwise the prefix
-is non--zero.  
-
-\chapter{Algebraic Functions}
-\section{Extended Euclidean Algorithm}
-\index{mp\_exteuclid}
-\begin{alltt}
-int mp_exteuclid(mp_int *a, mp_int *b, 
-                 mp_int *U1, mp_int *U2, mp_int *U3);
-\end{alltt}
-
-This finds the triple U1/U2/U3 using the Extended Euclidean algorithm such that the following equation holds.
-
-\begin{equation}
-a \cdot U1 + b \cdot U2 = U3
-\end{equation}
-
-Any of the U1/U2/U3 paramters can be set to \textbf{NULL} if they are not desired.  
-
-\section{Greatest Common Divisor}
-\index{mp\_gcd}
-\begin{alltt}
-int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
-\end{alltt}
-This will compute the greatest common divisor of $a$ and $b$ and store it in $c$.
-
-\section{Least Common Multiple}
-\index{mp\_lcm}
-\begin{alltt}
-int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
-\end{alltt}
-This will compute the least common multiple of $a$ and $b$ and store it in $c$.
-
-\section{Jacobi Symbol}
-\index{mp\_jacobi}
-\begin{alltt}
-int mp_jacobi (mp_int * a, mp_int * p, int *c)
-\end{alltt}
-This will compute the Jacobi symbol for $a$ with respect to $p$.  If $p$ is prime this essentially computes the Legendre
-symbol.  The result is stored in $c$ and can take on one of three values $\lbrace -1, 0, 1 \rbrace$.  If $p$ is prime
-then the result will be $-1$ when $a$ is not a quadratic residue modulo $p$.  The result will be $0$ if $a$ divides $p$
-and the result will be $1$ if $a$ is a quadratic residue modulo $p$.  
-
-\section{Modular Inverse}
-\index{mp\_invmod}
-\begin{alltt}
-int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
-\end{alltt}
-Computes the multiplicative inverse of $a$ modulo $b$ and stores the result in $c$ such that $ac \equiv 1 \mbox{ (mod }b\mbox{)}$.
-
-\section{Single Digit Functions}
-
-For those using small numbers (\textit{snicker snicker}) there are several ``helper'' functions
-
-\index{mp\_add\_d} \index{mp\_sub\_d} \index{mp\_mul\_d} \index{mp\_div\_d} \index{mp\_mod\_d}
-\begin{alltt}
-int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
-int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
-int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
-int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
-int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
-\end{alltt}
-
-These work like the full mp\_int capable variants except the second parameter $b$ is a mp\_digit.  These
-functions fairly handy if you have to work with relatively small numbers since you will not have to allocate
-an entire mp\_int to store a number like $1$ or $2$.
-
-\input{bn.ind}
-
-\end{document}
--- a/bn_error.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,43 +0,0 @@
-#include <tommath.h>
-#ifdef BN_ERROR_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-static const struct {
-     int code;
-     char *msg;
-} msgs[] = {
-     { MP_OKAY, "Successful" },
-     { MP_MEM,  "Out of heap" },
-     { MP_VAL,  "Value out of range" }
-};
-
-/* return a char * string for a given code */
-char *mp_error_to_string(int code)
-{
-   int x;
-
-   /* scan the lookup table for the given message */
-   for (x = 0; x < (int)(sizeof(msgs) / sizeof(msgs[0])); x++) {
-       if (msgs[x].code == code) {
-          return msgs[x].msg;
-       }
-   }
-
-   /* generic reply for invalid code */
-   return "Invalid error code";
-}
-
-#endif
--- a/bn_fast_mp_invmod.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,144 +0,0 @@
-#include <tommath.h>
-#ifdef BN_FAST_MP_INVMOD_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* computes the modular inverse via binary extended euclidean algorithm, 
- * that is c = 1/a mod b 
- *
- * Based on slow invmod except this is optimized for the case where b is 
- * odd as per HAC Note 14.64 on pp. 610
- */
-int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
-{
-  mp_int  x, y, u, v, B, D;
-  int     res, neg;
-
-  /* 2. [modified] b must be odd   */
-  if (mp_iseven (b) == 1) {
-    return MP_VAL;
-  }
-
-  /* init all our temps */
-  if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
-     return res;
-  }
-
-  /* x == modulus, y == value to invert */
-  if ((res = mp_copy (b, &x)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-
-  /* we need y = |a| */
-  if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-
-  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
-  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-  mp_set (&D, 1);
-
-top:
-  /* 4.  while u is even do */
-  while (mp_iseven (&u) == 1) {
-    /* 4.1 u = u/2 */
-    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-    /* 4.2 if B is odd then */
-    if (mp_isodd (&B) == 1) {
-      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
-        goto LBL_ERR;
-      }
-    }
-    /* B = B/2 */
-    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  }
-
-  /* 5.  while v is even do */
-  while (mp_iseven (&v) == 1) {
-    /* 5.1 v = v/2 */
-    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-    /* 5.2 if D is odd then */
-    if (mp_isodd (&D) == 1) {
-      /* D = (D-x)/2 */
-      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
-        goto LBL_ERR;
-      }
-    }
-    /* D = D/2 */
-    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  }
-
-  /* 6.  if u >= v then */
-  if (mp_cmp (&u, &v) != MP_LT) {
-    /* u = u - v, B = B - D */
-    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-
-    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  } else {
-    /* v - v - u, D = D - B */
-    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-
-    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  }
-
-  /* if not zero goto step 4 */
-  if (mp_iszero (&u) == 0) {
-    goto top;
-  }
-
-  /* now a = C, b = D, gcd == g*v */
-
-  /* if v != 1 then there is no inverse */
-  if (mp_cmp_d (&v, 1) != MP_EQ) {
-    res = MP_VAL;
-    goto LBL_ERR;
-  }
-
-  /* b is now the inverse */
-  neg = a->sign;
-  while (D.sign == MP_NEG) {
-    if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  }
-  mp_exch (&D, c);
-  c->sign = neg;
-  res = MP_OKAY;
-
-LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
-  return res;
-}
-#endif
--- a/bn_fast_mp_montgomery_reduce.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,168 +0,0 @@
-#include <tommath.h>
-#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* computes xR**-1 == x (mod N) via Montgomery Reduction
- *
- * This is an optimized implementation of montgomery_reduce
- * which uses the comba method to quickly calculate the columns of the
- * reduction.
- *
- * Based on Algorithm 14.32 on pp.601 of HAC.
-*/
-int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
-{
-  int     ix, res, olduse;
-  mp_word W[MP_WARRAY];
-
-  /* get old used count */
-  olduse = x->used;
-
-  /* grow a as required */
-  if (x->alloc < n->used + 1) {
-    if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  /* first we have to get the digits of the input into
-   * an array of double precision words W[...]
-   */
-  {
-    register mp_word *_W;
-    register mp_digit *tmpx;
-
-    /* alias for the W[] array */
-    _W   = W;
-
-    /* alias for the digits of  x*/
-    tmpx = x->dp;
-
-    /* copy the digits of a into W[0..a->used-1] */
-    for (ix = 0; ix < x->used; ix++) {
-      *_W++ = *tmpx++;
-    }
-
-    /* zero the high words of W[a->used..m->used*2] */
-    for (; ix < n->used * 2 + 1; ix++) {
-      *_W++ = 0;
-    }
-  }
-
-  /* now we proceed to zero successive digits
-   * from the least significant upwards
-   */
-  for (ix = 0; ix < n->used; ix++) {
-    /* mu = ai * m' mod b
-     *
-     * We avoid a double precision multiplication (which isn't required)
-     * by casting the value down to a mp_digit.  Note this requires
-     * that W[ix-1] have  the carry cleared (see after the inner loop)
-     */
-    register mp_digit mu;
-    mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
-
-    /* a = a + mu * m * b**i
-     *
-     * This is computed in place and on the fly.  The multiplication
-     * by b**i is handled by offseting which columns the results
-     * are added to.
-     *
-     * Note the comba method normally doesn't handle carries in the
-     * inner loop In this case we fix the carry from the previous
-     * column since the Montgomery reduction requires digits of the
-     * result (so far) [see above] to work.  This is
-     * handled by fixing up one carry after the inner loop.  The
-     * carry fixups are done in order so after these loops the
-     * first m->used words of W[] have the carries fixed
-     */
-    {
-      register int iy;
-      register mp_digit *tmpn;
-      register mp_word *_W;
-
-      /* alias for the digits of the modulus */
-      tmpn = n->dp;
-
-      /* Alias for the columns set by an offset of ix */
-      _W = W + ix;
-
-      /* inner loop */
-      for (iy = 0; iy < n->used; iy++) {
-          *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
-      }
-    }
-
-    /* now fix carry for next digit, W[ix+1] */
-    W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
-  }
-
-  /* now we have to propagate the carries and
-   * shift the words downward [all those least
-   * significant digits we zeroed].
-   */
-  {
-    register mp_digit *tmpx;
-    register mp_word *_W, *_W1;
-
-    /* nox fix rest of carries */
-
-    /* alias for current word */
-    _W1 = W + ix;
-
-    /* alias for next word, where the carry goes */
-    _W = W + ++ix;
-
-    for (; ix <= n->used * 2 + 1; ix++) {
-      *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
-    }
-
-    /* copy out, A = A/b**n
-     *
-     * The result is A/b**n but instead of converting from an
-     * array of mp_word to mp_digit than calling mp_rshd
-     * we just copy them in the right order
-     */
-
-    /* alias for destination word */
-    tmpx = x->dp;
-
-    /* alias for shifted double precision result */
-    _W = W + n->used;
-
-    for (ix = 0; ix < n->used + 1; ix++) {
-      *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
-    }
-
-    /* zero oldused digits, if the input a was larger than
-     * m->used+1 we'll have to clear the digits
-     */
-    for (; ix < olduse; ix++) {
-      *tmpx++ = 0;
-    }
-  }
-
-  /* set the max used and clamp */
-  x->used = n->used + 1;
-  mp_clamp (x);
-
-  /* if A >= m then A = A - m */
-  if (mp_cmp_mag (x, n) != MP_LT) {
-    return s_mp_sub (x, n, x);
-  }
-  return MP_OKAY;
-}
-#endif
--- a/bn_fast_s_mp_mul_digs.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,105 +0,0 @@
-#include <tommath.h>
-#ifdef BN_FAST_S_MP_MUL_DIGS_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* Fast (comba) multiplier
- *
- * This is the fast column-array [comba] multiplier.  It is 
- * designed to compute the columns of the product first 
- * then handle the carries afterwards.  This has the effect 
- * of making the nested loops that compute the columns very
- * simple and schedulable on super-scalar processors.
- *
- * This has been modified to produce a variable number of 
- * digits of output so if say only a half-product is required 
- * you don't have to compute the upper half (a feature 
- * required for fast Barrett reduction).
- *
- * Based on Algorithm 14.12 on pp.595 of HAC.
- *
- */
-int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
-{
-  int     olduse, res, pa, ix, iz;
-  mp_digit W[MP_WARRAY];
-  register mp_word  _W;
-
-  /* grow the destination as required */
-  if (c->alloc < digs) {
-    if ((res = mp_grow (c, digs)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  /* number of output digits to produce */
-  pa = MIN(digs, a->used + b->used);
-
-  /* clear the carry */
-  _W = 0;
-  for (ix = 0; ix < pa; ix++) { 
-      int      tx, ty;
-      int      iy;
-      mp_digit *tmpx, *tmpy;
-
-      /* get offsets into the two bignums */
-      ty = MIN(b->used-1, ix);
-      tx = ix - ty;
-
-      /* setup temp aliases */
-      tmpx = a->dp + tx;
-      tmpy = b->dp + ty;
-
-      /* this is the number of times the loop will iterrate, essentially 
-         while (tx++ < a->used && ty-- >= 0) { ... }
-       */
-      iy = MIN(a->used-tx, ty+1);
-
-      /* execute loop */
-      for (iz = 0; iz < iy; ++iz) {
-         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
-      }
-
-      /* store term */
-      W[ix] = ((mp_digit)_W) & MP_MASK;
-
-      /* make next carry */
-      _W = _W >> ((mp_word)DIGIT_BIT);
-  }
-
-  /* store final carry */
-  W[ix] = (mp_digit)(_W & MP_MASK);
-
-  /* setup dest */
-  olduse  = c->used;
-  c->used = pa;
-
-  {
-    register mp_digit *tmpc;
-    tmpc = c->dp;
-    for (ix = 0; ix < pa+1; ix++) {
-      /* now extract the previous digit [below the carry] */
-      *tmpc++ = W[ix];
-    }
-
-    /* clear unused digits [that existed in the old copy of c] */
-    for (; ix < olduse; ix++) {
-      *tmpc++ = 0;
-    }
-  }
-  mp_clamp (c);
-  return MP_OKAY;
-}
-#endif
--- a/bn_fast_s_mp_mul_high_digs.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,97 +0,0 @@
-#include <tommath.h>
-#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* this is a modified version of fast_s_mul_digs that only produces
- * output digits *above* digs.  See the comments for fast_s_mul_digs
- * to see how it works.
