Mercurial > pihelp
comparison main.c @ 1:e23c1b6f6080
few more changes
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 03 Jun 2013 19:17:36 +0800 |
parents | 8705acff2494 |
children | 0a6cbbb8c2b7 |
comparison
equal
deleted
inserted
replaced
0:8705acff2494 | 1:e23c1b6f6080 |
---|---|
11 #include <avr/eeprom.h> | 11 #include <avr/eeprom.h> |
12 #include <avr/wdt.h> | 12 #include <avr/wdt.h> |
13 #include <util/atomic.h> | 13 #include <util/atomic.h> |
14 #include <util/crc16.h> | 14 #include <util/crc16.h> |
15 | 15 |
16 #include "simple_ds18b20.h" | 16 //#include "simple_ds18b20.h" |
17 #include "onewire.h" | 17 //#include "onewire.h" |
18 | |
19 // configuration params | |
20 // - measurement interval | |
21 // - transmit interval | |
22 // - bluetooth params | |
23 // - number of sensors (and range?) | |
24 | 18 |
25 #define MIN(X,Y) ((X) < (Y) ? (X) : (Y)) | 19 #define MIN(X,Y) ((X) < (Y) ? (X) : (Y)) |
26 #define MAX(X,Y) ((X) > (Y) ? (X) : (Y)) | 20 #define MAX(X,Y) ((X) > (Y) ? (X) : (Y)) |
27 | 21 |
28 // TICK should be 8 or less (8 untested). all timers need | 22 // TICK should be 8 or less (8 untested). all timers need |
29 // to be a multiple. | 23 // to be a multiple. |
30 | 24 |
31 #define TICK 6 | 25 #define TICK 1 |
32 // we have 1024 prescaler, 32768 crystal. | 26 // we have 1024 prescaler, 32768 crystal. |
33 #define SLEEP_COMPARE (32*TICK-1) | 27 #define SLEEP_COMPARE (32*TICK-1) |
28 | |
29 #define KEYLEN 20 | |
34 | 30 |
35 #define VALUE_NOSENSOR 0x07D0 // 125 degrees | 31 #define VALUE_NOSENSOR 0x07D0 // 125 degrees |
36 #define VALUE_BROKEN 0x07D1 // 125.0625 | 32 #define VALUE_BROKEN 0x07D1 // 125.0625 |
37 | 33 |
38 #define OVERSHOOT_MAX_DIV 1800.0 // 30 mins | 34 #define OVERSHOOT_MAX_DIV 1800.0 // 30 mins |
75 uint32_t ticks; | 71 uint32_t ticks; |
76 // remainder | 72 // remainder |
77 uint8_t rem; | 73 uint8_t rem; |
78 }; | 74 }; |
79 | 75 |
80 // eeprom-settable parameters. all timeouts should | 76 // eeprom-settable parameters, default values defined here. |
81 // be a multiple of TICK (6 seconds probably) | 77 // all timeouts should be a multiple of TICK |
82 static uint16_t measure_wake = 61; // not a divisor of comms_wake | 78 static uint32_t watchdog_long_limit = 60*60*24; |
83 static uint16_t comms_wake = 600; | 79 static uint32_t watchdog_short_limit = 0; |
84 static uint8_t wake_secs = 30; | 80 static uint32_t newboot_limit = 60*10; |
85 // decidegrees | 81 |
86 static int16_t fridge_setpoint = 180; // 18.0ºC | 82 // avr proves itself |
87 static uint16_t fridge_difference = 3; // 0.3ºC | 83 static uint8_t avr_keys[NKEYS][KEYLEN] = {0}; |
88 static uint16_t fridge_delay = 600; // seconds | 84 |
89 | |
90 static uint16_t overshoot_delay = 720; // 12 mins | |
91 static uint8_t overshoot_factor = 10; // 1.0ºC | |
92 | 85 |
93 // ---- Atomic guards required accessing these variables | 86 // ---- Atomic guards required accessing these variables |
94 // clock_epoch in seconds | 87 // clock_epoch in seconds |
95 static uint32_t clock_epoch; | 88 static uint32_t clock_epoch; |
96 static uint16_t comms_count; | 89 // watchdog counts up |
97 static uint16_t measure_count; | 90 static uint32_t watchdog_long_count; |
91 static uint32_t watchdog_short_count; | |
92 // newboot counts down - it's a one-shot | |
93 static uint32_t newboot_count; | |
98 // ---- End atomic guards required | 94 // ---- End atomic guards required |
99 | 95 |
100 static uint16_t n_measurements; | |
101 | |
102 // calculated at startup as TOTAL_MEASUREMENTS/n_sensors | |
103 static uint16_t max_measurements; | |
104 | |
105 static uint16_t measurements[TOTAL_MEASUREMENTS]; | |
106 | |
107 static struct epoch_ticks first_measurement_clock; | |
108 // last_measurement_clock is redundant but checks that we're not missing | |
109 // samples | |
110 static struct epoch_ticks last_measurement_clock; | |
111 static struct epoch_ticks last_comms_clock; | |
112 | |
113 // boolean flags | 96 // boolean flags |
114 static uint8_t need_measurement; | 97 static uint8_t watchdog_long_hit; |
115 static uint8_t need_comms; | 98 static uint8_t watchdog_short_hit; |
116 static uint8_t uart_enabled; | 99 static uint8_t newboot_hit; |
117 static uint8_t stay_awake; | |
118 static uint8_t button_pressed; | |
119 | |
120 // counts down from WAKE_SECS to 0, goes to deep sleep when hits 0 | |
