comparison main.c @ 1:e23c1b6f6080

few more changes
author Matt Johnston <matt@ucc.asn.au>
date Mon, 03 Jun 2013 19:17:36 +0800
parents 8705acff2494
children 0a6cbbb8c2b7
comparison
equal deleted inserted replaced
0:8705acff2494 1:e23c1b6f6080
11 #include <avr/eeprom.h> 11 #include <avr/eeprom.h>
12 #include <avr/wdt.h> 12 #include <avr/wdt.h>
13 #include <util/atomic.h> 13 #include <util/atomic.h>
14 #include <util/crc16.h> 14 #include <util/crc16.h>
15 15
16 #include "simple_ds18b20.h" 16 //#include "simple_ds18b20.h"
17 #include "onewire.h" 17 //#include "onewire.h"
18
19 // configuration params
20 // - measurement interval
21 // - transmit interval
22 // - bluetooth params
23 // - number of sensors (and range?)
24 18
25 #define MIN(X,Y) ((X) < (Y) ? (X) : (Y)) 19 #define MIN(X,Y) ((X) < (Y) ? (X) : (Y))
26 #define MAX(X,Y) ((X) > (Y) ? (X) : (Y)) 20 #define MAX(X,Y) ((X) > (Y) ? (X) : (Y))
27 21
28 // TICK should be 8 or less (8 untested). all timers need 22 // TICK should be 8 or less (8 untested). all timers need
29 // to be a multiple. 23 // to be a multiple.
30 24
31 #define TICK 6 25 #define TICK 1
32 // we have 1024 prescaler, 32768 crystal. 26 // we have 1024 prescaler, 32768 crystal.
33 #define SLEEP_COMPARE (32*TICK-1) 27 #define SLEEP_COMPARE (32*TICK-1)
28
29 #define KEYLEN 20
34 30
35 #define VALUE_NOSENSOR 0x07D0 // 125 degrees 31 #define VALUE_NOSENSOR 0x07D0 // 125 degrees
36 #define VALUE_BROKEN 0x07D1 // 125.0625 32 #define VALUE_BROKEN 0x07D1 // 125.0625
37 33
38 #define OVERSHOOT_MAX_DIV 1800.0 // 30 mins 34 #define OVERSHOOT_MAX_DIV 1800.0 // 30 mins
75 uint32_t ticks; 71 uint32_t ticks;
76 // remainder 72 // remainder
77 uint8_t rem; 73 uint8_t rem;
78 }; 74 };
79 75
80 // eeprom-settable parameters. all timeouts should 76 // eeprom-settable parameters, default values defined here.
81 // be a multiple of TICK (6 seconds probably) 77 // all timeouts should be a multiple of TICK
82 static uint16_t measure_wake = 61; // not a divisor of comms_wake 78 static uint32_t watchdog_long_limit = 60*60*24;
83 static uint16_t comms_wake = 600; 79 static uint32_t watchdog_short_limit = 0;
84 static uint8_t wake_secs = 30; 80 static uint32_t newboot_limit = 60*10;
85 // decidegrees 81
86 static int16_t fridge_setpoint = 180; // 18.0ºC 82 // avr proves itself
87 static uint16_t fridge_difference = 3; // 0.3ºC 83 static uint8_t avr_keys[NKEYS][KEYLEN] = {0};
88 static uint16_t fridge_delay = 600; // seconds 84
89
90 static uint16_t overshoot_delay = 720; // 12 mins
91 static uint8_t overshoot_factor = 10; // 1.0ºC
92 85
93 // ---- Atomic guards required accessing these variables 86 // ---- Atomic guards required accessing these variables
94 // clock_epoch in seconds 87 // clock_epoch in seconds
95 static uint32_t clock_epoch; 88 static uint32_t clock_epoch;
96 static uint16_t comms_count; 89 // watchdog counts up
97 static uint16_t measure_count; 90 static uint32_t watchdog_long_count;
91 static uint32_t watchdog_short_count;
92 // newboot counts down - it's a one-shot
93 static uint32_t newboot_count;
98 // ---- End atomic guards required 94 // ---- End atomic guards required
99 95
100 static uint16_t n_measurements;
101
102 // calculated at startup as TOTAL_MEASUREMENTS/n_sensors
103 static uint16_t max_measurements;
104
105 static uint16_t measurements[TOTAL_MEASUREMENTS];
106
107 static struct epoch_ticks first_measurement_clock;
108 // last_measurement_clock is redundant but checks that we're not missing
109 // samples
110 static struct epoch_ticks last_measurement_clock;
111 static struct epoch_ticks last_comms_clock;
112
113 // boolean flags 96 // boolean flags
114 static uint8_t need_measurement; 97 static uint8_t watchdog_long_hit;
115 static uint8_t need_comms; 98 static uint8_t watchdog_short_hit;
116 static uint8_t uart_enabled; 99 static uint8_t newboot_hit;
117 static uint8_t stay_awake;
118 static uint8_t button_pressed;
119
120 // counts down from WAKE_SECS to 0, goes to deep sleep when hits 0
