Mercurial > pihelp
view sha1.c @ 14:c17f2e4a7a8b
merge
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 12 Jun 2013 23:49:27 +0800 |
parents | 8705acff2494 |
children |
line wrap: on
line source
/* sha1.c */ /* This file is part of the AVR-Crypto-Lib. Copyright (C) 2008, 2009 Daniel Otte ([email protected]) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /** * \file sha1.c * \author Daniel Otte * \date 2006-10-08 * \license GPLv3 or later * \brief SHA-1 implementation. * */ #include <string.h> /* memcpy & co */ #include <stdint.h> #include "config.h" #include "debug.h" #include "sha1.h" #ifdef DEBUG # undef DEBUG #endif #include "cli.h" #define LITTLE_ENDIAN /********************************************************************************************************/ /** * \brief initialises given SHA-1 context * */ void sha1_init(sha1_ctx_t *state){ DEBUG_S("\r\nSHA1_INIT"); state->h[0] = 0x67452301; state->h[1] = 0xefcdab89; state->h[2] = 0x98badcfe; state->h[3] = 0x10325476; state->h[4] = 0xc3d2e1f0; state->length = 0; } /********************************************************************************************************/ /* some helping functions */ uint32_t rotl32(uint32_t n, uint8_t bits){ return ((n<<bits) | (n>>(32-bits))); } uint32_t change_endian32(uint32_t x){ return (((x)<<24) | ((x)>>24) | (((x)& 0x0000ff00)<<8) | (((x)& 0x00ff0000)>>8)); } /* three SHA-1 inner functions */ uint32_t ch(uint32_t x, uint32_t y, uint32_t z){ DEBUG_S("\r\nCH"); return ((x&y)^((~x)&z)); } uint32_t maj(uint32_t x, uint32_t y, uint32_t z){ DEBUG_S("\r\nMAJ"); return ((x&y)^(x&z)^(y&z)); } uint32_t parity(uint32_t x, uint32_t y, uint32_t z){ DEBUG_S("\r\nPARITY"); return ((x^y)^z); } /********************************************************************************************************/ /** * \brief "add" a block to the hash * This is the core function of the hash algorithm. To understand how it's working * and what thoese variables do, take a look at FIPS-182. This is an "alternativ" implementation */ #define MASK 0x0000000f typedef uint32_t (*pf_t)(uint32_t x, uint32_t y, uint32_t z); void sha1_nextBlock (sha1_ctx_t *state, const void* block){ uint32_t a[5]; uint32_t w[16]; uint32_t temp; uint8_t t,s,fi, fib; pf_t f[] = {ch,parity,maj,parity}; uint32_t k[4]={ 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xca62c1d6}; /* load the w array (changing the endian and so) */ for(t=0; t<16; ++t){ w[t] = change_endian32(((uint32_t*)block)[t]); } #if DEBUG uint8_t dbgi; for(dbgi=0; dbgi<16; ++dbgi){ /* DEBUG_S("\n\rBlock:"); DEBUG_B(dbgi); DEBUG_C(':'); */ cli_putstr_P(PSTR("\r\nBlock:")); cli_hexdump(&dbgi, 1); cli_putc(':'); cli_hexdump(&(w[dbgi]) ,4); } #endif /* load the state */ memcpy(a, state->h, 5*sizeof(uint32_t)); /* the fun stuff */ for(fi=0,fib=0,t=0; t<=79; ++t){ s = t & MASK; if(t>=16){ #if DEBUG DEBUG_S("\r\n ws = "); cli_hexdump(&(w[s]), 4); #endif w[s] = rotl32( w[(s+13)&MASK] ^ w[(s+8)&MASK] ^ w[(s+ 2)&MASK] ^ w[s] ,1); #ifdef DEBUG DEBUG_S(" --> ws = "); cli_hexdump(&(w[s]), 4); #endif } uint32_t dtemp; temp = rotl32(a[0],5) + (dtemp=f[fi](a[1],a[2],a[3])) + a[4] + k[fi] + w[s]; memmove(&(a[1]), &(a[0]), 4*sizeof(uint32_t)); /* e=d; d=c; c=b; b=a; */ a[0] = temp; a[2] = rotl32(a[2],30); /* we might also do rotr32(c,2) */ fib++; if(fib==20){ fib=0; fi = (fi+1)%4; } #if DEBUG /* debug dump */ DEBUG_S("\r\nt = "); DEBUG_B(t); DEBUG_S("; a[]: "); cli_hexdump(a, 5*4); DEBUG_S("; k = "); cli_hexdump(&(k[t/20]), 4); DEBUG_S("; f(b,c,d) = "); cli_hexdump(&dtemp, 4); #endif } /* update the state */ for(t=0; t<5; ++t){ state->h[t] += a[t]; } state->length += 512; } /********************************************************************************************************/ void sha1_lastBlock(sha1_ctx_t *state, const void* block, uint16_t length){ uint8_t lb[SHA1_BLOCK_BYTES]; /* local block */ while(length>=SHA1_BLOCK_BITS){ sha1_nextBlock(state, block); length -= SHA1_BLOCK_BITS; block = (uint8_t*)block + SHA1_BLOCK_BYTES; } state->length += length; memset(lb, 0, SHA1_BLOCK_BYTES); memcpy (lb, block, (length+7)>>3); /* set the final one bit */ lb[length>>3] |= 0x80>>(length & 0x07); if (length>512-64-1){ /* not enouth space for 64bit length value */ sha1_nextBlock(state, lb); state->length -= 512; memset(lb, 0, SHA1_BLOCK_BYTES); } /* store the 64bit length value */ #if defined LITTLE_ENDIAN /* this is now rolled up */ uint8_t i; for (i=0; i<8; ++i){ lb[56+i] = ((uint8_t*)&(state->length))[7-i]; } #elif defined BIG_ENDIAN *((uint64_t)&(lb[56])) = state->length; #endif sha1_nextBlock(state, lb); } /********************************************************************************************************/ void sha1_ctx2hash (void *dest, sha1_ctx_t *state){ #if defined LITTLE_ENDIAN uint8_t i; for(i=0; i<5; ++i){ ((uint32_t*)dest)[i] = change_endian32(state->h[i]); } #elif BIG_ENDIAN if (dest != state->h) memcpy(dest, state->h, SHA1_HASH_BITS/8); #else # error unsupported endian type! #endif } /********************************************************************************************************/ /** * * */ void sha1 (void *dest, const void* msg, uint32_t length){ sha1_ctx_t s; DEBUG_S("\r\nBLA BLUB"); sha1_init(&s); while(length & (~0x0001ff)){ /* length>=512 */ DEBUG_S("\r\none block"); sha1_nextBlock(&s, msg); msg = (uint8_t*)msg + SHA1_BLOCK_BITS/8; /* increment pointer to next block */ length -= SHA1_BLOCK_BITS; } sha1_lastBlock(&s, msg, length); sha1_ctx2hash(dest, &s); }