121 static uint8_t comms_timeout; | |
122 | 100 |
123 static uint8_t readpos; | 101 static uint8_t readpos; |
124 static char readbuf[30]; | 102 static char readbuf[50]; |
125 static uint8_t have_cmd; | 103 static uint8_t have_cmd; |
126 | |
127 static uint8_t n_sensors; | |
128 static uint8_t sensor_id[MAX_SENSORS][ID_LEN]; | |
129 | |
130 static int16_t last_fridge = DS18X20_INVALID_DECICELSIUS; | |
131 static int16_t last_wort = DS18X20_INVALID_DECICELSIUS; | |
132 static struct epoch_ticks fridge_off_clock = {0}; | |
133 static struct epoch_ticks fridge_on_clock = {0}; | |
134 static struct epoch_ticks wort_valid_clock = {0}; | |
135 | 104 |
136 int uart_putchar(char c, FILE *stream); | 105 int uart_putchar(char c, FILE *stream); |
137 static void long_delay(int ms); | 106 static void long_delay(int ms); |
138 static void blink(); | 107 static void blink(); |
139 static uint16_t adc_vcc(); | 108 static uint16_t adc_vcc(); |
140 | 109 |
141 static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL, | 110 static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL, |
142 _FDEV_SETUP_WRITE); | 111 _FDEV_SETUP_WRITE); |
143 | |
144 static uint16_t crc_out; | |
145 static FILE _crc_stdout = FDEV_SETUP_STREAM(uart_putchar, NULL, | |
146 _FDEV_SETUP_WRITE); | |
147 // convenience | |
148 static FILE *crc_stdout = &_crc_stdout; | |
149 | |
150 | 112 |
151 // thanks to http://projectgus.com/2010/07/eeprom-access-with-arduino/ | 113 // thanks to http://projectgus.com/2010/07/eeprom-access-with-arduino/ |
152 #define eeprom_read_to(dst_p, eeprom_field, dst_size) eeprom_read_block((dst_p), (void *)offsetof(struct __eeprom_data, eeprom_field), (dst_size)) | 114 #define eeprom_read_to(dst_p, eeprom_field, dst_size) eeprom_read_block((dst_p), (void *)offsetof(struct __eeprom_data, eeprom_field), (dst_size)) |
153 #define eeprom_read(dst, eeprom_field) eeprom_read_to((&dst), eeprom_field, sizeof(dst)) | 115 #define eeprom_read(dst, eeprom_field) eeprom_read_to((&dst), eeprom_field, sizeof(dst)) |
154 #define eeprom_write_from(src_p, eeprom_field, src_size) eeprom_write_block((src_p), (void *)offsetof(struct __eeprom_data, eeprom_field), (src_size)) | 116 #define eeprom_write_from(src_p, eeprom_field, src_size) eeprom_write_block((src_p), (void *)offsetof(struct __eeprom_data, eeprom_field), (src_size)) |
155 #define eeprom_write(src, eeprom_field) { eeprom_write_from(&src, eeprom_field, sizeof(src)); } | 117 #define eeprom_write(src, eeprom_field) { eeprom_write_from(&src, eeprom_field, sizeof(src)); } |
156 | 118 |
157 #define EXPECT_MAGIC 0x67c9 | 119 #define EXPECT_MAGIC 0xdf83 |
158 | 120 |
159 struct __attribute__ ((__packed__)) __eeprom_data { | 121 struct __attribute__ ((__packed__)) __eeprom_data { |
160 uint16_t measure_wake; | 122 uint32_t watchdog_long_limit; |
161 uint16_t comms_wake; | 123 uint32_t watchdog_short_limit; |
162 uint8_t wake_secs; | 124 uint32_t newboot_limit; |
163 | 125 |
164 int16_t fridge_setpoint; // decidegrees | 126 uint8_t avr_key[NKEYS][KEYLEN]; |
165 uint16_t fridge_difference; // decidegrees | |
166 uint16_t fridge_delay; | |
167 | |
168 uint16_t overshoot_delay; | |
169 uint8_t overshoot_factor; // decidegrees | |
170 | |
171 #if 0 | |
172 static uint8_t wort_id[ID_LEN]; | |
173 static uint8_t fridge_id[ID_LEN]; | |
174 #endif | |
175 | 127 |
176 uint16_t magic; | 128 uint16_t magic; |
177 }; | 129 }; |
178 | 130 |
179 static const uint8_t fridge_id[ID_LEN] = | |
180 {0x28,0xCE,0xB2,0x1A,0x03,0x00,0x00,0x99}; | |
181 static const uint8_t wort_id[ID_LEN] = | |
182 {0x28,0x49,0xBC,0x1A,0x03,0x00,0x00,0x54}; | |
183 | |
184 static void deep_sleep(); | 131 static void deep_sleep(); |
185 | |
186 // 0 or 1 | |
187 static uint8_t | |
188 is_fridge_on() | |
189 { | |
190 if (PORT_FRIDGE & _BV(PIN_FRIDGE)) | |
191 { | |
192 return 1; | |
193 } | |
194 else | |
195 { | |
196 return 0; | |
197 } | |
198 } | |
199 | 132 |
200 // Very first setup | 133 // Very first setup |
201 static void | 134 static void |
202 setup_chip() | 135 setup_chip() |
203 { | 136 { |
207 wdt_reset(); | 140 wdt_reset(); |
208 MCUSR &= ~_BV(WDRF); | 141 MCUSR &= ~_BV(WDRF); |
209 WDTCSR |= _BV(WDCE) | _BV(WDE); | 142 WDTCSR |= _BV(WDCE) | _BV(WDE); |
210 WDTCSR = 0; | 143 WDTCSR = 0; |
211 | 144 |
145 // set to 8S, in case sha1 is slow etc. | |
146 wdt_enable(WDTO_8S); | |