121 static uint8_t comms_timeout;
122 100
123 static uint8_t readpos; 101 static uint8_t readpos;
124 static char readbuf[30]; 102 static char readbuf[50];
125 static uint8_t have_cmd; 103 static uint8_t have_cmd;
126
127 static uint8_t n_sensors;
128 static uint8_t sensor_id[MAX_SENSORS][ID_LEN];
129
130 static int16_t last_fridge = DS18X20_INVALID_DECICELSIUS;
131 static int16_t last_wort = DS18X20_INVALID_DECICELSIUS;
132 static struct epoch_ticks fridge_off_clock = {0};
133 static struct epoch_ticks fridge_on_clock = {0};
134 static struct epoch_ticks wort_valid_clock = {0};
135 104
136 int uart_putchar(char c, FILE *stream); 105 int uart_putchar(char c, FILE *stream);
137 static void long_delay(int ms); 106 static void long_delay(int ms);
138 static void blink(); 107 static void blink();
139 static uint16_t adc_vcc(); 108 static uint16_t adc_vcc();
140 109
141 static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL, 110 static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL,
142 _FDEV_SETUP_WRITE); 111 _FDEV_SETUP_WRITE);
143
144 static uint16_t crc_out;
145 static FILE _crc_stdout = FDEV_SETUP_STREAM(uart_putchar, NULL,
146 _FDEV_SETUP_WRITE);
147 // convenience
148 static FILE *crc_stdout = &_crc_stdout;
149
150 112
151 // thanks to http://projectgus.com/2010/07/eeprom-access-with-arduino/ 113 // thanks to http://projectgus.com/2010/07/eeprom-access-with-arduino/
152 #define eeprom_read_to(dst_p, eeprom_field, dst_size) eeprom_read_block((dst_p), (void *)offsetof(struct __eeprom_data, eeprom_field), (dst_size)) 114 #define eeprom_read_to(dst_p, eeprom_field, dst_size) eeprom_read_block((dst_p), (void *)offsetof(struct __eeprom_data, eeprom_field), (dst_size))
153 #define eeprom_read(dst, eeprom_field) eeprom_read_to((&dst), eeprom_field, sizeof(dst)) 115 #define eeprom_read(dst, eeprom_field) eeprom_read_to((&dst), eeprom_field, sizeof(dst))
154 #define eeprom_write_from(src_p, eeprom_field, src_size) eeprom_write_block((src_p), (void *)offsetof(struct __eeprom_data, eeprom_field), (src_size)) 116 #define eeprom_write_from(src_p, eeprom_field, src_size) eeprom_write_block((src_p), (void *)offsetof(struct __eeprom_data, eeprom_field), (src_size))
155 #define eeprom_write(src, eeprom_field) { eeprom_write_from(&src, eeprom_field, sizeof(src)); } 117 #define eeprom_write(src, eeprom_field) { eeprom_write_from(&src, eeprom_field, sizeof(src)); }
156 118
157 #define EXPECT_MAGIC 0x67c9 119 #define EXPECT_MAGIC 0xdf83
158 120
159 struct __attribute__ ((__packed__)) __eeprom_data { 121 struct __attribute__ ((__packed__)) __eeprom_data {
160 uint16_t measure_wake; 122 uint32_t watchdog_long_limit;
161 uint16_t comms_wake; 123 uint32_t watchdog_short_limit;
162 uint8_t wake_secs; 124 uint32_t newboot_limit;
163 125
164 int16_t fridge_setpoint; // decidegrees 126 uint8_t avr_key[NKEYS][KEYLEN];
165 uint16_t fridge_difference; // decidegrees
166 uint16_t fridge_delay;
167
168 uint16_t overshoot_delay;
169 uint8_t overshoot_factor; // decidegrees
170
171 #if 0
172 static uint8_t wort_id[ID_LEN];
173 static uint8_t fridge_id[ID_LEN];
174 #endif
175 127
176 uint16_t magic; 128 uint16_t magic;
177 }; 129 };
178 130
179 static const uint8_t fridge_id[ID_LEN] =
180 {0x28,0xCE,0xB2,0x1A,0x03,0x00,0x00,0x99};
181 static const uint8_t wort_id[ID_LEN] =
182 {0x28,0x49,0xBC,0x1A,0x03,0x00,0x00,0x54};
183
184 static void deep_sleep(); 131 static void deep_sleep();
185
186 // 0 or 1
187 static uint8_t
188 is_fridge_on()
189 {
190 if (PORT_FRIDGE & _BV(PIN_FRIDGE))
191 {
192 return 1;
193 }
194 else
195 {
196 return 0;
197 }
198 }
199 132
200 // Very first setup 133 // Very first setup
201 static void 134 static void
202 setup_chip() 135 setup_chip()
203 { 136 {
207 wdt_reset(); 140 wdt_reset();
208 MCUSR &= ~_BV(WDRF); 141 MCUSR &= ~_BV(WDRF);
209 WDTCSR |= _BV(WDCE) | _BV(WDE); 142 WDTCSR |= _BV(WDCE) | _BV(WDE);
210 WDTCSR = 0; 143 WDTCSR = 0;
211 144
145 // set to 8S, in case sha1 is slow etc.