- *
- * This is used in the Barrett reduction since for one of the multiplications
- * only the higher digits were needed.  This essentially halves the work.
- *
- * Based on Algorithm 14.12 on pp.595 of HAC.
- */
-int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
-{
-  int     olduse, res, pa, ix, iz;
-  mp_digit W[MP_WARRAY];
-  mp_word  _W;
-
-  /* grow the destination as required */
-  pa = a->used + b->used;
-  if (c->alloc < pa) {
-    if ((res = mp_grow (c, pa)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  /* number of output digits to produce */
-  pa = a->used + b->used;
-  _W = 0;
-  for (ix = digs; ix < pa; ix++) { 
-      int      tx, ty, iy;
-      mp_digit *tmpx, *tmpy;
-
-      /* get offsets into the two bignums */
-      ty = MIN(b->used-1, ix);
-      tx = ix - ty;
-
-      /* setup temp aliases */
-      tmpx = a->dp + tx;
-      tmpy = b->dp + ty;
-
-      /* this is the number of times the loop will iterrate, essentially its 
-         while (tx++ < a->used && ty-- >= 0) { ... }
-       */
-      iy = MIN(a->used-tx, ty+1);
-
-      /* execute loop */
-      for (iz = 0; iz < iy; iz++) {
-         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
-      }
-
-      /* store term */
-      W[ix] = ((mp_digit)_W) & MP_MASK;
-
-      /* make next carry */
-      _W = _W >> ((mp_word)DIGIT_BIT);
-  }
-  
-  /* store final carry */
-  W[ix] = (mp_digit)(_W & MP_MASK);
-
-  /* setup dest */
-  olduse  = c->used;
-  c->used = pa;
-
-  {
-    register mp_digit *tmpc;
-
-    tmpc = c->dp + digs;
-    for (ix = digs; ix <= pa; ix++) {
-      /* now extract the previous digit [below the carry] */
-      *tmpc++ = W[ix];
-    }
-
-    /* clear unused digits [that existed in the old copy of c] */
-    for (; ix < olduse; ix++) {
-      *tmpc++ = 0;
-    }
-  }
-  mp_clamp (c);
-  return MP_OKAY;
-}
-#endif
--- a/bn_fast_s_mp_sqr.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,110 +0,0 @@
-#include <tommath.h>
-#ifdef BN_FAST_S_MP_SQR_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* the jist of squaring...
- * you do like mult except the offset of the tmpx [one that 
- * starts closer to zero] can't equal the offset of tmpy.  
- * So basically you set up iy like before then you min it with
- * (ty-tx) so that it never happens.  You double all those 
- * you add in the inner loop
-
-After that loop you do the squares and add them in.
-*/
-
-int fast_s_mp_sqr (mp_int * a, mp_int * b)
-{
-  int       olduse, res, pa, ix, iz;
-  mp_digit   W[MP_WARRAY], *tmpx;
-  mp_word   W1;
-
-  /* grow the destination as required */
-  pa = a->used + a->used;
-  if (b->alloc < pa) {
-    if ((res = mp_grow (b, pa)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  /* number of output digits to produce */
-  W1 = 0;
-  for (ix = 0; ix < pa; ix++) { 
-      int      tx, ty, iy;
-      mp_word  _W;
-      mp_digit *tmpy;
-
-      /* clear counter */
-      _W = 0;
-
-      /* get offsets into the two bignums */
-      ty = MIN(a->used-1, ix);
-      tx = ix - ty;
-
-      /* setup temp aliases */
-      tmpx = a->dp + tx;
-      tmpy = a->dp + ty;
-
-      /* this is the number of times the loop will iterrate, essentially
-         while (tx++ < a->used && ty-- >= 0) { ... }
-       */
-      iy = MIN(a->used-tx, ty+1);
-
-      /* now for squaring tx can never equal ty 
-       * we halve the distance since they approach at a rate of 2x
-       * and we have to round because odd cases need to be executed
-       */
-      iy = MIN(iy, (ty-tx+1)>>1);
-
-      /* execute loop */
-      for (iz = 0; iz < iy; iz++) {
-         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
-      }
-
-      /* double the inner product and add carry */
-      _W = _W + _W + W1;
-
-      /* even columns have the square term in them */
-      if ((ix&1) == 0) {
-         _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
-      }
-
-      /* store it */
-      W[ix] = (mp_digit)(_W & MP_MASK);
-
-      /* make next carry */
-      W1 = _W >> ((mp_word)DIGIT_BIT);
-  }
-
-  /* setup dest */
-  olduse  = b->used;
-  b->used = a->used+a->used;
-
-  {
-    mp_digit *tmpb;
-    tmpb = b->dp;
-    for (ix = 0; ix < pa; ix++) {
-      *tmpb++ = W[ix] & MP_MASK;
-    }
-
-    /* clear unused digits [that existed in the old copy of c] */
-    for (; ix < olduse; ix++) {
-      *tmpb++ = 0;
-    }
-  }
-  mp_clamp (b);
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_2expt.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,44 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_2EXPT_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* computes a = 2**b 
- *
- * Simple algorithm which zeroes the int, grows it then just sets one bit
- * as required.
- */
-int
-mp_2expt (mp_int * a, int b)
-{
-  int     res;
-
-  /* zero a as per default */
-  mp_zero (a);
-
-  /* grow a to accomodate the single bit */
-  if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
-    return res;
-  }
-
-  /* set the used count of where the bit will go */
-  a->used = b / DIGIT_BIT + 1;
-
-  /* put the single bit in its place */
-  a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
-
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_abs.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,39 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_ABS_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* b = |a| 
- *
- * Simple function copies the input and fixes the sign to positive
- */
-int
-mp_abs (mp_int * a, mp_int * b)
-{
-  int     res;
-
-  /* copy a to b */
-  if (a != b) {
-     if ((res = mp_copy (a, b)) != MP_OKAY) {
-       return res;
-     }
-  }
-
-  /* force the sign of b to positive */
-  b->sign = MP_ZPOS;
-
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_add.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,49 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_ADD_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* high level addition (handles signs) */
-int mp_add (mp_int * a, mp_int * b, mp_int * c)
-{
-  int     sa, sb, res;
-
-  /* get sign of both inputs */
-  sa = a->sign;
-  sb = b->sign;
-
-  /* handle two cases, not four */
-  if (sa == sb) {
-    /* both positive or both negative */
-    /* add their magnitudes, copy the sign */
-    c->sign = sa;
-    res = s_mp_add (a, b, c);
-  } else {
-    /* one positive, the other negative */
-    /* subtract the one with the greater magnitude from */
-    /* the one of the lesser magnitude.  The result gets */
-    /* the sign of the one with the greater magnitude. */
-    if (mp_cmp_mag (a, b) == MP_LT) {
-      c->sign = sb;
-      res = s_mp_sub (b, a, c);
-    } else {
-      c->sign = sa;
-      res = s_mp_sub (a, b, c);
-    }
-  }
-  return res;
-}
-
-#endif
--- a/bn_mp_add_d.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,105 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_ADD_D_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* single digit addition */
-int
-mp_add_d (mp_int * a, mp_digit b, mp_int * c)
-{
-  int     res, ix, oldused;
-  mp_digit *tmpa, *tmpc, mu;
-
-  /* grow c as required */
-  if (c->alloc < a->used + 1) {
-     if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
-        return res;
-     }
-  }
-
-  /* if a is negative and |a| >= b, call c = |a| - b */
-  if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
-     /* temporarily fix sign of a */
-     a->sign = MP_ZPOS;
-
-     /* c = |a| - b */
-     res = mp_sub_d(a, b, c);
-
-     /* fix sign  */
-     a->sign = c->sign = MP_NEG;
-
-     return res;
-  }
-
-  /* old number of used digits in c */
-  oldused = c->used;
-
-  /* sign always positive */
-  c->sign = MP_ZPOS;
-
-  /* source alias */
-  tmpa    = a->dp;
-
-  /* destination alias */
-  tmpc    = c->dp;
-
-  /* if a is positive */
-  if (a->sign == MP_ZPOS) {
-     /* add digit, after this we're propagating
-      * the carry.
-      */
-     *tmpc   = *tmpa++ + b;
-     mu      = *tmpc >> DIGIT_BIT;
-     *tmpc++ &= MP_MASK;
-
-     /* now handle rest of the digits */
-     for (ix = 1; ix < a->used; ix++) {
-        *tmpc   = *tmpa++ + mu;
-        mu      = *tmpc >> DIGIT_BIT;
-        *tmpc++ &= MP_MASK;
-     }
-     /* set final carry */
-     ix++;
-     *tmpc++  = mu;
-
-     /* setup size */
-     c->used = a->used + 1;
-  } else {
-     /* a was negative and |a| < b */
-     c->used  = 1;
-
-     /* the result is a single digit */
-     if (a->used == 1) {
-        *tmpc++  =  b - a->dp[0];
-     } else {
-        *tmpc++  =  b;
-     }
-
-     /* setup count so the clearing of oldused
-      * can fall through correctly
-      */
-     ix       = 1;
-  }
-
-  /* now zero to oldused */
-  while (ix++ < oldused) {
-     *tmpc++ = 0;
-  }
-  mp_clamp(c);
-
-  return MP_OKAY;
-}
-
-#endif
--- a/bn_mp_addmod.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,37 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_ADDMOD_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* d = a + b (mod c) */
-int
-mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
-{
-  int     res;
-  mp_int  t;
-
-  if ((res = mp_init (&t)) != MP_OKAY) {
-    return res;
-  }
-
-  if ((res = mp_add (a, b, &t)) != MP_OKAY) {
-    mp_clear (&t);
-    return res;
-  }
-  res = mp_mod (&t, c, d);
-  mp_clear (&t);
-  return res;
-}
-#endif
--- a/bn_mp_and.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,53 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_AND_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* AND two ints together */
-int
-mp_and (mp_int * a, mp_int * b, mp_int * c)
-{
-  int     res, ix, px;
-  mp_int  t, *x;
-
-  if (a->used > b->used) {
-    if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
-      return res;
-    }
-    px = b->used;
-    x = b;
-  } else {
-    if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
-      return res;
-    }
-    px = a->used;
-    x = a;
-  }
-
-  for (ix = 0; ix < px; ix++) {
-    t.dp[ix] &= x->dp[ix];
-  }
-
-  /* zero digits above the last from the smallest mp_int */
-  for (; ix < t.used; ix++) {
-    t.dp[ix] = 0;
-  }
-
-  mp_clamp (&t);
-  mp_exch (c, &t);
-  mp_clear (&t);
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_clamp.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,40 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_CLAMP_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* trim unused digits 
- *
- * This is used to ensure that leading zero digits are
- * trimed and the leading "used" digit will be non-zero
- * Typically very fast.  Also fixes the sign if there
- * are no more leading digits
- */
-void
-mp_clamp (mp_int * a)
-{
-  /* decrease used while the most significant digit is
-   * zero.
-   */
-  while (a->used > 0 && a->dp[a->used - 1] == 0) {
-    --(a->used);
-  }
-
-  /* reset the sign flag if used == 0 */
-  if (a->used == 0) {
-    a->sign = MP_ZPOS;
-  }
-}
-#endif
--- a/bn_mp_clear.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,43 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_CLEAR_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* clear one (frees)  */
-void
-mp_clear (mp_int * a)
-{
-  volatile mp_digit *p;
-  int len;
-
-  /* only do anything if a hasn't been freed previously */
-  if (a->dp != NULL) {
-    /* first zero the digits */
-	len = a->alloc;
-	p = a->dp;
-	while (len--) {
-		*p++ = 0;
-	}
-
-    /* free ram */
-    XFREE(a->dp);
-
-    /* reset members to make debugging easier */
-    a->dp    = NULL;
-    a->alloc = a->used = 0;
-    a->sign  = MP_ZPOS;
-  }
-}
-#endif
--- a/bn_mp_clear_multi.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,30 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_CLEAR_MULTI_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-#include <stdarg.h>
-
-void mp_clear_multi(mp_int *mp, ...) 