147 | |
212 // Set clock to 2mhz | 148 // Set clock to 2mhz |
213 CLKPR = _BV(CLKPCE); | 149 CLKPR = _BV(CLKPCE); |
214 // divide by 4 | 150 // divide by 4 |
215 CLKPR = _BV(CLKPS1); | 151 CLKPR = _BV(CLKPS1); |
216 | 152 |
217 // enable pullups | 153 // enable pullups |
154 // XXX matt pihelp | |
218 PORTB = 0xff; // XXX change when using SPI | 155 PORTB = 0xff; // XXX change when using SPI |
219 PORTD = 0xff; | 156 PORTD = 0xff; |
220 PORTC = 0xff; | 157 PORTC = 0xff; |
221 | 158 |
222 // 3.3v power for bluetooth and SD | 159 // 3.3v power for bluetooth and SD |
223 DDR_LED |= _BV(PIN_LED); | 160 DDR_LED |= _BV(PIN_LED); |
224 DDR_SHDN |= _BV(PIN_SHDN); | |
225 | |
226 PORT_FRIDGE &= ~_BV(PIN_FRIDGE); | |
227 DDR_FRIDGE |= _BV(PIN_FRIDGE); | |
228 | 161 |
229 // set pullup | 162 // set pullup |
230 PORTD |= _BV(PD2); | 163 PORTD |= _BV(PD2); |
231 // INT0 setup | 164 // INT0 setup |
232 EICRA = (1<<ISC01); // falling edge - data sheet says it won't work? | 165 EICRA = (1<<ISC01); // falling edge - data sheet says it won't work? |
241 | 174 |
242 sei(); | 175 sei(); |
243 } | 176 } |
244 | 177 |
245 static void | 178 static void |
246 set_aux_power(uint8_t on) | |
247 { | |
248 if (on) | |
249 { | |
250 PORT_SHDN &= ~_BV(PIN_SHDN); | |
251 } | |
252 else | |
253 { | |
254 PORT_SHDN |= _BV(PIN_SHDN); | |
255 } | |
256 } | |
257 | |
258 static void | |
259 get_epoch_ticks(struct epoch_ticks *t) | 179 get_epoch_ticks(struct epoch_ticks *t) |
260 { | 180 { |
261 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | 181 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) |
262 { | 182 { |
263 t->ticks = clock_epoch; | 183 t->ticks = clock_epoch; |
264 t->rem = TCNT2; | 184 t->rem = TCNT2; |
265 } | 185 } |
266 } | |
267 | |
268 static void | |
269 set_measurement(uint8_t sensor, uint16_t measurement, uint16_t reading) | |
270 { | |
271 measurements[sensor*max_measurements + measurement] = reading; | |
272 } | |
273 | |
274 static uint16_t | |
275 get_measurement(uint8_t sensor, uint16_t measurement) | |
276 { | |
277 return measurements[sensor*max_measurements + measurement]; | |
278 } | 186 } |
279 | 187 |
280 static void | 188 static void |
281 setup_tick_counter() | 189 setup_tick_counter() |
282 { | 190 { |
355 } | 263 } |
356 return (unsigned char)c; | 264 return (unsigned char)c; |
357 } | 265 } |
358 | 266 |
359 static void | 267 static void |
360 cmd_fetch() | |
361 { | |
362 crc_out = 0; | |
363 | |
364 fprintf_P(crc_stdout, PSTR("START\n")); | |
365 { | |
366 struct epoch_ticks now; | |
367 get_epoch_ticks(&now); | |
368 fprintf_P(crc_stdout, PSTR("now=%lu\n"), now.ticks); | |
369 fprintf_P(crc_stdout, PSTR("now_rem=%hhu\n"), now.rem); | |
370 } | |
371 fprintf_P(crc_stdout, PSTR("time_step=%hu\n"), measure_wake); | |
372 fprintf_P(crc_stdout, PSTR("first_time=%lu\n"), first_measurement_clock.ticks); | |
373 fprintf_P(crc_stdout, PSTR("first_time_rem=%hhu\n"), first_measurement_clock.rem); | |
374 fprintf_P(crc_stdout, PSTR("last_time=%lu\n"), last_measurement_clock.ticks); | |
375 fprintf_P(crc_stdout, PSTR("last_time_rem=%hhu\n"), last_measurement_clock.rem); | |
376 fprintf_P(crc_stdout, PSTR("comms_time=%lu\n"), last_comms_clock.ticks); | |
377 fprintf_P(crc_stdout, PSTR("comms_time_rem=%hhu\n"), last_comms_clock.rem); | |
378 fprintf_P(crc_stdout, PSTR("voltage=%hu\n"), adc_vcc()); | |
379 fprintf_P(crc_stdout, PSTR("measure=%hu\n"), measure_wake); | |
380 fprintf_P(crc_stdout, PSTR("comms=%hu\n"), comms_wake); | |
381 fprintf_P(crc_stdout, PSTR("wake=%hhu\n"), wake_secs); | |
382 fprintf_P(crc_stdout, PSTR("fridge=%.1f\n"), fridge_setpoint/10.0); | |
383 fprintf_P(crc_stdout, PSTR("fridge_diff=%.1f\n"), fridge_difference/10.0); | |
384 fprintf_P(crc_stdout, PSTR("fridge_delay=%hu\n"), fridge_delay); | |
385 fprintf_P(crc_stdout, PSTR("overshoot_factor=%.1f\n"), overshoot_factor/10.0); | |
386 fprintf_P(crc_stdout, PSTR("overshoot_delay=%hu\n"), overshoot_delay); | |
387 fprintf_P(crc_stdout, PSTR("fridge_status=%hhu\n"), is_fridge_on()); | |
388 fprintf_P(crc_stdout, PSTR("fridge_last_on=%lu\n"), fridge_on_clock.ticks); | |
389 fprintf_P(crc_stdout, PSTR("fridge_last_off=%lu\n"), fridge_off_clock.ticks); | |
390 fprintf_P(crc_stdout, PSTR("last_fridge=%hu\n"), last_fridge); | |
391 fprintf_P(crc_stdout, PSTR("last_wort=%hu\n"), last_wort); | |