146 wdt_enable(WDTO_8S);
147
212 // Set clock to 2mhz 148 // Set clock to 2mhz
213 CLKPR = _BV(CLKPCE); 149 CLKPR = _BV(CLKPCE);
214 // divide by 4 150 // divide by 4
215 CLKPR = _BV(CLKPS1); 151 CLKPR = _BV(CLKPS1);
216 152
217 // enable pullups 153 // enable pullups
154 // XXX matt pihelp
218 PORTB = 0xff; // XXX change when using SPI 155 PORTB = 0xff; // XXX change when using SPI
219 PORTD = 0xff; 156 PORTD = 0xff;
220 PORTC = 0xff; 157 PORTC = 0xff;
221 158
222 // 3.3v power for bluetooth and SD 159 // 3.3v power for bluetooth and SD
223 DDR_LED |= _BV(PIN_LED); 160 DDR_LED |= _BV(PIN_LED);
224 DDR_SHDN |= _BV(PIN_SHDN);
225
226 PORT_FRIDGE &= ~_BV(PIN_FRIDGE);
227 DDR_FRIDGE |= _BV(PIN_FRIDGE);
228 161
229 // set pullup 162 // set pullup
230 PORTD |= _BV(PD2); 163 PORTD |= _BV(PD2);
231 // INT0 setup 164 // INT0 setup
232 EICRA = (1<<ISC01); // falling edge - data sheet says it won't work? 165 EICRA = (1<<ISC01); // falling edge - data sheet says it won't work?
241 174
242 sei(); 175 sei();
243 } 176 }
244 177
245 static void 178 static void
246 set_aux_power(uint8_t on)
247 {
248 if (on)
249 {
250 PORT_SHDN &= ~_BV(PIN_SHDN);
251 }
252 else
253 {
254 PORT_SHDN |= _BV(PIN_SHDN);
255 }
256 }
257
258 static void
259 get_epoch_ticks(struct epoch_ticks *t) 179 get_epoch_ticks(struct epoch_ticks *t)
260 { 180 {
261 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) 181 ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
262 { 182 {
263 t->ticks = clock_epoch; 183 t->ticks = clock_epoch;
264 t->rem = TCNT2; 184 t->rem = TCNT2;
265 } 185 }
266 }
267
268 static void
269 set_measurement(uint8_t sensor, uint16_t measurement, uint16_t reading)
270 {
271 measurements[sensor*max_measurements + measurement] = reading;
272 }
273
274 static uint16_t
275 get_measurement(uint8_t sensor, uint16_t measurement)
276 {
277 return measurements[sensor*max_measurements + measurement];
278 } 186 }
279 187
280 static void 188 static void
281 setup_tick_counter() 189 setup_tick_counter()
282 { 190 {
355 } 263 }
356 return (unsigned char)c; 264 return (unsigned char)c;
357 } 265 }
358 266
359 static void 267 static void
360 cmd_fetch()
361 {
362 crc_out = 0;
363
364 fprintf_P(crc_stdout, PSTR("START\n"));
365 {
366 struct epoch_ticks now;
367 get_epoch_ticks(&now);
368 fprintf_P(crc_stdout, PSTR("now=%lu\n"), now.ticks);
369 fprintf_P(crc_stdout, PSTR("now_rem=%hhu\n"), now.rem);
370 }
371 fprintf_P(crc_stdout, PSTR("time_step=%hu\n"), measure_wake);
372 fprintf_P(crc_stdout, PSTR("first_time=%lu\n"), first_measurement_clock.ticks);
373 fprintf_P(crc_stdout, PSTR("first_time_rem=%hhu\n"), first_measurement_clock.rem);
374 fprintf_P(crc_stdout, PSTR("last_time=%lu\n"), last_measurement_clock.ticks);
375 fprintf_P(crc_stdout, PSTR("last_time_rem=%hhu\n"), last_measurement_clock.rem);
376 fprintf_P(crc_stdout, PSTR("comms_time=%lu\n"), last_comms_clock.ticks);
377 fprintf_P(crc_stdout, PSTR("comms_time_rem=%hhu\n"), last_comms_clock.rem);
378 fprintf_P(crc_stdout, PSTR("voltage=%hu\n"), adc_vcc());
379 fprintf_P(crc_stdout, PSTR("measure=%hu\n"), measure_wake);
380 fprintf_P(crc_stdout, PSTR("comms=%hu\n"), comms_wake);
381 fprintf_P(crc_stdout, PSTR("wake=%hhu\n"), wake_secs);
382 fprintf_P(crc_stdout, PSTR("fridge=%.1f\n"), fridge_setpoint/10.0);
383 fprintf_P(crc_stdout, PSTR("fridge_diff=%.1f\n"), fridge_difference/10.0);
384 fprintf_P(crc_stdout, PSTR("fridge_delay=%hu\n"), fridge_delay);
385 fprintf_P(crc_stdout, PSTR("overshoot_factor=%.1f\n"), overshoot_factor/10.0);
386 fprintf_P(crc_stdout, PSTR("overshoot_delay=%hu\n"), overshoot_delay);
387 fprintf_P(crc_stdout, PSTR("fridge_status=%hhu\n"), is_fridge_on());
388 fprintf_P(crc_stdout, PSTR("fridge_last_on=%lu\n"), fridge_on_clock.ticks);
389 fprintf_P(crc_stdout, PSTR("fridge_last_off=%lu\n"), fridge_off_clock.ticks);
390 fprintf_P(crc_stdout, PSTR("last_fridge=%hu\n"), last_fridge);
391 fprintf_P(crc_stdout, PSTR("last_wort=%hu\n"), last_wort);