-{
-    mp_int* next_mp = mp;
-    va_list args;
-    va_start(args, mp);
-    while (next_mp != NULL) {
-        mp_clear(next_mp);
-        next_mp = va_arg(args, mp_int*);
-    }
-    va_end(args);
-}
-#endif
--- a/bn_mp_cmp.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,39 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_CMP_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* compare two ints (signed)*/
-int
-mp_cmp (mp_int * a, mp_int * b)
-{
-  /* compare based on sign */
-  if (a->sign != b->sign) {
-     if (a->sign == MP_NEG) {
-        return MP_LT;
-     } else {
-        return MP_GT;
-     }
-  }
-  
-  /* compare digits */
-  if (a->sign == MP_NEG) {
-     /* if negative compare opposite direction */
-     return mp_cmp_mag(b, a);
-  } else {
-     return mp_cmp_mag(a, b);
-  }
-}
-#endif
--- a/bn_mp_cmp_d.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,40 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_CMP_D_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* compare a digit */
-int mp_cmp_d(mp_int * a, mp_digit b)
-{
-  /* compare based on sign */
-  if (a->sign == MP_NEG) {
-    return MP_LT;
-  }
-
-  /* compare based on magnitude */
-  if (a->used > 1) {
-    return MP_GT;
-  }
-
-  /* compare the only digit of a to b */
-  if (a->dp[0] > b) {
-    return MP_GT;
-  } else if (a->dp[0] < b) {
-    return MP_LT;
-  } else {
-    return MP_EQ;
-  }
-}
-#endif
--- a/bn_mp_cmp_mag.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,51 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_CMP_MAG_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* compare maginitude of two ints (unsigned) */
-int mp_cmp_mag (mp_int * a, mp_int * b)
-{
-  int     n;
-  mp_digit *tmpa, *tmpb;
-
-  /* compare based on # of non-zero digits */
-  if (a->used > b->used) {
-    return MP_GT;
-  }
-  
-  if (a->used < b->used) {
-    return MP_LT;
-  }
-
-  /* alias for a */
-  tmpa = a->dp + (a->used - 1);
-
-  /* alias for b */
-  tmpb = b->dp + (a->used - 1);
-
-  /* compare based on digits  */
-  for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
-    if (*tmpa > *tmpb) {
-      return MP_GT;
-    }
-
-    if (*tmpa < *tmpb) {
-      return MP_LT;
-    }
-  }
-  return MP_EQ;
-}
-#endif
--- a/bn_mp_cnt_lsb.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,49 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_CNT_LSB_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-static const int lnz[16] = { 
-   4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
-};
-
-/* Counts the number of lsbs which are zero before the first zero bit */
-int mp_cnt_lsb(mp_int *a)
-{
-   int x;
-   mp_digit q, qq;
-
-   /* easy out */
-   if (mp_iszero(a) == 1) {
-      return 0;
-   }
-
-   /* scan lower digits until non-zero */
-   for (x = 0; x < a->used && a->dp[x] == 0; x++);
-   q = a->dp[x];
-   x *= DIGIT_BIT;
-
-   /* now scan this digit until a 1 is found */
-   if ((q & 1) == 0) {
-      do {
-         qq  = q & 15;
-         x  += lnz[qq];
-         q >>= 4;
-      } while (qq == 0);
-   }
-   return x;
-}
-
-#endif
--- a/bn_mp_copy.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,64 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_COPY_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* copy, b = a */
-int
-mp_copy (mp_int * a, mp_int * b)
-{
-  int     res, n;
-
-  /* if dst == src do nothing */
-  if (a == b) {
-    return MP_OKAY;
-  }
-
-  /* grow dest */
-  if (b->alloc < a->used) {
-     if ((res = mp_grow (b, a->used)) != MP_OKAY) {
-        return res;
-     }
-  }
-
-  /* zero b and copy the parameters over */
-  {
-    register mp_digit *tmpa, *tmpb;
-
-    /* pointer aliases */
-
-    /* source */
-    tmpa = a->dp;
-
-    /* destination */
-    tmpb = b->dp;
-
-    /* copy all the digits */
-    for (n = 0; n < a->used; n++) {
-      *tmpb++ = *tmpa++;
-    }
-
-    /* clear high digits */
-    for (; n < b->used; n++) {
-      *tmpb++ = 0;
-    }
-  }
-
-  /* copy used count and sign */
-  b->used = a->used;
-  b->sign = a->sign;
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_count_bits.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,41 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_COUNT_BITS_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* returns the number of bits in an int */
-int
-mp_count_bits (mp_int * a)
-{
-  int     r;
-  mp_digit q;
-
-  /* shortcut */
-  if (a->used == 0) {
-    return 0;
-  }
-
-  /* get number of digits and add that */
-  r = (a->used - 1) * DIGIT_BIT;
-  
-  /* take the last digit and count the bits in it */
-  q = a->dp[a->used - 1];
-  while (q > ((mp_digit) 0)) {
-    ++r;
-    q >>= ((mp_digit) 1);
-  }
-  return r;
-}
-#endif
--- a/bn_mp_div.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,288 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_DIV_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-#ifdef BN_MP_DIV_SMALL
-
-/* slower bit-bang division... also smaller */
-int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
-{
-   mp_int ta, tb, tq, q;
-   int    res, n, n2;
-
-  /* is divisor zero ? */
-  if (mp_iszero (b) == 1) {
-    return MP_VAL;
-  }
-
-  /* if a < b then q=0, r = a */
-  if (mp_cmp_mag (a, b) == MP_LT) {
-    if (d != NULL) {
-      res = mp_copy (a, d);
-    } else {
-      res = MP_OKAY;
-    }
-    if (c != NULL) {
-      mp_zero (c);
-    }
-    return res;
-  }
-	
-  /* init our temps */
-  if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
-     return res;
-  }
-
-
-  mp_set(&tq, 1);
-  n = mp_count_bits(a) - mp_count_bits(b);
-  if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
-      ((res = mp_abs(b, &tb)) != MP_OKAY) || 
-      ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
-      ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
-      goto LBL_ERR;
-  }
-
-  while (n-- >= 0) {
-     if (mp_cmp(&tb, &ta) != MP_GT) {
-        if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
-            ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
-           goto LBL_ERR;
-        }
-     }
-     if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
-         ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
-           goto LBL_ERR;
-     }
-  }
-
-  /* now q == quotient and ta == remainder */
-  n  = a->sign;
-  n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
-  if (c != NULL) {
-     mp_exch(c, &q);
-     c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
-  }
-  if (d != NULL) {
-     mp_exch(d, &ta);
-     d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
-  }
-LBL_ERR:
-   mp_clear_multi(&ta, &tb, &tq, &q, NULL);
-   return res;
-}
-
-#else
-
-/* integer signed division. 
- * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
- * HAC pp.598 Algorithm 14.20
- *
- * Note that the description in HAC is horribly 
- * incomplete.  For example, it doesn't consider 
- * the case where digits are removed from 'x' in 
- * the inner loop.  It also doesn't consider the 
- * case that y has fewer than three digits, etc..
- *
- * The overall algorithm is as described as 
- * 14.20 from HAC but fixed to treat these cases.
-*/
-int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
-{
-  mp_int  q, x, y, t1, t2;
-  int     res, n, t, i, norm, neg;
-
-  /* is divisor zero ? */
-  if (mp_iszero (b) == 1) {
-    return MP_VAL;
-  }
-
-  /* if a < b then q=0, r = a */
-  if (mp_cmp_mag (a, b) == MP_LT) {
-    if (d != NULL) {
-      res = mp_copy (a, d);
-    } else {
-      res = MP_OKAY;
-    }
-    if (c != NULL) {
-      mp_zero (c);
-    }
-    return res;
-  }
-
-  if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
-    return res;
-  }
-  q.used = a->used + 2;
-
-  if ((res = mp_init (&t1)) != MP_OKAY) {
-    goto LBL_Q;
-  }
-
-  if ((res = mp_init (&t2)) != MP_OKAY) {
-    goto LBL_T1;
-  }
-
-  if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
-    goto LBL_T2;
-  }
-
-  if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
-    goto LBL_X;
-  }
-
-  /* fix the sign */
-  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
-  x.sign = y.sign = MP_ZPOS;
-
-  /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
-  norm = mp_count_bits(&y) % DIGIT_BIT;
-  if (norm < (int)(DIGIT_BIT-1)) {
-     norm = (DIGIT_BIT-1) - norm;
-     if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
-       goto LBL_Y;
-     }
-     if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
-       goto LBL_Y;
-     }
-  } else {
-     norm = 0;
-  }
-
-  /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
-  n = x.used - 1;
-  t = y.used - 1;
-
-  /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
-  if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
-    goto LBL_Y;
-  }
-
-  while (mp_cmp (&x, &y) != MP_LT) {
-    ++(q.dp[n - t]);
-    if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
-      goto LBL_Y;
-    }
-  }
-
-  /* reset y by shifting it back down */
-  mp_rshd (&y, n - t);
-
-  /* step 3. for i from n down to (t + 1) */
-  for (i = n; i >= (t + 1); i--) {
-    if (i > x.used) {
-      continue;
-    }
-
-    /* step 3.1 if xi == yt then set q{i-t-1} to b-1, 
-     * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
-    if (x.dp[i] == y.dp[t]) {
-      q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
-    } else {
-      mp_word tmp;
-      tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
-      tmp |= ((mp_word) x.dp[i - 1]);
-      tmp /= ((mp_word) y.dp[t]);
-      if (tmp > (mp_word) MP_MASK)
-        tmp = MP_MASK;
-      q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
-    }
-
-    /* while (q{i-t-1} * (yt * b + y{t-1})) > 
-             xi * b**2 + xi-1 * b + xi-2 
-     
-       do q{i-t-1} -= 1; 
-    */
-    q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
-    do {
-      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
-
-      /* find left hand */
-      mp_zero (&t1);
-      t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
-      t1.dp[1] = y.dp[t];
-      t1.used = 2;
-      if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
-        goto LBL_Y;
-      }
-
-      /* find right hand */
-      t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
-      t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
-      t2.dp[2] = x.dp[i];
-      t2.used = 3;
-    } while (mp_cmp_mag(&t1, &t2) == MP_GT);
-
-    /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
-    if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
-      goto LBL_Y;
-    }
-
-    if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
-      goto LBL_Y;
-    }
-
-    if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
-      goto LBL_Y;
-    }
-
-    /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
-    if (x.sign == MP_NEG) {
-      if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
-        goto LBL_Y;
-      }
-      if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
-        goto LBL_Y;
-      }
-      if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
-        goto LBL_Y;
-      }
-
-      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
-    }
-  }
-
-  /* now q is the quotient and x is the remainder 
-   * [which we have to normalize] 
-   */
-  
-  /* get sign before writing to c */
-  x.sign = x.used == 0 ? MP_ZPOS : a->sign;
-
-  if (c != NULL) {
-    mp_clamp (&q);
-    mp_exch (&q, c);
-    c->sign = neg;
-  }
-
-  if (d != NULL) {
-    mp_div_2d (&x, norm, &x, NULL);
-    mp_exch (&x, d);
-  }
-
-  res = MP_OKAY;
-
-LBL_Y:mp_clear (&y);
-LBL_X:mp_clear (&x);
-LBL_T2:mp_clear (&t2);
-LBL_T1:mp_clear (&t1);
-LBL_Q:mp_clear (&q);
-  return res;
-}
-
-#endif
-
-#endif
--- a/bn_mp_div_2.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,64 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_DIV_2_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* b = a/2 */
-int mp_div_2(mp_int * a, mp_int * b)
-{
-  int     x, res, oldused;
-
-  /* copy */
-  if (b->alloc < a->used) {
-    if ((res = mp_grow (b, a->used)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  oldused = b->used;
-  b->used = a->used;
-  {
-    register mp_digit r, rr, *tmpa, *tmpb;
-
-    /* source alias */
-    tmpa = a->dp + b->used - 1;
-
-    /* dest alias */
-    tmpb = b->dp + b->used - 1;
-
-    /* carry */
-    r = 0;
-    for (x = b->used - 1; x >= 0; x--) {
-      /* get the carry for the next iteration */
-      rr = *tmpa & 1;
-
-      /* shift the current digit, add in carry and store */
-      *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
-
-      /* forward carry to next iteration */
-      r = rr;
-    }
-
-    /* zero excess digits */
-    tmpb = b->dp + b->used;
-    for (x = b->used; x < oldused; x++) {
-      *tmpb++ = 0;
-    }
-  }
-  b->sign = a->sign;
-  mp_clamp (b);
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_div_2d.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,93 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_DIV_2D_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
-int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
-{
-  mp_digit D, r, rr;
-  int     x, res;
-  mp_int  t;
-
-
-  /* if the shift count is <= 0 then we do no work */
-  if (b <= 0) {
-    res = mp_copy (a, c);
-    if (d != NULL) {
-      mp_zero (d);
-    }
-    return res;
-  }
-
-  if ((res = mp_init (&t)) != MP_OKAY) {
-    return res;
-  }
-
-  /* get the remainder */
-  if (d != NULL) {
-    if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
-      mp_clear (&t);
-      return res;
-    }
-  }
-
-  /* copy */
-  if ((res = mp_copy (a, c)) != MP_OKAY) {
-    mp_clear (&t);
-    return res;
-  }
-
-  /* shift by as many digits in the bit count */
-  if (b >= (int)DIGIT_BIT) {
-    mp_rshd (c, b / DIGIT_BIT);
-  }
-
-  /* shift any bit count < DIGIT_BIT */
-  D = (mp_digit) (b % DIGIT_BIT);
-  if (D != 0) {
-    register mp_digit *tmpc, mask, shift;
-
-    /* mask */
-    mask = (((mp_digit)1) << D) - 1;
-
-    /* shift for lsb */
-    shift = DIGIT_BIT - D;
-
-    /* alias */
-    tmpc = c->dp + (c->used - 1);
-
-    /* carry */
-    r = 0;
-    for (x = c->used - 1; x >= 0; x--) {
-      /* get the lower  bits of this word in a temp */
-      rr = *tmpc & mask;
-
-      /* shift the current word and mix in the carry bits from the previous word */
-      *tmpc = (*tmpc >> D) | (r << shift);
-      --tmpc;
-
-      /* set the carry to the carry bits of the current word found above */
-      r = rr;
-    }
-  }
-  mp_clamp (c);
-  if (d != NULL) {
-    mp_exch (&t, d);
-  }
-  mp_clear (&t);
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_div_3.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,75 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_DIV_3_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* divide by three (based on routine from MPI and the GMP manual) */
-int
-mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
-{
-  mp_int   q;
-  mp_word  w, t;
-  mp_digit b;
-  int      res, ix;
-  
-  /* b = 2**DIGIT_BIT / 3 */
-  b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
-
-  if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
-     return res;
-  }
-  
-  q.used = a->used;
-  q.sign = a->sign;
-  w = 0;
-  for (ix = a->used - 1; ix >= 0; ix--) {
-     w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
-
-     if (w >= 3) {
-        /* multiply w by [1/3] */
-        t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
-
-        /* now subtract 3 * [w/3] from w, to get the remainder */
-        w -= t+t+t;
-
-        /* fixup the remainder as required since
-         * the optimization is not exact.