392 fprintf_P(crc_stdout, PSTR("tick_secs=%d\n"), TICK); | |
393 fprintf_P(crc_stdout, PSTR("tick_wake=%d\n"), SLEEP_COMPARE); | |
394 fprintf_P(crc_stdout, PSTR("maxsens=%hhu\n"), MAX_SENSORS); | |
395 fprintf_P(crc_stdout, PSTR("totalmeas=%hu\n"), TOTAL_MEASUREMENTS); | |
396 fprintf_P(crc_stdout, PSTR("sensors=%hhu\n"), n_sensors); | |
397 for (uint8_t s = 0; s < n_sensors; s++) | |
398 { | |
399 fprintf_P(crc_stdout, PSTR("sensor_id%hhu="), s); | |
400 printhex(sensor_id[s], ID_LEN, crc_stdout); | |
401 fputc('\n', crc_stdout); | |
402 } | |
403 fprintf_P(crc_stdout, PSTR("measurements=%hu\n"), n_measurements); | |
404 for (uint16_t n = 0; n < n_measurements; n++) | |
405 { | |
406 fprintf_P(crc_stdout, PSTR("meas%hu="), n); | |
407 for (uint8_t s = 0; s < n_sensors; s++) | |
408 { | |
409 fprintf_P(crc_stdout, PSTR(" %04hx"), get_measurement(s, n)); | |
410 } | |
411 fputc('\n', crc_stdout); | |
412 } | |
413 fprintf_P(crc_stdout, PSTR("END\n")); | |
414 fprintf_P(stdout, PSTR("CRC=%hu\n"), crc_out); | |
415 } | |
416 | |
417 static void | |
418 cmd_clear() | |
419 { | |
420 n_measurements = 0; | |
421 printf_P(PSTR("cleared\n")); | |
422 } | |
423 | |
424 static void | |
425 cmd_btoff() | |
426 { | |
427 uint8_t rem; | |
428 uint16_t count_copy; | |
429 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | |
430 { | |
431 count_copy = comms_count; | |
432 rem = TCNT2; | |
433 } | |
434 printf_P(PSTR("next_wake=%hu,"), comms_wake-count_copy); | |
435 printf_P(PSTR("rem=%hhu,"), rem); | |
436 printf_P(PSTR("tick_secs=%hhu,"), TICK); | |
437 printf_P(PSTR("tick_wake=%hhu\n"), SLEEP_COMPARE); | |
438 _delay_ms(100); | |
439 comms_timeout = 0; | |
440 stay_awake = 0; | |
441 } | |
442 | |
443 static void | |
444 cmd_reset() | 268 cmd_reset() |
445 { | 269 { |
446 printf_P(PSTR("reset\n")); | 270 printf_P(PSTR("reset\n")); |
447 _delay_ms(100); | 271 _delay_ms(100); |
448 cli(); // disable interrupts | 272 cli(); // disable interrupts |
449 wdt_enable(WDTO_15MS); // enable watchdog | 273 wdt_enable(WDTO_15MS); // enable watchdog |
450 while(1); // wait for watchdog to reset processor | 274 while(1); // wait for watchdog to reset processor |
451 } | 275 } |
452 | 276 |
453 static void | 277 |
454 cmd_measure() | 278 |
455 { | 279 static void |
456 printf_P(PSTR("measuring\n")); | 280 cmd_get_params() |
457 need_measurement = 1; | 281 { |
458 } | 282 uint32_t cur_watchdog_long, cur_watchdog_short, cur_newboot; |
459 | 283 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) |
460 static void | 284 { |
461 cmd_sensors() | 285 cur_watchdog_long = watchdot_long_count; |
462 { | 286 cur_watchdog_short = watchdot_short_count; |
463 uint8_t ret = simple_ds18b20_start_meas(NULL); | 287 cur_newboot = newboot_limit_count; |
464 printf_P(PSTR("All sensors, ret %hhu, waiting...\n"), ret); | 288 } |
465 long_delay(DS18B20_TCONV_12BIT); | 289 |
466 simple_ds18b20_read_all(); | 290 printf_P(PSTR("limit (count) : watchdog_long %lu (%lu) watchdog_short %lu (%lu) newboot %lu (%lu)\n"), |
467 } | 291 watchdog_long_limit, |
468 | 292 watchdog_long_count, |
469 static void | 293 watchdog_short_limit, |
470 init_sensors() | 294 watchdog_short_count, |
471 { | 295 newboot_limit, |
472 uint8_t id[OW_ROMCODE_SIZE]; | 296 newboot_count); |
473 printf_P(PSTR("init sensors\n")); | 297 } |
474 ow_reset(); | 298 |
475 for( uint8_t diff = OW_SEARCH_FIRST; diff != OW_LAST_DEVICE; ) | 299 static void |
476 { | 300 cmd_set_params(const char *params) |
477 diff = ow_rom_search( diff, &id[0] ); | 301 { |
478 if( diff == OW_PRESENCE_ERR ) { | 302 uint32_t new_watchdog_long_limit; |
479 printf_P( PSTR("No Sensor found\r") ); | 303 uint32_t new_watchdog_short_limit; |
480 return; | 304 uint32_t new_newboot_limit; |
481 } | 305 |
482 | 306 int ret = sscanf_P(params, PSTR("%lu %lu %lu"), |
483 if( diff == OW_DATA_ERR ) { | 307 &new_watchdog_long_limit, |
484 printf_P( PSTR("Bus Error\r") ); | 308 &new_watchdog_short_limit, |
485 return; | 309 &new_newboot_limit); |
486 } | 310 |
487 | 311 |
488 if (n_sensors < MAX_SENSORS) | 312 if (ret != 3) |
489 { | 313 { |
490 memcpy(sensor_id[n_sensors], id, ID_LEN); | 314 printf_P(PSTR("Bad values\n")); |
491 printf_P(PSTR("Added sensor %hhu : "), n_sensors); | 315 } |
492 printhex(id, ID_LEN, stdout); | 316 else |
493 putchar('\n'); | 317 { |