392 fprintf_P(crc_stdout, PSTR("tick_secs=%d\n"), TICK);
393 fprintf_P(crc_stdout, PSTR("tick_wake=%d\n"), SLEEP_COMPARE);
394 fprintf_P(crc_stdout, PSTR("maxsens=%hhu\n"), MAX_SENSORS);
395 fprintf_P(crc_stdout, PSTR("totalmeas=%hu\n"), TOTAL_MEASUREMENTS);
396 fprintf_P(crc_stdout, PSTR("sensors=%hhu\n"), n_sensors);
397 for (uint8_t s = 0; s < n_sensors; s++)
398 {
399 fprintf_P(crc_stdout, PSTR("sensor_id%hhu="), s);
400 printhex(sensor_id[s], ID_LEN, crc_stdout);
401 fputc('\n', crc_stdout);
402 }
403 fprintf_P(crc_stdout, PSTR("measurements=%hu\n"), n_measurements);
404 for (uint16_t n = 0; n < n_measurements; n++)
405 {
406 fprintf_P(crc_stdout, PSTR("meas%hu="), n);
407 for (uint8_t s = 0; s < n_sensors; s++)
408 {
409 fprintf_P(crc_stdout, PSTR(" %04hx"), get_measurement(s, n));
410 }
411 fputc('\n', crc_stdout);
412 }
413 fprintf_P(crc_stdout, PSTR("END\n"));
414 fprintf_P(stdout, PSTR("CRC=%hu\n"), crc_out);
415 }
416
417 static void
418 cmd_clear()
419 {
420 n_measurements = 0;
421 printf_P(PSTR("cleared\n"));
422 }
423
424 static void
425 cmd_btoff()
426 {
427 uint8_t rem;
428 uint16_t count_copy;
429 ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
430 {
431 count_copy = comms_count;
432 rem = TCNT2;
433 }
434 printf_P(PSTR("next_wake=%hu,"), comms_wake-count_copy);
435 printf_P(PSTR("rem=%hhu,"), rem);
436 printf_P(PSTR("tick_secs=%hhu,"), TICK);
437 printf_P(PSTR("tick_wake=%hhu\n"), SLEEP_COMPARE);
438 _delay_ms(100);
439 comms_timeout = 0;
440 stay_awake = 0;
441 }
442
443 static void
444 cmd_reset() 268 cmd_reset()
445 { 269 {
446 printf_P(PSTR("reset\n")); 270 printf_P(PSTR("reset\n"));
447 _delay_ms(100); 271 _delay_ms(100);
448 cli(); // disable interrupts 272 cli(); // disable interrupts
449 wdt_enable(WDTO_15MS); // enable watchdog 273 wdt_enable(WDTO_15MS); // enable watchdog
450 while(1); // wait for watchdog to reset processor 274 while(1); // wait for watchdog to reset processor
451 } 275 }
452 276
453 static void 277
454 cmd_measure() 278
455 { 279 static void
456 printf_P(PSTR("measuring\n")); 280 cmd_get_params()
457 need_measurement = 1; 281 {
458 } 282 uint32_t cur_watchdog_long, cur_watchdog_short, cur_newboot;
459 283 ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
460 static void 284 {
461 cmd_sensors() 285 cur_watchdog_long = watchdot_long_count;
462 { 286 cur_watchdog_short = watchdot_short_count;
463 uint8_t ret = simple_ds18b20_start_meas(NULL); 287 cur_newboot = newboot_limit_count;
464 printf_P(PSTR("All sensors, ret %hhu, waiting...\n"), ret); 288 }
465 long_delay(DS18B20_TCONV_12BIT); 289
466 simple_ds18b20_read_all(); 290 printf_P(PSTR("limit (count) : watchdog_long %lu (%lu) watchdog_short %lu (%lu) newboot %lu (%lu)\n"),
467 } 291 watchdog_long_limit,
468 292 watchdog_long_count,
469 static void 293 watchdog_short_limit,
470 init_sensors() 294 watchdog_short_count,
471 { 295 newboot_limit,
472 uint8_t id[OW_ROMCODE_SIZE]; 296 newboot_count);
473 printf_P(PSTR("init sensors\n")); 297 }
474 ow_reset(); 298
475 for( uint8_t diff = OW_SEARCH_FIRST; diff != OW_LAST_DEVICE; ) 299 static void
476 { 300 cmd_set_params(const char *params)
477 diff = ow_rom_search( diff, &id[0] ); 301 {
478 if( diff == OW_PRESENCE_ERR ) { 302 uint32_t new_watchdog_long_limit;
479 printf_P( PSTR("No Sensor found\r") ); 303 uint32_t new_watchdog_short_limit;
480 return; 304 uint32_t new_newboot_limit;
481 } 305
482 306 int ret = sscanf_P(params, PSTR("%lu %lu %lu"),
483 if( diff == OW_DATA_ERR ) { 307 &new_watchdog_long_limit,
484 printf_P( PSTR("Bus Error\r") ); 308 &new_watchdog_short_limit,
485 return; 309 &new_newboot_limit);
486 } 310
487 311
488 if (n_sensors < MAX_SENSORS) 312 if (ret != 3)
489 { 313 {
490 memcpy(sensor_id[n_sensors], id, ID_LEN); 314 printf_P(PSTR("Bad values\n"));
491 printf_P(PSTR("Added sensor %hhu : "), n_sensors); 315 }
492 printhex(id, ID_LEN, stdout); 316 else
493 putchar('\n'); 317 {
494 n_sensors++; 318 ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