-         */
-        while (w >= 3) {
-           t += 1;
-           w -= 3;
-        }
-      } else {
-        t = 0;
-      }
-      q.dp[ix] = (mp_digit)t;
-  }
-
-  /* [optional] store the remainder */
-  if (d != NULL) {
-     *d = (mp_digit)w;
-  }
-
-  /* [optional] store the quotient */
-  if (c != NULL) {
-     mp_clamp(&q);
-     mp_exch(&q, c);
-  }
-  mp_clear(&q);
-  
-  return res;
-}
-
-#endif
--- a/bn_mp_div_d.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,106 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_DIV_D_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-static int s_is_power_of_two(mp_digit b, int *p)
-{
-   int x;
-
-   for (x = 1; x < DIGIT_BIT; x++) {
-      if (b == (((mp_digit)1)<<x)) {
-         *p = x;
-         return 1;
-      }
-   }
-   return 0;
-}
-
-/* single digit division (based on routine from MPI) */
-int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
-{
-  mp_int  q;
-  mp_word w;
-  mp_digit t;
-  int     res, ix;
-
-  /* cannot divide by zero */
-  if (b == 0) {
-     return MP_VAL;
-  }
-
-  /* quick outs */
-  if (b == 1 || mp_iszero(a) == 1) {
-     if (d != NULL) {
-        *d = 0;
-     }
-     if (c != NULL) {
-        return mp_copy(a, c);
-     }
-     return MP_OKAY;
-  }
-
-  /* power of two ? */
-  if (s_is_power_of_two(b, &ix) == 1) {
-     if (d != NULL) {
-        *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
-     }
-     if (c != NULL) {
-        return mp_div_2d(a, ix, c, NULL);
-     }
-     return MP_OKAY;
-  }
-
-#ifdef BN_MP_DIV_3_C
-  /* three? */
-  if (b == 3) {
-     return mp_div_3(a, c, d);
-  }
-#endif
-
-  /* no easy answer [c'est la vie].  Just division */
-  if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
-     return res;
-  }
-  
-  q.used = a->used;
-  q.sign = a->sign;
-  w = 0;
-  for (ix = a->used - 1; ix >= 0; ix--) {
-     w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
-     
-     if (w >= b) {
-        t = (mp_digit)(w / b);
-        w -= ((mp_word)t) * ((mp_word)b);
-      } else {
-        t = 0;
-      }
-      q.dp[ix] = (mp_digit)t;
-  }
-  
-  if (d != NULL) {
-     *d = (mp_digit)w;
-  }
-  
-  if (c != NULL) {
-     mp_clamp(&q);
-     mp_exch(&q, c);
-  }
-  mp_clear(&q);
-  
-  return res;
-}
-
-#endif
--- a/bn_mp_dr_is_modulus.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,39 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_DR_IS_MODULUS_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* determines if a number is a valid DR modulus */
-int mp_dr_is_modulus(mp_int *a)
-{
-   int ix;
-
-   /* must be at least two digits */
-   if (a->used < 2) {
-      return 0;
-   }
-
-   /* must be of the form b**k - a [a <= b] so all
-    * but the first digit must be equal to -1 (mod b).
-    */
-   for (ix = 1; ix < a->used; ix++) {
-       if (a->dp[ix] != MP_MASK) {
-          return 0;
-       }
-   }
-   return 1;
-}
-
-#endif
--- a/bn_mp_dr_reduce.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,90 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_DR_REDUCE_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
- *
- * Based on algorithm from the paper
- *
- * "Generating Efficient Primes for Discrete Log Cryptosystems"
- *                 Chae Hoon Lim, Pil Joong Lee,
- *          POSTECH Information Research Laboratories
- *
- * The modulus must be of a special format [see manual]
- *
- * Has been modified to use algorithm 7.10 from the LTM book instead
- *
- * Input x must be in the range 0 <= x <= (n-1)**2
- */
-int
-mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
-{
-  int      err, i, m;
-  mp_word  r;
-  mp_digit mu, *tmpx1, *tmpx2;
-
-  /* m = digits in modulus */
-  m = n->used;
-
-  /* ensure that "x" has at least 2m digits */
-  if (x->alloc < m + m) {
-    if ((err = mp_grow (x, m + m)) != MP_OKAY) {
-      return err;
-    }
-  }
-
-/* top of loop, this is where the code resumes if
- * another reduction pass is required.
- */
-top:
-  /* aliases for digits */
-  /* alias for lower half of x */
-  tmpx1 = x->dp;
-
-  /* alias for upper half of x, or x/B**m */
-  tmpx2 = x->dp + m;
-
-  /* set carry to zero */
-  mu = 0;
-
-  /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
-  for (i = 0; i < m; i++) {
-      r         = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
-      *tmpx1++  = (mp_digit)(r & MP_MASK);
-      mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
-  }
-
-  /* set final carry */
-  *tmpx1++ = mu;
-
-  /* zero words above m */
-  for (i = m + 1; i < x->used; i++) {
-      *tmpx1++ = 0;
-  }
-
-  /* clamp, sub and return */
-  mp_clamp (x);
-
-  /* if x >= n then subtract and reduce again
-   * Each successive "recursion" makes the input smaller and smaller.
-   */
-  if (mp_cmp_mag (x, n) != MP_LT) {
-    s_mp_sub(x, n, x);
-    goto top;
-  }
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_dr_setup.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,28 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_DR_SETUP_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* determines the setup value */
-void mp_dr_setup(mp_int *a, mp_digit *d)
-{
-   /* the casts are required if DIGIT_BIT is one less than
-    * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
-    */
-   *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - 
-        ((mp_word)a->dp[0]));
-}
-
-#endif
--- a/bn_mp_exch.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,30 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_EXCH_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* swap the elements of two integers, for cases where you can't simply swap the 
- * mp_int pointers around
- */
-void
-mp_exch (mp_int * a, mp_int * b)
-{
-  mp_int  t;
-
-  t  = *a;
-  *a = *b;
-  *b = t;
-}
-#endif
--- a/bn_mp_expt_d.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,53 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_EXPT_D_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* calculate c = a**b  using a square-multiply algorithm */
-int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
-{
-  int     res, x;
-  mp_int  g;
-
-  if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
-    return res;
-  }
-
-  /* set initial result */
-  mp_set (c, 1);
-
-  for (x = 0; x < (int) DIGIT_BIT; x++) {
-    /* square */
-    if ((res = mp_sqr (c, c)) != MP_OKAY) {
-      mp_clear (&g);
-      return res;
-    }
-
-    /* if the bit is set multiply */
-    if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
-      if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
-         mp_clear (&g);
-         return res;
-      }
-    }
-
-    /* shift to next bit */
-    b <<= 1;
-  }
-
-  mp_clear (&g);
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_exptmod.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,108 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_EXPTMOD_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-
-/* this is a shell function that calls either the normal or Montgomery
- * exptmod functions.  Originally the call to the montgomery code was
- * embedded in the normal function but that wasted alot of stack space
- * for nothing (since 99% of the time the Montgomery code would be called)
- */
-int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
-{
-  int dr;
-
-  /* modulus P must be positive */
-  if (P->sign == MP_NEG) {
-     return MP_VAL;
-  }
-
-  /* if exponent X is negative we have to recurse */
-  if (X->sign == MP_NEG) {
-#ifdef BN_MP_INVMOD_C
-     mp_int tmpG, tmpX;
-     int err;
-
-     /* first compute 1/G mod P */
-     if ((err = mp_init(&tmpG)) != MP_OKAY) {
-        return err;
-     }
-     if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
-        mp_clear(&tmpG);
-        return err;
-     }
-
-     /* now get |X| */
-     if ((err = mp_init(&tmpX)) != MP_OKAY) {
-        mp_clear(&tmpG);
-        return err;
-     }
-     if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
-        mp_clear_multi(&tmpG, &tmpX, NULL);
-        return err;
-     }
-
-     /* and now compute (1/G)**|X| instead of G**X [X < 0] */
-     err = mp_exptmod(&tmpG, &tmpX, P, Y);
-     mp_clear_multi(&tmpG, &tmpX, NULL);
-     return err;
-#else 
-     /* no invmod */
-     return MP_VAL;
-#endif
-  }
-
-/* modified diminished radix reduction */
-#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C)
-  if (mp_reduce_is_2k_l(P) == MP_YES) {
-     return s_mp_exptmod(G, X, P, Y, 1);
-  }
-#endif
-
-#ifdef BN_MP_DR_IS_MODULUS_C
-  /* is it a DR modulus? */
-  dr = mp_dr_is_modulus(P);
-#else
-  /* default to no */
-  dr = 0;
-#endif
-
-#ifdef BN_MP_REDUCE_IS_2K_C
-  /* if not, is it a unrestricted DR modulus? */
-  if (dr == 0) {
-     dr = mp_reduce_is_2k(P) << 1;
-  }
-#endif
-    
-  /* if the modulus is odd or dr != 0 use the montgomery method */
-#ifdef BN_MP_EXPTMOD_FAST_C
-  if (mp_isodd (P) == 1 || dr !=  0) {
-    return mp_exptmod_fast (G, X, P, Y, dr);
-  } else {
-#endif
-#ifdef BN_S_MP_EXPTMOD_C
-    /* otherwise use the generic Barrett reduction technique */
-    return s_mp_exptmod (G, X, P, Y, 0);
-#else
-    /* no exptmod for evens */
-    return MP_VAL;
-#endif
-#ifdef BN_MP_EXPTMOD_FAST_C
-  }
-#endif
-}
-
-#endif
--- a/bn_mp_exptmod_fast.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,317 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_EXPTMOD_FAST_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
- *
- * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
- * The value of k changes based on the size of the exponent.
- *
- * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
- */
-
-#ifdef MP_LOW_MEM
-   #define TAB_SIZE 32
-#else
-   #define TAB_SIZE 256
-#endif
-
-int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
-{
-  mp_int  M[TAB_SIZE], res;
-  mp_digit buf, mp;
-  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
-
-  /* use a pointer to the reduction algorithm.  This allows us to use
-   * one of many reduction algorithms without modding the guts of
-   * the code with if statements everywhere.