494 n_sensors++; | 318 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) |
495 } | 319 { |
496 else | 320 eeprom_write(new_watchdog_long_limit, watchdog_long_limit); |
497 { | 321 eeprom_write(new_watchdog_short_limit, watchdog_short_limit); |
498 printf_P(PSTR("Too many sensors\n")); | 322 eeprom_write(new_newboot_limit, newboot_limit); |
499 } | 323 uint16_t magic = EXPECT_MAGIC; |
500 } | 324 eeprom_write(magic, magic); |
501 | 325 } |
502 max_measurements = TOTAL_MEASUREMENTS / n_sensors; | 326 printf_P(PSTR("set_params for next boot\n")); |
327 printf_P(PSTR("watchdog_long %lu watchdog_short %lu newboot %lu\n"), | |
328 new_watchdog_long_limit, | |
329 new_watchdog_short_limit, | |
330 new_newboot_limit); | |
331 | |
332 } | |
333 } | |
334 | |
335 uint8_t from_hex(char c) | |
336 { | |
337 if (c >= '0' && c <= '9') { | |
338 return c-'0'; | |
339 } | |
340 if (c >= 'a' && c <= 'f') { | |
341 return c-'a' + 0xa; | |
342 } | |
343 if (c >= 'A' && c <= 'F') { | |
344 return c-'A' + 0xa; | |
345 } | |
346 return 0; | |
347 } | |
348 | |
349 static void | |
350 cmd_set_avr_key(const char *params) | |
351 { | |
352 // "N HEXKEY" | |
353 if (strlen(params)) != KEYLEN*2+2) { | |
354 printf_P(PSTR("Wrong length key\n")); | |
355 return; | |
356 } | |
357 | |
358 uint8_t new_key[KEYLEN]; | |
359 for (int i = 0, p = 0; i < KEYLEN; i++, p += 2) | |
360 { | |
361 new_key[i] = (fromhex(params[p]) << 4) | fromhex(params[p+1]); | |
362 } | |
503 } | 363 } |
504 | 364 |
505 static void | 365 static void |
506 load_params() | 366 load_params() |
507 { | 367 { |
508 uint16_t magic; | 368 uint16_t magic; |
509 eeprom_read(magic, magic); | 369 eeprom_read(magic, magic); |
510 if (magic == EXPECT_MAGIC) | 370 if (magic == EXPECT_MAGIC) |
511 { | 371 { |
512 eeprom_read(measure_wake, measure_wake); | 372 eeprom_read(watchdog_long_limit, watchdog_long_limit); |
513 eeprom_read(comms_wake, comms_wake); | 373 eeprom_read(watchdog_short_limit, watchdog_short_limit); |
514 eeprom_read(wake_secs, wake_secs); | 374 eeprom_read(netboot_limit); |
515 eeprom_read(fridge_setpoint, fridge_setpoint); | 375 eeprom_read(avr_key); |
516 eeprom_read(fridge_difference, fridge_difference); | 376 } |
517 eeprom_read(fridge_delay, fridge_delay); | |
518 eeprom_read(overshoot_delay, overshoot_delay); | |
519 eeprom_read(overshoot_factor, overshoot_factor); | |
520 } | |
521 } | |
522 | |
523 static void | |
524 cmd_get_params() | |
525 { | |
526 printf_P(PSTR("measure %hu\n"), measure_wake); | |
527 printf_P(PSTR("comms %hu\n"), comms_wake); | |
528 printf_P(PSTR("wake %hhu\n"), wake_secs); | |
529 printf_P(PSTR("tick %d\n"), TICK); | |
530 printf_P(PSTR("fridge %.1fº\n"), fridge_setpoint / 10.0f); | |
531 printf_P(PSTR("fridge difference %.1fº\n"), fridge_difference / 10.0f); | |
532 printf_P(PSTR("fridge_delay %hu\n"), fridge_delay); | |
533 printf_P(PSTR("overshoot factor %.1fº\n"), overshoot_factor / 10.0f); | |
534 printf_P(PSTR("overshoot delay %hu\n"), overshoot_delay); | |
535 printf_P(PSTR("sensors %hhu (%hhu)\n"), | |
536 n_sensors, MAX_SENSORS); | |
537 printf_P(PSTR("meas %hu (%hu)\n"), | |
538 max_measurements, TOTAL_MEASUREMENTS); | |
539 } | |
540 | |
541 static void | |
542 cmd_set_params(const char *params) | |
543 { | |
544 uint16_t new_measure_wake; | |
545 uint16_t new_comms_wake; | |
546 uint8_t new_wake_secs; | |
547 int ret = sscanf_P(params, PSTR("%hu %hu %hhu"), | |
548 &new_measure_wake, &new_comms_wake, &new_wake_secs); | |
549 | |
550 if (ret != 3) | |
551 { | |
552 printf_P(PSTR("Bad values\n")); | |
553 } | |
554 else | |
555 { | |
556 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | |
557 { | |
558 eeprom_write(new_measure_wake, measure_wake); | |
559 eeprom_write(new_comms_wake, comms_wake); | |
560 eeprom_write(new_wake_secs, wake_secs); | |
561 uint16_t magic = EXPECT_MAGIC; | |
562 eeprom_write(magic, magic); | |
563 } | |
564 printf_P(PSTR("set_params for next boot\n")); | |
565 printf_P(PSTR("measure %hu comms %hu wake %hhu\n"), | |
566 new_measure_wake, new_comms_wake, new_wake_secs); | |
567 } | |
568 } | 377 } |
569 | 378 |
570 // returns true if eeprom was written | 379 // returns true if eeprom was written |
571 static bool | 380 static bool |
572 set_initial_eeprom() | 381 set_initial_eeprom() |
594 | 403 |
595 return true; | 404 return true; |
596 } | 405 } |
597 | 406 |