495 } 319 {
496 else 320 eeprom_write(new_watchdog_long_limit, watchdog_long_limit);
497 { 321 eeprom_write(new_watchdog_short_limit, watchdog_short_limit);
498 printf_P(PSTR("Too many sensors\n")); 322 eeprom_write(new_newboot_limit, newboot_limit);
499 } 323 uint16_t magic = EXPECT_MAGIC;
500 } 324 eeprom_write(magic, magic);
501 325 }
502 max_measurements = TOTAL_MEASUREMENTS / n_sensors; 326 printf_P(PSTR("set_params for next boot\n"));
327 printf_P(PSTR("watchdog_long %lu watchdog_short %lu newboot %lu\n"),
328 new_watchdog_long_limit,
329 new_watchdog_short_limit,
330 new_newboot_limit);
331
332 }
333 }
334
335 uint8_t from_hex(char c)
336 {
337 if (c >= '0' && c <= '9') {
338 return c-'0';
339 }
340 if (c >= 'a' && c <= 'f') {
341 return c-'a' + 0xa;
342 }
343 if (c >= 'A' && c <= 'F') {
344 return c-'A' + 0xa;
345 }
346 return 0;
347 }
348
349 static void
350 cmd_set_avr_key(const char *params)
351 {
352 // "N HEXKEY"
353 if (strlen(params)) != KEYLEN*2+2) {
354 printf_P(PSTR("Wrong length key\n"));
355 return;
356 }
357
358 uint8_t new_key[KEYLEN];
359 for (int i = 0, p = 0; i < KEYLEN; i++, p += 2)
360 {
361 new_key[i] = (fromhex(params[p]) << 4) | fromhex(params[p+1]);
362 }
503 } 363 }
504 364
505 static void 365 static void
506 load_params() 366 load_params()
507 { 367 {
508 uint16_t magic; 368 uint16_t magic;
509 eeprom_read(magic, magic); 369 eeprom_read(magic, magic);
510 if (magic == EXPECT_MAGIC) 370 if (magic == EXPECT_MAGIC)
511 { 371 {
512 eeprom_read(measure_wake, measure_wake); 372 eeprom_read(watchdog_long_limit, watchdog_long_limit);
513 eeprom_read(comms_wake, comms_wake); 373 eeprom_read(watchdog_short_limit, watchdog_short_limit);
514 eeprom_read(wake_secs, wake_secs); 374 eeprom_read(netboot_limit);
515 eeprom_read(fridge_setpoint, fridge_setpoint); 375 eeprom_read(avr_key);
516 eeprom_read(fridge_difference, fridge_difference); 376 }
517 eeprom_read(fridge_delay, fridge_delay);
518 eeprom_read(overshoot_delay, overshoot_delay);
519 eeprom_read(overshoot_factor, overshoot_factor);
520 }
521 }
522
523 static void
524 cmd_get_params()
525 {
526 printf_P(PSTR("measure %hu\n"), measure_wake);
527 printf_P(PSTR("comms %hu\n"), comms_wake);
528 printf_P(PSTR("wake %hhu\n"), wake_secs);
529 printf_P(PSTR("tick %d\n"), TICK);
530 printf_P(PSTR("fridge %.1fº\n"), fridge_setpoint / 10.0f);
531 printf_P(PSTR("fridge difference %.1fº\n"), fridge_difference / 10.0f);
532 printf_P(PSTR("fridge_delay %hu\n"), fridge_delay);
533 printf_P(PSTR("overshoot factor %.1fº\n"), overshoot_factor / 10.0f);
534 printf_P(PSTR("overshoot delay %hu\n"), overshoot_delay);
535 printf_P(PSTR("sensors %hhu (%hhu)\n"),
536 n_sensors, MAX_SENSORS);
537 printf_P(PSTR("meas %hu (%hu)\n"),
538 max_measurements, TOTAL_MEASUREMENTS);
539 }
540
541 static void
542 cmd_set_params(const char *params)
543 {
544 uint16_t new_measure_wake;
545 uint16_t new_comms_wake;
546 uint8_t new_wake_secs;
547 int ret = sscanf_P(params, PSTR("%hu %hu %hhu"),
548 &new_measure_wake, &new_comms_wake, &new_wake_secs);
549
550 if (ret != 3)
551 {
552 printf_P(PSTR("Bad values\n"));
553 }
554 else
555 {
556 ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
557 {
558 eeprom_write(new_measure_wake, measure_wake);
559 eeprom_write(new_comms_wake, comms_wake);
560 eeprom_write(new_wake_secs, wake_secs);
561 uint16_t magic = EXPECT_MAGIC;
562 eeprom_write(magic, magic);
563 }
564 printf_P(PSTR("set_params for next boot\n"));
565 printf_P(PSTR("measure %hu comms %hu wake %hhu\n"),
566 new_measure_wake, new_comms_wake, new_wake_secs);
567 }
568 } 377 }
569 378
570 // returns true if eeprom was written 379 // returns true if eeprom was written
571 static bool 380 static bool
572 set_initial_eeprom() 381 set_initial_eeprom()
594 403
595 return true; 404 return true;
596 } 405 }
597 406
598 static void 407 static void
599 cmd_set_fridge_setpoint(char *params)
600 {
601 float new_f = atof(params);
602 if (new_f < 2 || new_f > 30)
603 {