-   */
-  int     (*redux)(mp_int*,mp_int*,mp_digit);
-
-  /* find window size */
-  x = mp_count_bits (X);
-  if (x <= 7) {
-    winsize = 2;
-  } else if (x <= 36) {
-    winsize = 3;
-  } else if (x <= 140) {
-    winsize = 4;
-  } else if (x <= 450) {
-    winsize = 5;
-  } else if (x <= 1303) {
-    winsize = 6;
-  } else if (x <= 3529) {
-    winsize = 7;
-  } else {
-    winsize = 8;
-  }
-
-#ifdef MP_LOW_MEM
-  if (winsize > 5) {
-     winsize = 5;
-  }
-#endif
-
-  /* init M array */
-  /* init first cell */
-  if ((err = mp_init(&M[1])) != MP_OKAY) {
-     return err;
-  }
-
-  /* now init the second half of the array */
-  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
-    if ((err = mp_init(&M[x])) != MP_OKAY) {
-      for (y = 1<<(winsize-1); y < x; y++) {
-        mp_clear (&M[y]);
-      }
-      mp_clear(&M[1]);
-      return err;
-    }
-  }
-
-  /* determine and setup reduction code */
-  if (redmode == 0) {
-#ifdef BN_MP_MONTGOMERY_SETUP_C     
-     /* now setup montgomery  */
-     if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
-        goto LBL_M;
-     }
-#else
-     err = MP_VAL;
-     goto LBL_M;
-#endif
-
-     /* automatically pick the comba one if available (saves quite a few calls/ifs) */
-#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
-     if (((P->used * 2 + 1) < MP_WARRAY) &&
-          P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
-        redux = fast_mp_montgomery_reduce;
-     } else 
-#endif
-     {
-#ifdef BN_MP_MONTGOMERY_REDUCE_C
-        /* use slower baseline Montgomery method */
-        redux = mp_montgomery_reduce;
-#else
-        err = MP_VAL;
-        goto LBL_M;
-#endif
-     }
-  } else if (redmode == 1) {
-#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
-     /* setup DR reduction for moduli of the form B**k - b */
-     mp_dr_setup(P, &mp);
-     redux = mp_dr_reduce;
-#else
-     err = MP_VAL;
-     goto LBL_M;
-#endif
-  } else {
-#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
-     /* setup DR reduction for moduli of the form 2**k - b */
-     if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
-        goto LBL_M;
-     }
-     redux = mp_reduce_2k;
-#else
-     err = MP_VAL;
-     goto LBL_M;
-#endif
-  }
-
-  /* setup result */
-  if ((err = mp_init (&res)) != MP_OKAY) {
-    goto LBL_M;
-  }
-
-  /* create M table
-   *
-
-   *
-   * The first half of the table is not computed though accept for M[0] and M[1]
-   */
-
-  if (redmode == 0) {
-#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
-     /* now we need R mod m */
-     if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
-       goto LBL_RES;
-     }
-#else 
-     err = MP_VAL;
-     goto LBL_RES;
-#endif
-
-     /* now set M[1] to G * R mod m */
-     if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
-       goto LBL_RES;
-     }
-  } else {
-     mp_set(&res, 1);
-     if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
-        goto LBL_RES;
-     }
-  }
-
-  /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
-  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
-    goto LBL_RES;
-  }
-
-  for (x = 0; x < (winsize - 1); x++) {
-    if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
-      goto LBL_RES;
-    }
-    if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
-      goto LBL_RES;
-    }
-  }
-
-  /* create upper table */
-  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
-    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
-      goto LBL_RES;
-    }
-    if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
-      goto LBL_RES;
-    }
-  }
-
-  /* set initial mode and bit cnt */
-  mode   = 0;
-  bitcnt = 1;
-  buf    = 0;
-  digidx = X->used - 1;
-  bitcpy = 0;
-  bitbuf = 0;
-
-  for (;;) {
-    /* grab next digit as required */
-    if (--bitcnt == 0) {
-      /* if digidx == -1 we are out of digits so break */
-      if (digidx == -1) {
-        break;
-      }
-      /* read next digit and reset bitcnt */
-      buf    = X->dp[digidx--];
-      bitcnt = (int)DIGIT_BIT;
-    }
-
-    /* grab the next msb from the exponent */
-    y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
-    buf <<= (mp_digit)1;
-
-    /* if the bit is zero and mode == 0 then we ignore it
-     * These represent the leading zero bits before the first 1 bit
-     * in the exponent.  Technically this opt is not required but it
-     * does lower the # of trivial squaring/reductions used
-     */
-    if (mode == 0 && y == 0) {
-      continue;
-    }
-
-    /* if the bit is zero and mode == 1 then we square */
-    if (mode == 1 && y == 0) {
-      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-      if ((err = redux (&res, P, mp)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-      continue;
-    }
-
-    /* else we add it to the window */
-    bitbuf |= (y << (winsize - ++bitcpy));
-    mode    = 2;
-
-    if (bitcpy == winsize) {
-      /* ok window is filled so square as required and multiply  */
-      /* square first */
-      for (x = 0; x < winsize; x++) {
-        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
-          goto LBL_RES;
-        }
-        if ((err = redux (&res, P, mp)) != MP_OKAY) {
-          goto LBL_RES;
-        }
-      }
-
-      /* then multiply */
-      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-      if ((err = redux (&res, P, mp)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-
-      /* empty window and reset */
-      bitcpy = 0;
-      bitbuf = 0;
-      mode   = 1;
-    }
-  }
-
-  /* if bits remain then square/multiply */
-  if (mode == 2 && bitcpy > 0) {
-    /* square then multiply if the bit is set */
-    for (x = 0; x < bitcpy; x++) {
-      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-      if ((err = redux (&res, P, mp)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-
-      /* get next bit of the window */
-      bitbuf <<= 1;
-      if ((bitbuf & (1 << winsize)) != 0) {
-        /* then multiply */
-        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
-          goto LBL_RES;
-        }
-        if ((err = redux (&res, P, mp)) != MP_OKAY) {
-          goto LBL_RES;
-        }
-      }
-    }
-  }
-
-  if (redmode == 0) {
-     /* fixup result if Montgomery reduction is used
-      * recall that any value in a Montgomery system is
-      * actually multiplied by R mod n.  So we have
-      * to reduce one more time to cancel out the factor
-      * of R.
-      */
-     if ((err = redux(&res, P, mp)) != MP_OKAY) {
-       goto LBL_RES;
-     }
-  }
-
-  /* swap res with Y */
-  mp_exch (&res, Y);
-  err = MP_OKAY;
-LBL_RES:mp_clear (&res);
-LBL_M:
-  mp_clear(&M[1]);
-  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
-    mp_clear (&M[x]);
-  }
-  return err;
-}
-#endif
-
--- a/bn_mp_exteuclid.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,78 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_EXTEUCLID_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* Extended euclidean algorithm of (a, b) produces 
-   a*u1 + b*u2 = u3
- */
-int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
-{
-   mp_int u1,u2,u3,v1,v2,v3,t1,t2,t3,q,tmp;
-   int err;
-
-   if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) {
-      return err;
-   }
-
-   /* initialize, (u1,u2,u3) = (1,0,a) */
-   mp_set(&u1, 1);
-   if ((err = mp_copy(a, &u3)) != MP_OKAY)                                        { goto _ERR; }
-
-   /* initialize, (v1,v2,v3) = (0,1,b) */
-   mp_set(&v2, 1);
-   if ((err = mp_copy(b, &v3)) != MP_OKAY)                                        { goto _ERR; }
-
-   /* loop while v3 != 0 */
-   while (mp_iszero(&v3) == MP_NO) {
-       /* q = u3/v3 */
-       if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY)                         { goto _ERR; }
-
-       /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */
-       if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY)                              { goto _ERR; }
-       if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY)                             { goto _ERR; }
-       if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY)                              { goto _ERR; }
-       if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY)                             { goto _ERR; }
-       if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY)                              { goto _ERR; }
-       if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY)                             { goto _ERR; }
-
-       /* (u1,u2,u3) = (v1,v2,v3) */
-       if ((err = mp_copy(&v1, &u1)) != MP_OKAY)                                  { goto _ERR; }
-       if ((err = mp_copy(&v2, &u2)) != MP_OKAY)                                  { goto _ERR; }
-       if ((err = mp_copy(&v3, &u3)) != MP_OKAY)                                  { goto _ERR; }
-
-       /* (v1,v2,v3) = (t1,t2,t3) */
-       if ((err = mp_copy(&t1, &v1)) != MP_OKAY)                                  { goto _ERR; }
-       if ((err = mp_copy(&t2, &v2)) != MP_OKAY)                                  { goto _ERR; }
-       if ((err = mp_copy(&t3, &v3)) != MP_OKAY)                                  { goto _ERR; }
-   }
-
-   /* make sure U3 >= 0 */
-   if (u3.sign == MP_NEG) {
-      mp_neg(&u1, &u1);
-      mp_neg(&u2, &u2);
-      mp_neg(&u3, &u3);
-   }
-
-   /* copy result out */
-   if (U1 != NULL) { mp_exch(U1, &u1); }
-   if (U2 != NULL) { mp_exch(U2, &u2); }
-   if (U3 != NULL) { mp_exch(U3, &u3); }
-
-   err = MP_OKAY;
-_ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
-   return err;
-}
-#endif
--- a/bn_mp_fread.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,63 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_FREAD_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* read a bigint from a file stream in ASCII */
-int mp_fread(mp_int *a, int radix, FILE *stream)
-{
-   int err, ch, neg, y;
-   
-   /* clear a */
-   mp_zero(a);
-   
-   /* if first digit is - then set negative */
-   ch = fgetc(stream);
-   if (ch == '-') {
-      neg = MP_NEG;
-      ch = fgetc(stream);
-   } else {
-      neg = MP_ZPOS;
-   }
-   
-   for (;;) {
-      /* find y in the radix map */
-      for (y = 0; y < radix; y++) {
-          if (mp_s_rmap[y] == ch) {
-             break;
-          }
-      }
-      if (y == radix) {
-         break;
-      }
-      
-      /* shift up and add */
-      if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) {
-         return err;
-      }
-      if ((err = mp_add_d(a, y, a)) != MP_OKAY) {
-         return err;
-      }
-      
-      ch = fgetc(stream);
-   }
-   if (mp_cmp_d(a, 0) != MP_EQ) {
-      a->sign = neg;
-   }
-   
-   return MP_OKAY;
-}
-
-#endif
--- a/bn_mp_fwrite.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,48 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_FWRITE_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-int mp_fwrite(mp_int *a, int radix, FILE *stream)
-{
-   char *buf;
-   int err, len, x;
-   
-   if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) {
-      return err;
-   }
-
-   buf = OPT_CAST(char) XMALLOC (len);
-   if (buf == NULL) {
-      return MP_MEM;
-   }
-   
-   if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
-      XFREE (buf);
-      return err;
-   }
-   
-   for (x = 0; x < len; x++) {
-       if (fputc(buf[x], stream) == EOF) {
-          XFREE (buf);
-          return MP_VAL;
-       }
-   }
-   
-   XFREE (buf);
-   return MP_OKAY;
-}
-
-#endif
--- a/bn_mp_gcd.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,109 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_GCD_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* Greatest Common Divisor using the binary method */
-int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
-{
-  mp_int  u, v;
-  int     k, u_lsb, v_lsb, res;
-
-  /* either zero than gcd is the largest */
-  if (mp_iszero (a) == 1 && mp_iszero (b) == 0) {
-    return mp_abs (b, c);
-  }
-  if (mp_iszero (a) == 0 && mp_iszero (b) == 1) {
-    return mp_abs (a, c);
-  }
-
-  /* optimized.  At this point if a == 0 then
-   * b must equal zero too
-   */
-  if (mp_iszero (a) == 1) {
-    mp_zero(c);
-    return MP_OKAY;
-  }
-
-  /* get copies of a and b we can modify */
-  if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
-    return res;
-  }
-
-  if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
-    goto LBL_U;
-  }
-
-  /* must be positive for the remainder of the algorithm */
-  u.sign = v.sign = MP_ZPOS;
-
-  /* B1.  Find the common power of two for u and v */
-  u_lsb = mp_cnt_lsb(&u);
-  v_lsb = mp_cnt_lsb(&v);
-  k     = MIN(u_lsb, v_lsb);
-
-  if (k > 0) {
-     /* divide the power of two out */
-     if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
-        goto LBL_V;
-     }
-
-     if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
-        goto LBL_V;
-     }
-  }
-
-  /* divide any remaining factors of two out */
-  if (u_lsb != k) {
-     if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
-        goto LBL_V;
-     }
-  }
-
-  if (v_lsb != k) {
-     if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
-        goto LBL_V;
-     }
-  }
-
-  while (mp_iszero(&v) == 0) {
-     /* make sure v is the largest */
-     if (mp_cmp_mag(&u, &v) == MP_GT) {
-        /* swap u and v to make sure v is >= u */
-        mp_exch(&u, &v);
-     }
-     
-     /* subtract smallest from largest */
-     if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
-        goto LBL_V;
-     }
-     
-     /* Divide out all factors of two */
-     if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
-        goto LBL_V;
-     } 
-  } 
-
-  /* multiply by 2**k which we divided out at the beginning */
-  if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
-     goto LBL_V;
-  }
-  c->sign = MP_ZPOS;
-  res = MP_OKAY;
-LBL_V:mp_clear (&u);
-LBL_U:mp_clear (&v);
-  return res;
-}
-#endif
--- a/bn_mp_get_int.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,41 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_GET_INT_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* get the lower 32-bits of an mp_int */
-unsigned long mp_get_int(mp_int * a) 
-{
-  int i;
-  unsigned long res;
-
-  if (a->used == 0) {
-     return 0;
-  }
-
-  /* get number of digits of the lsb we have to read */
-  i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
-
-  /* get most significant digit of result */
-  res = DIGIT(a,i);
-   
-  while (--i >= 0) {
-    res = (res << DIGIT_BIT) | DIGIT(a,i);
-  }
-
-  /* force result to 32-bits always so it is consistent on non 32-bit platforms */
-  return res & 0xFFFFFFFFUL;
-}
-#endif
--- a/bn_mp_grow.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,53 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_GROW_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* grow as required */
-int mp_grow (mp_int * a, int size)
-{
-  int     i;
-  mp_digit *tmp;
-
-  /* if the alloc size is smaller alloc more ram */
-  if (a->alloc < size) {
-    /* ensure there are always at least MP_PREC digits extra on top */
-    size += (MP_PREC * 2) - (size % MP_PREC);
-
-    /* reallocate the array a->dp
-     *
-     * We store the return in a temporary variable
-     * in case the operation failed we don't want
-     * to overwrite the dp member of a.