598 static void | 407 static void |
599 cmd_set_fridge_setpoint(char *params) | |
600 { | |
601 float new_f = atof(params); | |
602 if (new_f < 2 || new_f > 30) | |
603 { | |
604 printf_P(PSTR("Bad fridge value %f\n"), new_f); | |
605 return; | |
606 } | |
607 | |
608 int16_t old_setpoint = fridge_setpoint; | |
609 | |
610 fridge_setpoint = new_f * 10; | |
611 bool written = set_initial_eeprom(); | |
612 if (!written) | |
613 { | |
614 if (old_setpoint != fridge_setpoint) | |
615 { | |
616 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | |
617 { | |
618 eeprom_write(fridge_setpoint, fridge_setpoint); | |
619 } | |
620 } | |
621 } | |
622 printf_P(PSTR("old fridge %.1fº new fridge %.1fº\n"), | |
623 old_setpoint / 10.0f, fridge_setpoint / 10.0f); | |
624 } | |
625 | |
626 static void | |
627 cmd_set_fridge_difference(char *params) | |
628 { | |
629 float new_f = atof(params); | |
630 if (new_f < 0 || new_f > 30) | |
631 { | |
632 printf_P(PSTR("Bad fridge value %f\n"), new_f); | |
633 return; | |
634 } | |
635 | |
636 fridge_difference = new_f * 10; | |
637 bool written = set_initial_eeprom(); | |
638 if (!written) | |
639 { | |
640 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | |
641 { | |
642 eeprom_write(fridge_difference, fridge_difference); | |
643 } | |
644 } | |
645 printf_P(PSTR("new fridge difference %.1fº\n"), fridge_difference / 10.0f); | |
646 } | |
647 | |
648 static void | |
649 cmd_set_fridge_delay(char *params) | |
650 { | |
651 uint16_t new_delay = atoi(params); | |
652 if (new_delay < 5) | |
653 { | |
654 printf_P(PSTR("Bad fridge delay %d\n"), new_delay); | |
655 return; | |
656 } | |
657 | |
658 fridge_delay = new_delay; | |
659 bool written = set_initial_eeprom(); | |
660 if (!written) | |
661 { | |
662 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | |
663 { | |
664 eeprom_write(fridge_delay, fridge_delay); | |
665 } | |
666 } | |
667 printf_P(PSTR("new fridge delay %hu\n"), fridge_delay); | |
668 } | |
669 | |
670 static void | |
671 cmd_set_overshoot_factor(char *params) | |
672 { | |
673 float new_f = atof(params); | |
674 if (new_f <= 0 || new_f > 20) | |
675 { | |
676 printf_P(PSTR("Bad overshoot factor %f\n"), new_f); | |
677 return; | |
678 } | |
679 | |
680 uint8_t old = overshoot_factor; | |
681 | |
682 overshoot_factor = new_f * 10; | |
683 bool written = set_initial_eeprom(); | |
684 if (!written) | |
685 { | |
686 if (old != overshoot_factor) | |
687 { | |
688 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | |
689 { | |
690 eeprom_write(overshoot_factor, overshoot_factor); | |
691 } | |
692 } | |
693 } | |
694 printf_P(PSTR("old factor %.1fº new factor %.1fº\n"), | |
695 old / 10.0f, overshoot_factor / 10.0f); | |
696 } | |
697 | |
698 static void | |
699 cmd_set_overshoot_delay(char *params) | |
700 { | |
701 uint16_t new_delay = atoi(params); | |
702 if (new_delay < 5) | |
703 { | |
704 printf_P(PSTR("Bad overshoot delay %d\n"), new_delay); | |
705 return; | |
706 } | |
707 | |
708 overshoot_delay = new_delay; | |
709 bool written = set_initial_eeprom(); | |
710 if (!written) | |
711 { | |
712 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | |
713 { | |
714 eeprom_write(overshoot_delay, overshoot_delay); | |
715 } | |
716 } | |
717 printf_P(PSTR("new overshoot delay %hu\n"), overshoot_delay); | |
718 } | |
719 | |
720 static void | |
721 cmd_awake() | |
722 { | |
723 stay_awake = 1; | |
724 printf_P(PSTR("awake\n")); | |
725 } | |
726 | |
727 static void | |
728 read_handler() | 408 read_handler() |
729 { | 409 { |
730 if (strcmp_P(readbuf, PSTR("fetch")) == 0) | 410 if (strcmp_P(readbuf, PSTR("fetch")) == 0) |
731 { | 411 { |
732 cmd_fetch(); | 412 cmd_fetch(); |
825 } | 505 } |
826 | 506 |
827 ISR(TIMER2_COMPA_vect) | 507 ISR(TIMER2_COMPA_vect) |
828 { | 508 { |
829 TCNT2 = 0; | 509 TCNT2 = 0; |
830 measure_count += TICK; | |
831 comms_count += TICK; | |
832 | 510 |
833 clock_epoch += TICK; | 511 clock_epoch += TICK; |
834 | 512 |
835 if (comms_timeout != 0) | 513 // watchdogs count up, continuous |
836 { | 514 if (watchdog_long_limit > 0) { |
837 comms_timeout -= TICK; | 515 watchdog_count += TICK; |
838 } | 516 if (watchdog_long_count >= watchdog_long_limit) |
839 | 517 { |
840 if (measure_count >= measure_wake) | 518 watchdog_long_count = 0; |
841 { | 519 watchdog_long_hit = 1; |
842 measure_count = 0; | 520 } |