604 printf_P(PSTR("Bad fridge value %f\n"), new_f);
605 return;
606 }
607
608 int16_t old_setpoint = fridge_setpoint;
609
610 fridge_setpoint = new_f * 10;
611 bool written = set_initial_eeprom();
612 if (!written)
613 {
614 if (old_setpoint != fridge_setpoint)
615 {
616 ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
617 {
618 eeprom_write(fridge_setpoint, fridge_setpoint);
619 }
620 }
621 }
622 printf_P(PSTR("old fridge %.1fº new fridge %.1fº\n"),
623 old_setpoint / 10.0f, fridge_setpoint / 10.0f);
624 }
625
626 static void
627 cmd_set_fridge_difference(char *params)
628 {
629 float new_f = atof(params);
630 if (new_f < 0 || new_f > 30)
631 {
632 printf_P(PSTR("Bad fridge value %f\n"), new_f);
633 return;
634 }
635
636 fridge_difference = new_f * 10;
637 bool written = set_initial_eeprom();
638 if (!written)
639 {
640 ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
641 {
642 eeprom_write(fridge_difference, fridge_difference);
643 }
644 }
645 printf_P(PSTR("new fridge difference %.1fº\n"), fridge_difference / 10.0f);
646 }
647
648 static void
649 cmd_set_fridge_delay(char *params)
650 {
651 uint16_t new_delay = atoi(params);
652 if (new_delay < 5)
653 {
654 printf_P(PSTR("Bad fridge delay %d\n"), new_delay);
655 return;
656 }
657
658 fridge_delay = new_delay;
659 bool written = set_initial_eeprom();
660 if (!written)
661 {
662 ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
663 {
664 eeprom_write(fridge_delay, fridge_delay);
665 }
666 }
667 printf_P(PSTR("new fridge delay %hu\n"), fridge_delay);
668 }
669
670 static void
671 cmd_set_overshoot_factor(char *params)
672 {
673 float new_f = atof(params);
674 if (new_f <= 0 || new_f > 20)
675 {
676 printf_P(PSTR("Bad overshoot factor %f\n"), new_f);
677 return;
678 }
679
680 uint8_t old = overshoot_factor;
681
682 overshoot_factor = new_f * 10;
683 bool written = set_initial_eeprom();
684 if (!written)
685 {
686 if (old != overshoot_factor)
687 {
688 ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
689 {
690 eeprom_write(overshoot_factor, overshoot_factor);
691 }
692 }
693 }
694 printf_P(PSTR("old factor %.1fº new factor %.1fº\n"),
695 old / 10.0f, overshoot_factor / 10.0f);
696 }
697
698 static void
699 cmd_set_overshoot_delay(char *params)
700 {
701 uint16_t new_delay = atoi(params);
702 if (new_delay < 5)
703 {
704 printf_P(PSTR("Bad overshoot delay %d\n"), new_delay);
705 return;
706 }
707
708 overshoot_delay = new_delay;
709 bool written = set_initial_eeprom();
710 if (!written)
711 {
712 ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
713 {
714 eeprom_write(overshoot_delay, overshoot_delay);
715 }
716 }
717 printf_P(PSTR("new overshoot delay %hu\n"), overshoot_delay);
718 }
719
720 static void
721 cmd_awake()
722 {
723 stay_awake = 1;
724 printf_P(PSTR("awake\n"));
725 }
726
727 static void
728 read_handler() 408 read_handler()
729 { 409 {
730 if (strcmp_P(readbuf, PSTR("fetch")) == 0) 410 if (strcmp_P(readbuf, PSTR("fetch")) == 0)
731 { 411 {
732 cmd_fetch(); 412 cmd_fetch();
825 } 505 }
826 506
827 ISR(TIMER2_COMPA_vect) 507 ISR(TIMER2_COMPA_vect)
828 { 508 {
829 TCNT2 = 0; 509 TCNT2 = 0;
830 measure_count += TICK;
831 comms_count += TICK;
832 510
833 clock_epoch += TICK; 511 clock_epoch += TICK;
834 512
835 if (comms_timeout != 0) 513 // watchdogs count up, continuous
836 { 514 if (watchdog_long_limit > 0) {
837 comms_timeout -= TICK; 515 watchdog_count += TICK;
838 } 516 if (watchdog_long_count >= watchdog_long_limit)
839 517 {
840 if (measure_count >= measure_wake) 518 watchdog_long_count = 0;
841 { 519 watchdog_long_hit = 1;
842 measure_count = 0; 520 }
843 need_measurement = 1; 521 }
844 } 522
845 523 if (watchdog_short_limit > 0) {
846 if (comms_count >= comms_wake) 524 watchdog_count += TICK;
847 { 525 if (watchdog_short_count >= watchdog_short_limit)
848 comms_count = 0; 526 {
849 need_comms = 1; 527 watchdog_short_count = 0;
850 } 528 watchdog_short_hit = 1;
529 }
530 }
531
532 // newboot counts down, oneshot.