-     */
-    tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
-    if (tmp == NULL) {
-      /* reallocation failed but "a" is still valid [can be freed] */
-      return MP_MEM;
-    }
-
-    /* reallocation succeeded so set a->dp */
-    a->dp = tmp;
-
-    /* zero excess digits */
-    i        = a->alloc;
-    a->alloc = size;
-    for (; i < a->alloc; i++) {
-      a->dp[i] = 0;
-    }
-  }
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_init.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,42 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_INIT_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* init a new mp_int */
-int mp_init (mp_int * a)
-{
-  int i;
-
-  /* allocate memory required and clear it */
-  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
-  if (a->dp == NULL) {
-    return MP_MEM;
-  }
-
-  /* set the digits to zero */
-  for (i = 0; i < MP_PREC; i++) {
-      a->dp[i] = 0;
-  }
-
-  /* set the used to zero, allocated digits to the default precision
-   * and sign to positive */
-  a->used  = 0;
-  a->alloc = MP_PREC;
-  a->sign  = MP_ZPOS;
-
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_init_copy.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,28 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_INIT_COPY_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* creates "a" then copies b into it */
-int mp_init_copy (mp_int * a, mp_int * b)
-{
-  int     res;
-
-  if ((res = mp_init (a)) != MP_OKAY) {
-    return res;
-  }
-  return mp_copy (b, a);
-}
-#endif
--- a/bn_mp_init_multi.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,55 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_INIT_MULTI_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-#include <stdarg.h>
-
-int mp_init_multi(mp_int *mp, ...) 
-{
-    mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
-    int n = 0;                 /* Number of ok inits */
-    mp_int* cur_arg = mp;
-    va_list args;
-
-    va_start(args, mp);        /* init args to next argument from caller */
-    while (cur_arg != NULL) {
-        if (mp_init(cur_arg) != MP_OKAY) {
-            /* Oops - error! Back-track and mp_clear what we already
-               succeeded in init-ing, then return error.
-            */
-            va_list clean_args;
-            
-            /* end the current list */
-            va_end(args);
-            
-            /* now start cleaning up */            
-            cur_arg = mp;
-            va_start(clean_args, mp);
-            while (n--) {
-                mp_clear(cur_arg);
-                cur_arg = va_arg(clean_args, mp_int*);
-            }
-            va_end(clean_args);
-            res = MP_MEM;
-            break;
-        }
-        n++;
-        cur_arg = va_arg(args, mp_int*);
-    }
-    va_end(args);
-    return res;                /* Assumed ok, if error flagged above. */
-}
-
-#endif
--- a/bn_mp_init_set.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,28 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_INIT_SET_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* initialize and set a digit */
-int mp_init_set (mp_int * a, mp_digit b)
-{
-  int err;
-  if ((err = mp_init(a)) != MP_OKAY) {
-     return err;
-  }
-  mp_set(a, b);
-  return err;
-}
-#endif
--- a/bn_mp_init_set_int.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,27 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_INIT_SET_INT_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* initialize and set a digit */
-int mp_init_set_int (mp_int * a, unsigned long b)
-{
-  int err;
-  if ((err = mp_init(a)) != MP_OKAY) {
-     return err;
-  }
-  return mp_set_int(a, b);
-}
-#endif
--- a/bn_mp_init_size.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,44 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_INIT_SIZE_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* init an mp_init for a given size */
-int mp_init_size (mp_int * a, int size)
-{
-  int x;
-
-  /* pad size so there are always extra digits */
-  size += (MP_PREC * 2) - (size % MP_PREC);	
-  
-  /* alloc mem */
-  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
-  if (a->dp == NULL) {
-    return MP_MEM;
-  }
-
-  /* set the members */
-  a->used  = 0;
-  a->alloc = size;
-  a->sign  = MP_ZPOS;
-
-  /* zero the digits */
-  for (x = 0; x < size; x++) {
-      a->dp[x] = 0;
-  }
-
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_invmod.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,39 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_INVMOD_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* hac 14.61, pp608 */
-int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
-{
-  /* b cannot be negative */
-  if (b->sign == MP_NEG || mp_iszero(b) == 1) {
-    return MP_VAL;
-  }
-
-#ifdef BN_FAST_MP_INVMOD_C
-  /* if the modulus is odd we can use a faster routine instead */
-  if (mp_isodd (b) == 1) {
-    return fast_mp_invmod (a, b, c);
-  }
-#endif
-
-#ifdef BN_MP_INVMOD_SLOW_C
-  return mp_invmod_slow(a, b, c);
-#endif
-
-  return MP_VAL;
-}
-#endif
--- a/bn_mp_invmod_slow.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,171 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_INVMOD_SLOW_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* hac 14.61, pp608 */
-int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
-{
-  mp_int  x, y, u, v, A, B, C, D;
-  int     res;
-
-  /* b cannot be negative */
-  if (b->sign == MP_NEG || mp_iszero(b) == 1) {
-    return MP_VAL;
-  }
-
-  /* init temps */
-  if ((res = mp_init_multi(&x, &y, &u, &v, 
-                           &A, &B, &C, &D, NULL)) != MP_OKAY) {
-     return res;
-  }
-
-  /* x = a, y = b */
-  if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
-      goto LBL_ERR;
-  }
-  if ((res = mp_copy (b, &y)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-
-  /* 2. [modified] if x,y are both even then return an error! */
-  if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
-    res = MP_VAL;
-    goto LBL_ERR;
-  }
-
-  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
-  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-  mp_set (&A, 1);
-  mp_set (&D, 1);
-
-top:
-  /* 4.  while u is even do */
-  while (mp_iseven (&u) == 1) {
-    /* 4.1 u = u/2 */
-    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-    /* 4.2 if A or B is odd then */
-    if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
-      /* A = (A+y)/2, B = (B-x)/2 */
-      if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
-         goto LBL_ERR;
-      }
-      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
-         goto LBL_ERR;
-      }
-    }
-    /* A = A/2, B = B/2 */
-    if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  }
-
-  /* 5.  while v is even do */
-  while (mp_iseven (&v) == 1) {
-    /* 5.1 v = v/2 */
-    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-    /* 5.2 if C or D is odd then */
-    if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
-      /* C = (C+y)/2, D = (D-x)/2 */
-      if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
-         goto LBL_ERR;
-      }
-      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
-         goto LBL_ERR;
-      }
-    }
-    /* C = C/2, D = D/2 */
-    if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  }
-
-  /* 6.  if u >= v then */
-  if (mp_cmp (&u, &v) != MP_LT) {
-    /* u = u - v, A = A - C, B = B - D */
-    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-
-    if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-
-    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  } else {
-    /* v - v - u, C = C - A, D = D - B */
-    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-
-    if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-
-    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  }
-
-  /* if not zero goto step 4 */
-  if (mp_iszero (&u) == 0)
-    goto top;
-
-  /* now a = C, b = D, gcd == g*v */
-
-  /* if v != 1 then there is no inverse */
-  if (mp_cmp_d (&v, 1) != MP_EQ) {
-    res = MP_VAL;
-    goto LBL_ERR;
-  }
-
-  /* if its too low */
-  while (mp_cmp_d(&C, 0) == MP_LT) {
-      if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
-         goto LBL_ERR;
-      }
-  }
-  
-  /* too big */
-  while (mp_cmp_mag(&C, b) != MP_LT) {
-      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
-         goto LBL_ERR;
-      }
-  }
-  
-  /* C is now the inverse */
-  mp_exch (&C, c);
-  res = MP_OKAY;
-LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
-  return res;
-}
-#endif
--- a/bn_mp_is_square.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,105 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_IS_SQUARE_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* Check if remainders are possible squares - fast exclude non-squares */
-static const char rem_128[128] = {
- 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
- 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
- 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
- 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
- 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
- 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
- 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
- 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
-};
-
-static const char rem_105[105] = {
- 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
- 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
- 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
- 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
- 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
- 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
- 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
-};
-
-/* Store non-zero to ret if arg is square, and zero if not */
-int mp_is_square(mp_int *arg,int *ret) 
-{
-  int           res;
-  mp_digit      c;
-  mp_int        t;
-  unsigned long r;
-
-  /* Default to Non-square :) */
-  *ret = MP_NO; 
-
-  if (arg->sign == MP_NEG) {
-    return MP_VAL;
-  }
-
-  /* digits used?  (TSD) */
-  if (arg->used == 0) {
-     return MP_OKAY;
-  }
-
-  /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
-  if (rem_128[127 & DIGIT(arg,0)] == 1) {
-     return MP_OKAY;
-  }
-
-  /* Next check mod 105 (3*5*7) */
-  if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) {
-     return res;
-  }
-  if (rem_105[c] == 1) {
-     return MP_OKAY;
-  }
-
-
-  if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
-     return res;
-  }
-  if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) {
-     goto ERR;
-  }
-  r = mp_get_int(&t);
-  /* Check for other prime modules, note it's not an ERROR but we must
-   * free "t" so the easiest way is to goto ERR.  We know that res
-   * is already equal to MP_OKAY from the mp_mod call 
-   */ 
-  if ( (1L<<(r%11)) & 0x5C4L )             goto ERR;
-  if ( (1L<<(r%13)) & 0x9E4L )             goto ERR;
-  if ( (1L<<(r%17)) & 0x5CE8L )            goto ERR;
-  if ( (1L<<(r%19)) & 0x4F50CL )           goto ERR;
-  if ( (1L<<(r%23)) & 0x7ACCA0L )          goto ERR;
-  if ( (1L<<(r%29)) & 0xC2EDD0CL )         goto ERR;
-  if ( (1L<<(r%31)) & 0x6DE2B848L )        goto ERR;
-
-  /* Final check - is sqr(sqrt(arg)) == arg ? */
-  if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
-     goto ERR;
-  }
-  if ((res = mp_sqr(&t,&t)) != MP_OKAY) {
-     goto ERR;
-  }
-
-  *ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO;
-ERR:mp_clear(&t);
-  return res;
-}
-#endif
--- a/bn_mp_jacobi.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,101 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_JACOBI_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* computes the jacobi c = (a | n) (or Legendre if n is prime)
- * HAC pp. 73 Algorithm 2.149
- */
-int mp_jacobi (mp_int * a, mp_int * p, int *c)
-{
-  mp_int  a1, p1;
-  int     k, s, r, res;
-  mp_digit residue;
-
-  /* if p <= 0 return MP_VAL */
-  if (mp_cmp_d(p, 0) != MP_GT) {
-     return MP_VAL;
-  }
-
-  /* step 1.  if a == 0, return 0 */
-  if (mp_iszero (a) == 1) {
-    *c = 0;
-    return MP_OKAY;
-  }
-
-  /* step 2.  if a == 1, return 1 */
-  if (mp_cmp_d (a, 1) == MP_EQ) {
-    *c = 1;
-    return MP_OKAY;
-  }
-
-  /* default */
-  s = 0;
-
-  /* step 3.  write a = a1 * 2**k  */
-  if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
-    return res;
-  }
-
-  if ((res = mp_init (&p1)) != MP_OKAY) {
-    goto LBL_A1;
-  }
-
-  /* divide out larger power of two */
-  k = mp_cnt_lsb(&a1);
-  if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
-     goto LBL_P1;
-  }
-
-  /* step 4.  if e is even set s=1 */
-  if ((k & 1) == 0) {
-    s = 1;
-  } else {
-    /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
-    residue = p->dp[0] & 7;
-
-    if (residue == 1 || residue == 7) {
-      s = 1;
-    } else if (residue == 3 || residue == 5) {
-      s = -1;
-    }
-  }
-
-  /* step 5.  if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
-  if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
-    s = -s;
-  }
-
-  /* if a1 == 1 we're done */
-  if (mp_cmp_d (&a1, 1) == MP_EQ) {
-    *c = s;
-  } else {
-    /* n1 = n mod a1 */
-    if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) {
-      goto LBL_P1;
-    }
-    if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
-      goto LBL_P1;
-    }
-    *c = s * r;
-  }
-
-  /* done */
-  res = MP_OKAY;
-LBL_P1:mp_clear (&p1);
-LBL_A1:mp_clear (&a1);
-  return res;
-}
-#endif
--- a/bn_mp_karatsuba_mul.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,163 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_KARATSUBA_MUL_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* c = |a| * |b| using Karatsuba Multiplication using 
- * three half size multiplications
- *
- * Let B represent the radix [e.g. 2**DIGIT_BIT] and 
- * let n represent half of the number of digits in 
- * the min(a,b)
- *
- * a = a1 * B**n + a0
- * b = b1 * B**n + b0
- *
- * Then, a * b => 
-   a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
- *
- * Note that a1b1 and a0b0 are used twice and only need to be 
- * computed once.  So in total three half size (half # of 
- * digit) multiplications are performed, a0b0, a1b1 and 
- * (a1-b1)(a0-b0)
- *
- * Note that a multiplication of half the digits requires
- * 1/4th the number of single precision multiplications so in 
- * total after one call 25% of the single precision multiplications 
- * are saved.  Note also that the call to mp_mul can end up back 
- * in this function if the a0, a1, b0, or b1 are above the threshold.  