843 need_measurement = 1; | 521 } |
844 } | 522 |
845 | 523 if (watchdog_short_limit > 0) { |
846 if (comms_count >= comms_wake) | 524 watchdog_count += TICK; |
847 { | 525 if (watchdog_short_count >= watchdog_short_limit) |
848 comms_count = 0; | 526 { |
849 need_comms = 1; | 527 watchdog_short_count = 0; |
850 } | 528 watchdog_short_hit = 1; |
529 } | |
530 } | |
531 | |
532 // newboot counts down, oneshot. | |
533 if (newboot_count > 0) | |
534 { | |
535 newboot_count--; | |
536 if (newboot_count == 0) | |
537 { | |
538 newboot_hit = 1; | |
539 } | |
540 } | |
541 | |
851 } | 542 } |
852 | 543 |
853 static void | 544 static void |
854 deep_sleep() | 545 deep_sleep() |
855 { | 546 { |
903 //return 1000 * res_volts; | 594 //return 1000 * res_volts; |
904 return ((uint32_t)1100*1024*num) / sum; | 595 return ((uint32_t)1100*1024*num) / sum; |
905 } | 596 } |
906 | 597 |
907 static void | 598 static void |
908 do_fridge() | |
909 { | |
910 struct epoch_ticks now; | |
911 get_epoch_ticks(&now); | |
912 uint32_t off_time = now.ticks - fridge_off_clock.ticks; | |
913 bool wort_valid = last_wort != DS18X20_INVALID_DECICELSIUS; | |
914 bool fridge_valid = last_fridge != DS18X20_INVALID_DECICELSIUS; | |
915 | |
916 int16_t wort_max = fridge_setpoint + fridge_difference; | |
917 int16_t wort_min = fridge_setpoint; | |
918 | |
919 // the fridge min/max only apply if the wort sensor is broken | |
920 int16_t fridge_min = fridge_setpoint - FRIDGE_AIR_MIN_RANGE; | |
921 int16_t fridge_max = fridge_setpoint + FRIDGE_AIR_MAX_RANGE; | |
922 | |
923 uint8_t fridge_on = PORT_FRIDGE & _BV(PIN_FRIDGE); | |
924 printf_P(PSTR("last_wort %hd (%hd, %hd), last_fridge %hd (%hd, %hd), setpoint %hd, diff %hd, fridge_on %hhu\n"), | |
925 last_wort, wort_min, wort_max, | |
926 last_fridge, fridge_min, fridge_max, | |
927 fridge_setpoint, fridge_difference, fridge_on); | |
928 | |
929 if (off_time < fridge_delay) | |
930 { | |
931 printf_P(PSTR("waiting for fridge delay current %hu, wait %hu\n"), | |
932 off_time, fridge_delay); | |
933 return; | |
934 } | |
935 | |
936 // handle failure of the wort sensor. if it is a short (intermittent?) | |
937 // failure we wait until it has been broken for a period of time | |
938 // (WORT_INVALID_TIME) before doing anything. | |
939 if (wort_valid) | |
940 { | |
941 wort_valid_clock = now; | |
942 } | |
943 else | |
944 { | |
945 printf_P(PSTR("wort sensor is invalid\n")); | |
946 uint32_t invalid_time = now.ticks - wort_valid_clock.ticks; | |
947 if (invalid_time < WORT_INVALID_TIME) | |
948 { | |
949 printf("only been invalid for %ld, waiting\n", invalid_time); | |
950 return; | |
951 } | |
952 } | |
953 | |
954 if (!fridge_valid) | |
955 { | |
956 printf_P(PSTR("fridge sensor is invalid\n")); | |
957 } | |
958 | |
959 if (fridge_on) | |
960 { | |
961 bool turn_off = false; | |
962 uint16_t on_time = now.ticks - fridge_on_clock.ticks; | |
963 | |
964 uint16_t overshoot = 0; | |
965 if (on_time > overshoot_delay) | |
966 { | |
967 overshoot = overshoot_factor * MIN(OVERSHOOT_MAX_DIV, on_time) / OVERSHOOT_MAX_DIV; | |
968 } | |
969 | |
970 printf_P(PSTR("on_time %hu, overshoot %hu\n"), on_time, overshoot); | |
971 | |
972 // wort has cooled enough. will probably cool a bit more by itself | |
973 if (wort_valid) | |
974 { | |
975 if ((last_wort - overshoot) < fridge_setpoint) | |
976 { | |
977 printf_P(PSTR("wort has cooled enough, overshoot %hu on_time %hu\n"), overshoot, on_time); | |
978 turn_off = true; | |
979 } | |
980 } | |
981 else | |
982 { | |
983 if (fridge_valid && last_fridge < fridge_min) | |
984 { | |
985 printf_P(PSTR("fridge off fallback\n")); | |
986 turn_off = true; | |
987 } | |
988 } | |
989 | |
990 if (turn_off) | |
991 { | |
992 // too cold, turn off | |
993 printf_P(PSTR("Turning fridge off\n")); | |
994 PORT_FRIDGE &= ~_BV(PIN_FRIDGE); | |
995 fridge_off_clock = now; | |
996 } | |
997 } | |
998 else | |
999 { | |
1000 bool turn_on = false; | |
1001 | |
1002 if (wort_valid) | |
1003 { | |
1004 if (last_wort >= wort_max) | |
1005 { | |
1006 printf_P(PSTR("wort is too hot\n")); | |
1007 turn_on = true; | |
1008 } | |
1009 } | |
1010 else | |
1011 { | |
1012 if (fridge_valid && last_fridge >= fridge_max) | |
1013 { | |
1014 printf_P(PSTR("fridge on fallback\n")); | |
1015 turn_on = true; | |
1016 } | |
1017 } | |
1018 | |