533 if (newboot_count > 0)
534 {
535 newboot_count--;
536 if (newboot_count == 0)
537 {
538 newboot_hit = 1;
539 }
540 }
541
851 } 542 }
852 543
853 static void 544 static void
854 deep_sleep() 545 deep_sleep()
855 { 546 {
903 //return 1000 * res_volts; 594 //return 1000 * res_volts;
904 return ((uint32_t)1100*1024*num) / sum; 595 return ((uint32_t)1100*1024*num) / sum;
905 } 596 }
906 597
907 static void 598 static void
908 do_fridge()
909 {
910 struct epoch_ticks now;
911 get_epoch_ticks(&now);
912 uint32_t off_time = now.ticks - fridge_off_clock.ticks;
913 bool wort_valid = last_wort != DS18X20_INVALID_DECICELSIUS;
914 bool fridge_valid = last_fridge != DS18X20_INVALID_DECICELSIUS;
915
916 int16_t wort_max = fridge_setpoint + fridge_difference;
917 int16_t wort_min = fridge_setpoint;
918
919 // the fridge min/max only apply if the wort sensor is broken
920 int16_t fridge_min = fridge_setpoint - FRIDGE_AIR_MIN_RANGE;
921 int16_t fridge_max = fridge_setpoint + FRIDGE_AIR_MAX_RANGE;
922
923 uint8_t fridge_on = PORT_FRIDGE & _BV(PIN_FRIDGE);
924 printf_P(PSTR("last_wort %hd (%hd, %hd), last_fridge %hd (%hd, %hd), setpoint %hd, diff %hd, fridge_on %hhu\n"),
925 last_wort, wort_min, wort_max,
926 last_fridge, fridge_min, fridge_max,
927 fridge_setpoint, fridge_difference, fridge_on);
928
929 if (off_time < fridge_delay)
930 {
931 printf_P(PSTR("waiting for fridge delay current %hu, wait %hu\n"),
932 off_time, fridge_delay);
933 return;
934 }
935
936 // handle failure of the wort sensor. if it is a short (intermittent?)
937 // failure we wait until it has been broken for a period of time
938 // (WORT_INVALID_TIME) before doing anything.
939 if (wort_valid)
940 {
941 wort_valid_clock = now;
942 }
943 else
944 {
945 printf_P(PSTR("wort sensor is invalid\n"));
946 uint32_t invalid_time = now.ticks - wort_valid_clock.ticks;
947 if (invalid_time < WORT_INVALID_TIME)
948 {
949 printf("only been invalid for %ld, waiting\n", invalid_time);
950 return;
951 }
952 }
953
954 if (!fridge_valid)
955 {
956 printf_P(PSTR("fridge sensor is invalid\n"));
957 }
958
959 if (fridge_on)
960 {
961 bool turn_off = false;
962 uint16_t on_time = now.ticks - fridge_on_clock.ticks;
963
964 uint16_t overshoot = 0;
965 if (on_time > overshoot_delay)
966 {
967 overshoot = overshoot_factor * MIN(OVERSHOOT_MAX_DIV, on_time) / OVERSHOOT_MAX_DIV;
968 }
969
970 printf_P(PSTR("on_time %hu, overshoot %hu\n"), on_time, overshoot);
971
972 // wort has cooled enough. will probably cool a bit more by itself
973 if (wort_valid)
974 {
975 if ((last_wort - overshoot) < fridge_setpoint)
976 {
977 printf_P(PSTR("wort has cooled enough, overshoot %hu on_time %hu\n"), overshoot, on_time);
978 turn_off = true;
979 }
980 }
981 else
982 {
983 if (fridge_valid && last_fridge < fridge_min)
984 {
985 printf_P(PSTR("fridge off fallback\n"));
986 turn_off = true;
987 }
988 }
989
990 if (turn_off)
991 {
992 // too cold, turn off
993 printf_P(PSTR("Turning fridge off\n"));
994 PORT_FRIDGE &= ~_BV(PIN_FRIDGE);
995 fridge_off_clock = now;
996 }
997 }
998 else
999 {
1000 bool turn_on = false;
1001
1002 if (wort_valid)
1003 {
1004 if (last_wort >= wort_max)
1005 {
1006 printf_P(PSTR("wort is too hot\n"));
1007 turn_on = true;
1008 }
1009 }
1010 else
1011 {
1012 if (fridge_valid && last_fridge >= fridge_max)
1013 {
1014 printf_P(PSTR("fridge on fallback\n"));
1015 turn_on = true;
1016 }
1017 }
1018
1019 if (turn_on)
1020 {
1021 // too hot, turn on
1022 printf_P(PSTR("Turning fridge on\n"));
1023 PORT_FRIDGE |= _BV(PIN_FRIDGE);
1024 fridge_on_clock = now;