- * This is known as divide-and-conquer and leads to the famous 
- * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than 
- * the standard O(N**2) that the baseline/comba methods use.  
- * Generally though the overhead of this method doesn't pay off 
- * until a certain size (N ~ 80) is reached.
- */
-int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
-{
-  mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
-  int     B, err;
-
-  /* default the return code to an error */
-  err = MP_MEM;
-
-  /* min # of digits */
-  B = MIN (a->used, b->used);
-
-  /* now divide in two */
-  B = B >> 1;
-
-  /* init copy all the temps */
-  if (mp_init_size (&x0, B) != MP_OKAY)
-    goto ERR;
-  if (mp_init_size (&x1, a->used - B) != MP_OKAY)
-    goto X0;
-  if (mp_init_size (&y0, B) != MP_OKAY)
-    goto X1;
-  if (mp_init_size (&y1, b->used - B) != MP_OKAY)
-    goto Y0;
-
-  /* init temps */
-  if (mp_init_size (&t1, B * 2) != MP_OKAY)
-    goto Y1;
-  if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
-    goto T1;
-  if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
-    goto X0Y0;
-
-  /* now shift the digits */
-  x0.used = y0.used = B;
-  x1.used = a->used - B;
-  y1.used = b->used - B;
-
-  {
-    register int x;
-    register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
-
-    /* we copy the digits directly instead of using higher level functions
-     * since we also need to shift the digits
-     */
-    tmpa = a->dp;
-    tmpb = b->dp;
-
-    tmpx = x0.dp;
-    tmpy = y0.dp;
-    for (x = 0; x < B; x++) {
-      *tmpx++ = *tmpa++;
-      *tmpy++ = *tmpb++;
-    }
-
-    tmpx = x1.dp;
-    for (x = B; x < a->used; x++) {
-      *tmpx++ = *tmpa++;
-    }
-
-    tmpy = y1.dp;
-    for (x = B; x < b->used; x++) {
-      *tmpy++ = *tmpb++;
-    }
-  }
-
-  /* only need to clamp the lower words since by definition the 
-   * upper words x1/y1 must have a known number of digits
-   */
-  mp_clamp (&x0);
-  mp_clamp (&y0);
-
-  /* now calc the products x0y0 and x1y1 */
-  /* after this x0 is no longer required, free temp [x0==t2]! */
-  if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)  
-    goto X1Y1;          /* x0y0 = x0*y0 */
-  if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
-    goto X1Y1;          /* x1y1 = x1*y1 */
-
-  /* now calc x1-x0 and y1-y0 */
-  if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
-    goto X1Y1;          /* t1 = x1 - x0 */
-  if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
-    goto X1Y1;          /* t2 = y1 - y0 */
-  if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
-    goto X1Y1;          /* t1 = (x1 - x0) * (y1 - y0) */
-
-  /* add x0y0 */
-  if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
-    goto X1Y1;          /* t2 = x0y0 + x1y1 */
-  if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
-    goto X1Y1;          /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
-
-  /* shift by B */
-  if (mp_lshd (&t1, B) != MP_OKAY)
-    goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
-  if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
-    goto X1Y1;          /* x1y1 = x1y1 << 2*B */
-
-  if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
-    goto X1Y1;          /* t1 = x0y0 + t1 */
-  if (mp_add (&t1, &x1y1, c) != MP_OKAY)
-    goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */
-
-  /* Algorithm succeeded set the return code to MP_OKAY */
-  err = MP_OKAY;
-
-X1Y1:mp_clear (&x1y1);
-X0Y0:mp_clear (&x0y0);
-T1:mp_clear (&t1);
-Y1:mp_clear (&y1);
-Y0:mp_clear (&y0);
-X1:mp_clear (&x1);
-X0:mp_clear (&x0);
-ERR:
-  return err;
-}
-#endif
--- a/bn_mp_karatsuba_sqr.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,117 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_KARATSUBA_SQR_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* Karatsuba squaring, computes b = a*a using three 
- * half size squarings
- *
- * See comments of karatsuba_mul for details.  It 
- * is essentially the same algorithm but merely 
- * tuned to perform recursive squarings.
- */
-int mp_karatsuba_sqr (mp_int * a, mp_int * b)
-{
-  mp_int  x0, x1, t1, t2, x0x0, x1x1;
-  int     B, err;
-
-  err = MP_MEM;
-
-  /* min # of digits */
-  B = a->used;
-
-  /* now divide in two */
-  B = B >> 1;
-
-  /* init copy all the temps */
-  if (mp_init_size (&x0, B) != MP_OKAY)
-    goto ERR;
-  if (mp_init_size (&x1, a->used - B) != MP_OKAY)
-    goto X0;
-
-  /* init temps */
-  if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
-    goto X1;
-  if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
-    goto T1;
-  if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
-    goto T2;
-  if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
-    goto X0X0;
-
-  {
-    register int x;
-    register mp_digit *dst, *src;
-
-    src = a->dp;
-
-    /* now shift the digits */
-    dst = x0.dp;
-    for (x = 0; x < B; x++) {
-      *dst++ = *src++;
-    }
-
-    dst = x1.dp;
-    for (x = B; x < a->used; x++) {
-      *dst++ = *src++;
-    }
-  }
-
-  x0.used = B;
-  x1.used = a->used - B;
-
-  mp_clamp (&x0);
-
-  /* now calc the products x0*x0 and x1*x1 */
-  if (mp_sqr (&x0, &x0x0) != MP_OKAY)
-    goto X1X1;           /* x0x0 = x0*x0 */
-  if (mp_sqr (&x1, &x1x1) != MP_OKAY)
-    goto X1X1;           /* x1x1 = x1*x1 */
-
-  /* now calc (x1-x0)**2 */
-  if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
-    goto X1X1;           /* t1 = x1 - x0 */
-  if (mp_sqr (&t1, &t1) != MP_OKAY)
-    goto X1X1;           /* t1 = (x1 - x0) * (x1 - x0) */
-
-  /* add x0y0 */
-  if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
-    goto X1X1;           /* t2 = x0x0 + x1x1 */
-  if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
-    goto X1X1;           /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
-
-  /* shift by B */
-  if (mp_lshd (&t1, B) != MP_OKAY)
-    goto X1X1;           /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
-  if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
-    goto X1X1;           /* x1x1 = x1x1 << 2*B */
-
-  if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
-    goto X1X1;           /* t1 = x0x0 + t1 */
-  if (mp_add (&t1, &x1x1, b) != MP_OKAY)
-    goto X1X1;           /* t1 = x0x0 + t1 + x1x1 */
-
-  err = MP_OKAY;
-
-X1X1:mp_clear (&x1x1);
-X0X0:mp_clear (&x0x0);
-T2:mp_clear (&t2);
-T1:mp_clear (&t1);
-X1:mp_clear (&x1);
-X0:mp_clear (&x0);
-ERR:
-  return err;
-}
-#endif
--- a/bn_mp_lcm.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,56 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_LCM_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* computes least common multiple as |a*b|/(a, b) */
-int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
-{
-  int     res;
-  mp_int  t1, t2;
-
-
-  if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) {
-    return res;
-  }
-
-  /* t1 = get the GCD of the two inputs */
-  if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
-    goto LBL_T;
-  }
-
-  /* divide the smallest by the GCD */
-  if (mp_cmp_mag(a, b) == MP_LT) {
-     /* store quotient in t2 such that t2 * b is the LCM */
-     if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
-        goto LBL_T;
-     }
-     res = mp_mul(b, &t2, c);
-  } else {
-     /* store quotient in t2 such that t2 * a is the LCM */
-     if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
-        goto LBL_T;
-     }
-     res = mp_mul(a, &t2, c);
-  }
-
-  /* fix the sign to positive */
-  c->sign = MP_ZPOS;
-
-LBL_T:
-  mp_clear_multi (&t1, &t2, NULL);
-  return res;
-}
-#endif
--- a/bn_mp_lshd.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,63 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_LSHD_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* shift left a certain amount of digits */
-int mp_lshd (mp_int * a, int b)
-{
-  int     x, res;
-
-  /* if its less than zero return */
-  if (b <= 0) {
-    return MP_OKAY;
-  }
-
-  /* grow to fit the new digits */
-  if (a->alloc < a->used + b) {
-     if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
-       return res;
-     }
-  }
-
-  {
-    register mp_digit *top, *bottom;
-
-    /* increment the used by the shift amount then copy upwards */
-    a->used += b;
-
-    /* top */
-    top = a->dp + a->used - 1;
-
-    /* base */
-    bottom = a->dp + a->used - 1 - b;
-
-    /* much like mp_rshd this is implemented using a sliding window
-     * except the window goes the otherway around.  Copying from
-     * the bottom to the top.  see bn_mp_rshd.c for more info.