1019 if (turn_on) | |
1020 { | |
1021 // too hot, turn on | |
1022 printf_P(PSTR("Turning fridge on\n")); | |
1023 PORT_FRIDGE |= _BV(PIN_FRIDGE); | |
1024 fridge_on_clock = now; | |
1025 } | |
1026 } | |
1027 } | |
1028 | |
1029 static void | |
1030 do_measurement() | |
1031 { | |
1032 blink(); | |
1033 | |
1034 /* Take the timer here since deep_sleep() below could take 6 seconds */ | |
1035 get_epoch_ticks(&last_measurement_clock); | |
1036 if (n_measurements == 0) | |
1037 { | |
1038 first_measurement_clock = last_measurement_clock; | |
1039 } | |
1040 | |
1041 simple_ds18b20_start_meas(NULL); | |
1042 _delay_ms(DS18B20_TCONV_12BIT); | |
1043 | |
1044 if (n_measurements == max_measurements) | |
1045 { | |
1046 n_measurements = 0; | |
1047 } | |
1048 | |
1049 for (uint8_t s = 0; s < n_sensors; s++) | |
1050 { | |
1051 uint16_t reading; | |
1052 uint8_t ret = simple_ds18b20_read_raw(sensor_id[s], &reading); | |
1053 if (ret != DS18X20_OK) | |
1054 { | |
1055 reading = VALUE_BROKEN; | |
1056 } | |
1057 set_measurement(s, n_measurements, reading); | |
1058 | |
1059 if (memcmp(sensor_id[s], fridge_id, sizeof(fridge_id)) == 0) | |
1060 { | |
1061 last_fridge = ds18b20_raw16_to_decicelsius(reading); | |
1062 } | |
1063 if (memcmp(sensor_id[s], wort_id, sizeof(wort_id)) == 0) | |
1064 { | |
1065 last_wort = ds18b20_raw16_to_decicelsius(reading); | |
1066 } | |
1067 } | |
1068 | |
1069 n_measurements++; | |
1070 } | |
1071 | |
1072 static void | |
1073 do_comms() | 599 do_comms() |
1074 { | 600 { |
1075 get_epoch_ticks(&last_comms_clock); | |
1076 | |
1077 // turn on bluetooth | |
1078 set_aux_power(1); | |
1079 // avoid receiving rubbish, perhaps | 601 // avoid receiving rubbish, perhaps |
1080 _delay_ms(50); | |
1081 uart_on(); | 602 uart_on(); |
1082 | 603 |
1083 // write sd card here? same 3.3v regulator... | 604 // write sd card here? same 3.3v regulator... |
1084 | 605 |
1085 for (comms_timeout = wake_secs; | 606 while (1) |
1086 comms_timeout > 0 || stay_awake; | 607 { |
1087 ) | 608 wdt_reset(); |
1088 { | |
1089 if (need_measurement) | |
1090 { | |
1091 need_measurement = 0; | |
1092 do_measurement(); | |
1093 do_fridge(); | |
1094 continue; | |
1095 } | |
1096 | |
1097 if (have_cmd) | 609 if (have_cmd) |
1098 { | 610 { |
1099 have_cmd = 0; | 611 have_cmd = 0; |
1100 read_handler(); | 612 read_handler(); |
1101 continue; | 613 continue; |
1102 } | 614 } |
1103 | 615 |
1104 // wait for commands from the master | 616 // wait for commands from the master |
1105 idle_sleep(); | 617 idle_sleep(); |
1106 } | 618 } |
1107 | |
1108 uart_off(); | |
1109 // in case bluetooth takes time to flush | |
1110 _delay_ms(100); | |
1111 set_aux_power(0); | |
1112 } | 619 } |
1113 | 620 |
1114 static void | 621 static void |
1115 blink() | 622 blink() |
1116 { | 623 { |
1139 int main(void) | 646 int main(void) |
1140 { | 647 { |
1141 setup_chip(); | 648 setup_chip(); |
1142 blink(); | 649 blink(); |
1143 | 650 |
1144 set_aux_power(0); | |
1145 | |
1146 stdout = &mystdout; | 651 stdout = &mystdout; |
1147 uart_on(); | 652 uart_on(); |
1148 | 653 |
1149 printf(PSTR("Started.\n")); | 654 printf(PSTR("Started.\n")); |
1150 | 655 |
1151 load_params(); | 656 load_params(); |
1152 | 657 |
1153 init_sensors(); | |
1154 | |
1155 uart_off(); | |
1156 | |
1157 // turn off everything except timer2 | |
1158 PRR = _BV(PRTWI) | _BV(PRTIM0) | _BV(PRTIM1) | _BV(PRSPI) | _BV(PRUSART0) | _BV(PRADC); | |
1159 | |
1160 setup_tick_counter(); | 658 setup_tick_counter(); |
1161 | 659 |
1162 sei(); | 660 sei(); |
1163 | 661 |
1164 need_comms = 1; | 662 // doesn't return |
1165 need_measurement = 1; | 663 do_comms(); |
1166 | |
1167 stay_awake = 1; | |
1168 | |
1169 for(;;) | |
1170 { | |
1171 if (button_pressed) | |
1172 { | |
1173 // debounce | |
1174 _delay_ms(200); | |
1175 need_comms = 1; | |
1176 comms_timeout = wake_secs; | |
1177 button_pressed = 0; | |
1178 continue; | |
1179 } | |
1180 | |
1181 if (need_comms) | |
1182 { | |
1183 need_comms = 0; | |
1184 do_comms(); | |
1185 continue; | |
1186 } | |
1187 | |
1188 if (need_measurement) | |
1189 { | |
1190 need_measurement = 0; | |
1191 do_measurement(); | |
1192 do_fridge(); | |
1193 continue; | |
1194 } | |
1195 | |
1196 deep_sleep(); | |
1197 } | |
1198 | 664 |
1199 return 0; /* never reached */ | 665 return 0; /* never reached */ |
1200 } | 666 } |