1025 }
1026 }
1027 }
1028
1029 static void
1030 do_measurement()
1031 {
1032 blink();
1033
1034 /* Take the timer here since deep_sleep() below could take 6 seconds */
1035 get_epoch_ticks(&last_measurement_clock);
1036 if (n_measurements == 0)
1037 {
1038 first_measurement_clock = last_measurement_clock;
1039 }
1040
1041 simple_ds18b20_start_meas(NULL);
1042 _delay_ms(DS18B20_TCONV_12BIT);
1043
1044 if (n_measurements == max_measurements)
1045 {
1046 n_measurements = 0;
1047 }
1048
1049 for (uint8_t s = 0; s < n_sensors; s++)
1050 {
1051 uint16_t reading;
1052 uint8_t ret = simple_ds18b20_read_raw(sensor_id[s], &reading);
1053 if (ret != DS18X20_OK)
1054 {
1055 reading = VALUE_BROKEN;
1056 }
1057 set_measurement(s, n_measurements, reading);
1058
1059 if (memcmp(sensor_id[s], fridge_id, sizeof(fridge_id)) == 0)
1060 {
1061 last_fridge = ds18b20_raw16_to_decicelsius(reading);
1062 }
1063 if (memcmp(sensor_id[s], wort_id, sizeof(wort_id)) == 0)
1064 {
1065 last_wort = ds18b20_raw16_to_decicelsius(reading);
1066 }
1067 }
1068
1069 n_measurements++;
1070 }
1071
1072 static void
1073 do_comms() 599 do_comms()
1074 { 600 {
1075 get_epoch_ticks(&last_comms_clock);
1076
1077 // turn on bluetooth
1078 set_aux_power(1);
1079 // avoid receiving rubbish, perhaps 601 // avoid receiving rubbish, perhaps
1080 _delay_ms(50);
1081 uart_on(); 602 uart_on();
1082 603
1083 // write sd card here? same 3.3v regulator... 604 // write sd card here? same 3.3v regulator...
1084 605
1085 for (comms_timeout = wake_secs; 606 while (1)
1086 comms_timeout > 0 || stay_awake; 607 {
1087 ) 608 wdt_reset();
1088 {
1089 if (need_measurement)
1090 {
1091 need_measurement = 0;
1092 do_measurement();
1093 do_fridge();
1094 continue;
1095 }
1096
1097 if (have_cmd) 609 if (have_cmd)
1098 { 610 {
1099 have_cmd = 0; 611 have_cmd = 0;
1100 read_handler(); 612 read_handler();
1101 continue; 613 continue;
1102 } 614 }
1103 615
1104 // wait for commands from the master 616 // wait for commands from the master
1105 idle_sleep(); 617 idle_sleep();
1106 } 618 }
1107
1108 uart_off();
1109 // in case bluetooth takes time to flush
1110 _delay_ms(100);
1111 set_aux_power(0);
1112 } 619 }
1113 620
1114 static void 621 static void
1115 blink() 622 blink()
1116 { 623 {
1139 int main(void) 646 int main(void)
1140 { 647 {
1141 setup_chip(); 648 setup_chip();
1142 blink(); 649 blink();
1143 650
1144 set_aux_power(0);
1145
1146 stdout = &mystdout; 651 stdout = &mystdout;
1147 uart_on(); 652 uart_on();
1148 653
1149 printf(PSTR("Started.\n")); 654 printf(PSTR("Started.\n"));
1150 655
1151 load_params(); 656 load_params();
1152 657
1153 init_sensors();
1154
1155 uart_off();
1156
1157 // turn off everything except timer2
1158 PRR = _BV(PRTWI) | _BV(PRTIM0) | _BV(PRTIM1) | _BV(PRSPI) | _BV(PRUSART0) | _BV(PRADC);
1159
1160 setup_tick_counter(); 658 setup_tick_counter();
1161 659
1162 sei(); 660 sei();
1163 661
1164 need_comms = 1; 662 // doesn't return
1165 need_measurement = 1; 663 do_comms();
1166
1167 stay_awake = 1;
1168
1169 for(;;)
1170 {
1171 if (button_pressed)
1172 {
1173 // debounce
1174 _delay_ms(200);
1175 need_comms = 1;
1176 comms_timeout = wake_secs;
1177 button_pressed = 0;
1178 continue;
1179 }
1180
1181 if (need_comms)
1182 {
1183 need_comms = 0;
1184 do_comms();
1185 continue;
1186 }
1187
1188 if (need_measurement)
1189 {
1190 need_measurement = 0;
1191 do_measurement();
1192 do_fridge();
1193 continue;
1194 }
1195
1196 deep_sleep();
1197 }
1198 664
1199 return 0; /* never reached */ 665 return 0; /* never reached */
1200 } 666 }