-     */
-    for (x = a->used - 1; x >= b; x--) {
-      *top-- = *bottom--;
-    }
-
-    /* zero the lower digits */
-    top = a->dp;
-    for (x = 0; x < b; x++) {
-      *top++ = 0;
-    }
-  }
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_mod.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,44 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_MOD_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* c = a mod b, 0 <= c < b */
-int
-mp_mod (mp_int * a, mp_int * b, mp_int * c)
-{
-  mp_int  t;
-  int     res;
-
-  if ((res = mp_init (&t)) != MP_OKAY) {
-    return res;
-  }
-
-  if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
-    mp_clear (&t);
-    return res;
-  }
-
-  if (t.sign != b->sign) {
-    res = mp_add (b, &t, c);
-  } else {
-    res = MP_OKAY;
-    mp_exch (&t, c);
-  }
-
-  mp_clear (&t);
-  return res;
-}
-#endif
--- a/bn_mp_mod_2d.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,51 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_MOD_2D_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* calc a value mod 2**b */
-int
-mp_mod_2d (mp_int * a, int b, mp_int * c)
-{
-  int     x, res;
-
-  /* if b is <= 0 then zero the int */
-  if (b <= 0) {
-    mp_zero (c);
-    return MP_OKAY;
-  }
-
-  /* if the modulus is larger than the value than return */
-  if (b >= (int) (a->used * DIGIT_BIT)) {
-    res = mp_copy (a, c);
-    return res;
-  }
-
-  /* copy */
-  if ((res = mp_copy (a, c)) != MP_OKAY) {
-    return res;
-  }
-
-  /* zero digits above the last digit of the modulus */
-  for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
-    c->dp[x] = 0;
-  }
-  /* clear the digit that is not completely outside/inside the modulus */
-  c->dp[b / DIGIT_BIT] &=
-    (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
-  mp_clamp (c);
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_mod_d.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,23 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_MOD_D_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-int
-mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
-{
-  return mp_div_d(a, b, NULL, c);
-}
-#endif
--- a/bn_mp_montgomery_calc_normalization.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,55 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/*
- * shifts with subtractions when the result is greater than b.
- *
- * The method is slightly modified to shift B unconditionally upto just under
- * the leading bit of b.  This saves alot of multiple precision shifting.
- */
-int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
-{
-  int     x, bits, res;
-
-  /* how many bits of last digit does b use */
-  bits = mp_count_bits (b) % DIGIT_BIT;
-
-  if (b->used > 1) {
-     if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
-        return res;
-     }
-  } else {
-     mp_set(a, 1);
-     bits = 1;
-  }
-
-
-  /* now compute C = A * B mod b */
-  for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
-    if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
-      return res;
-    }
-    if (mp_cmp_mag (a, b) != MP_LT) {
-      if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
-        return res;
-      }
-    }
-  }
-
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_montgomery_reduce.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,114 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_MONTGOMERY_REDUCE_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* computes xR**-1 == x (mod N) via Montgomery Reduction */
-int
-mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
-{
-  int     ix, res, digs;
-  mp_digit mu;
-
-  /* can the fast reduction [comba] method be used?
-   *
-   * Note that unlike in mul you're safely allowed *less*
-   * than the available columns [255 per default] since carries
-   * are fixed up in the inner loop.
-   */
-  digs = n->used * 2 + 1;
-  if ((digs < MP_WARRAY) &&
-      n->used <
-      (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
-    return fast_mp_montgomery_reduce (x, n, rho);
-  }
-
-  /* grow the input as required */
-  if (x->alloc < digs) {
-    if ((res = mp_grow (x, digs)) != MP_OKAY) {
-      return res;
-    }
-  }
-  x->used = digs;
-
-  for (ix = 0; ix < n->used; ix++) {
-    /* mu = ai * rho mod b
-     *
-     * The value of rho must be precalculated via
-     * montgomery_setup() such that
-     * it equals -1/n0 mod b this allows the
-     * following inner loop to reduce the
-     * input one digit at a time
-     */
-    mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
-
-    /* a = a + mu * m * b**i */
-    {
-      register int iy;
-      register mp_digit *tmpn, *tmpx, u;
-      register mp_word r;
-
-      /* alias for digits of the modulus */
-      tmpn = n->dp;
-
-      /* alias for the digits of x [the input] */
-      tmpx = x->dp + ix;
-
-      /* set the carry to zero */
-      u = 0;
-
-      /* Multiply and add in place */
-      for (iy = 0; iy < n->used; iy++) {
-        /* compute product and sum */
-        r       = ((mp_word)mu) * ((mp_word)*tmpn++) +
-                  ((mp_word) u) + ((mp_word) * tmpx);
-
-        /* get carry */
-        u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
-
-        /* fix digit */
-        *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
-      }
-      /* At this point the ix'th digit of x should be zero */
-
-
-      /* propagate carries upwards as required*/
-      while (u) {
-        *tmpx   += u;
-        u        = *tmpx >> DIGIT_BIT;
-        *tmpx++ &= MP_MASK;
-      }
-    }
-  }
-
-  /* at this point the n.used'th least
-   * significant digits of x are all zero
-   * which means we can shift x to the
-   * right by n.used digits and the
-   * residue is unchanged.
-   */
-
-  /* x = x/b**n.used */
-  mp_clamp(x);
-  mp_rshd (x, n->used);
-
-  /* if x >= n then x = x - n */
-  if (mp_cmp_mag (x, n) != MP_LT) {
-    return s_mp_sub (x, n, x);
-  }
-
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_montgomery_setup.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,55 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_MONTGOMERY_SETUP_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* setups the montgomery reduction stuff */
-int
-mp_montgomery_setup (mp_int * n, mp_digit * rho)
-{
-  mp_digit x, b;
-
-/* fast inversion mod 2**k
- *
- * Based on the fact that
- *
- * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
- *                    =>  2*X*A - X*X*A*A = 1
- *                    =>  2*(1) - (1)     = 1
- */
-  b = n->dp[0];
-
-  if ((b & 1) == 0) {
-    return MP_VAL;
-  }
-
-  x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
-  x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
-#if !defined(MP_8BIT)
-  x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
-#endif
-#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
-  x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
-#endif
-#ifdef MP_64BIT
-  x *= 2 - b * x;               /* here x*a==1 mod 2**64 */
-#endif
-
-  /* rho = -1/m mod b */
-  *rho = (((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
-
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_mul.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,62 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_MUL_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* high level multiplication (handles sign) */
-int mp_mul (mp_int * a, mp_int * b, mp_int * c)
-{
-  int     res, neg;
-  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
-
-  /* use Toom-Cook? */
-#ifdef BN_MP_TOOM_MUL_C
-  if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
-    res = mp_toom_mul(a, b, c);
-  } else 
-#endif
-#ifdef BN_MP_KARATSUBA_MUL_C
-  /* use Karatsuba? */
-  if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
-    res = mp_karatsuba_mul (a, b, c);
-  } else 
-#endif
-  {
-    /* can we use the fast multiplier?
-     *
-     * The fast multiplier can be used if the output will 
-     * have less than MP_WARRAY digits and the number of 
-     * digits won't affect carry propagation
-     */
-    int     digs = a->used + b->used + 1;
-
-#ifdef BN_FAST_S_MP_MUL_DIGS_C
-    if ((digs < MP_WARRAY) &&
-        MIN(a->used, b->used) <= 
-        (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
-      res = fast_s_mp_mul_digs (a, b, c, digs);
-    } else 
-#endif
-#ifdef BN_S_MP_MUL_DIGS_C
-      res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
-#else
-      res = MP_VAL;
-#endif
-
-  }
-  c->sign = (c->used > 0) ? neg : MP_ZPOS;
-  return res;
-}
-#endif
--- a/bn_mp_mul_2.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,78 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_MUL_2_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* b = a*2 */
-int mp_mul_2(mp_int * a, mp_int * b)
-{
-  int     x, res, oldused;
-
-  /* grow to accomodate result */
-  if (b->alloc < a->used + 1) {
-    if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  oldused = b->used;
-  b->used = a->used;
-
-  {
-    register mp_digit r, rr, *tmpa, *tmpb;
-
-    /* alias for source */
-    tmpa = a->dp;
-    
-    /* alias for dest */
-    tmpb = b->dp;
-
-    /* carry */
-    r = 0;
-    for (x = 0; x < a->used; x++) {
-    
-      /* get what will be the *next* carry bit from the 
-       * MSB of the current digit 
-       */
-      rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
-      
-      /* now shift up this digit, add in the carry [from the previous] */
-      *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
-      
-      /* copy the carry that would be from the source 
-       * digit into the next iteration 
-       */
-      r = rr;
-    }
-
-    /* new leading digit? */
-    if (r != 0) {
-      /* add a MSB which is always 1 at this point */
-      *tmpb = 1;
-      ++(b->used);
-    }
-
-    /* now zero any excess digits on the destination 
-     * that we didn't write to 
-     */
-    tmpb = b->dp + b->used;
-    for (x = b->used; x < oldused; x++) {
-      *tmpb++ = 0;
-    }
-  }
-  b->sign = a->sign;
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_mul_2d.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,81 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_MUL_2D_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* shift left by a certain bit count */
-int mp_mul_2d (mp_int * a, int b, mp_int * c)
-{
-  mp_digit d;
-  int      res;
-
-  /* copy */
-  if (a != c) {
-     if ((res = mp_copy (a, c)) != MP_OKAY) {
-       return res;
-     }
-  }
-
-  if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
-     if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
-       return res;
-     }
-  }
-
-  /* shift by as many digits in the bit count */
-  if (b >= (int)DIGIT_BIT) {
-    if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  /* shift any bit count < DIGIT_BIT */
-  d = (mp_digit) (b % DIGIT_BIT);
-  if (d != 0) {
-    register mp_digit *tmpc, shift, mask, r, rr;
-    register int x;
-
-    /* bitmask for carries */
-    mask = (((mp_digit)1) << d) - 1;
-
-    /* shift for msbs */
-    shift = DIGIT_BIT - d;
-
-    /* alias */
-    tmpc = c->dp;
-
-    /* carry */
-    r    = 0;
-    for (x = 0; x < c->used; x++) {
-      /* get the higher bits of the current word */
-      rr = (*tmpc >> shift) & mask;
-
-      /* shift the current word and OR in the carry */
-      *tmpc = ((*tmpc << d) | r) & MP_MASK;
-      ++tmpc;
-
-      /* set the carry to the carry bits of the current word */
-      r = rr;
-    }
-    
-    /* set final carry */
-    if (r != 0) {
-       c->dp[(c->used)++] = r;
-    }
-  }
-  mp_clamp (c);
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_mul_d.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,75 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_MUL_D_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* multiply by a digit */
-int
-mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
-{
-  mp_digit u, *tmpa, *tmpc;
-  mp_word  r;
-  int      ix, res, olduse;
-
-  /* make sure c is big enough to hold a*b */
-  if (c->alloc < a->used + 1) {
-    if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  /* get the original destinations used count */
-  olduse = c->used;
-
-  /* set the sign */
-  c->sign = a->sign;
-
-  /* alias for a->dp [source] */
-  tmpa = a->dp;
-
-  /* alias for c->dp [dest] */
-  tmpc = c->dp;
-
-  /* zero carry */
-  u = 0;
-
-  /* compute columns */
-  for (ix = 0; ix < a->used; ix++) {
-    /* compute product and carry sum for this term */
-    r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
-
-    /* mask off higher bits to get a single digit */
-    *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
-
-    /* send carry into next iteration */
-    u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
-  }
-
-  /* store final carry [if any] and increment ix offset  */
-  *tmpc++ = u;
-  ++ix;
-
-  /* now zero digits above the top */
-  while (ix++ < olduse) {
-     *tmpc++ = 0;
-  }
-
-  /* set used count */
-  c->used = a->used + 1;
-  mp_clamp(c);
-
-  return MP_OKAY;
-}
-#endif
--- a/bn_mp_mulmod.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,37 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_MULMOD_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* d = a * b (mod c) */
-int
-mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
-{
-  int     res;
-  mp_int  t;
-
-  if ((res = mp_init (&t)) != MP_OKAY) {
-    return res;
-  }
-
-  if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
-    mp_clear (&t);
-    return res;
-  }
-  res = mp_mod (&t, c, d);
-  mp_clear (&t);
-  return res;
-}
-#endif
--- a/bn_mp_n_root.c	Wed Mar 08 13:22:52 2006 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,128 +0,0 @@
-#include <tommath.h>
-#ifdef BN_MP_N_ROOT_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
- */
-
-/* find the n'th root of an integer 
- *
- * Result found such that (c)**b <= a and (c+1)**b > a 
- *
- * This algorithm uses Newton's approximation 
- * x[i+1] = x[i] - f(x[i])/f'(x[i]) 
- * which will find the root in log(N) time where 
- * each step involves a fair bit.  This is not meant to 
- * find huge roots [square and cube, etc].
- */
-int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
-{
-  mp_int  t1, t2, t3;
-  int     res, neg;
-
-  /* input must be positive if b is even */
-  if ((b & 1) == 0 && a->sign == MP_NEG) {
-    return MP_VAL;
-  }
-
-  if ((res = mp_init (&t1)) != MP_OKAY) {
-    return res;
-  }
-
-  if ((res = mp_init (&t2)) != MP_OKAY) {
-    goto LBL_T1;
-  }
-
-  if ((res = mp_init (&t3)) != MP_OKAY) {
-    goto LBL_T2;
-  }
-
-  /* if a is negative fudge the sign but keep track */