comparison network/uip.h @ 107:56d09a0969b5 avr-http

Import uIP and the PPP implementation from https://code.google.com/p/avrusbmodem/
author Matt Johnston <matt@ucc.asn.au>
date Fri, 07 Sep 2012 23:53:53 +0800
parents
children
comparison
equal deleted inserted replaced
106:5c8404549cc0 107:56d09a0969b5
1
2 /**
3 * \addtogroup uip
4 * @{
5 */
6
7 /**
8 * \file
9 * Header file for the uIP TCP/IP stack.
10 * \author Adam Dunkels <[email protected]>
11 * \author Julien Abeille <[email protected]> (IPv6 related code)
12 * \author Mathilde Durvy <[email protected]> (IPv6 related code)
13 *
14 * The uIP TCP/IP stack header file contains definitions for a number
15 * of C macros that are used by uIP programs as well as internal uIP
16 * structures, TCP/IP header structures and function declarations.
17 *
18 */
19
20 /*
21 * Copyright (c) 2001-2003, Adam Dunkels.
22 * All rights reserved.
23 *
24 * Redistribution and use in source and binary forms, with or without
25 * modification, are permitted provided that the following conditions
26 * are met:
27 * 1. Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * 2. Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in the
31 * documentation and/or other materials provided with the distribution.
32 * 3. The name of the author may not be used to endorse or promote
33 * products derived from this software without specific prior
34 * written permission.
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
37 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
38 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
40 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
42 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
43 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
44 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
45 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
46 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47 *
48 * This file is part of the uIP TCP/IP stack.
49 *
50 * $Id: uip.h,v 1.35 2010/10/19 18:29:04 adamdunkels Exp $
51 *
52 */
53
54 #ifndef __UIP_H__
55 #define __UIP_H__
56
57 #include "uipopt.h"
58 #define CCIF
59
60 /**
61 * Representation of an IP address.
62 *
63 */
64 #if UIP_CONF_IPV6
65 typedef union uip_ip6addr_t {
66 u8_t u8[16]; /* Initializer, must come first!!! */
67 u16_t u16[8];
68 } uip_ip6addr_t;
69
70 typedef uip_ip6addr_t uip_ipaddr_t;
71 #else /* UIP_CONF_IPV6 */
72 typedef union uip_ip4addr_t {
73 u8_t u8[4]; /* Initializer, must come first!!! */
74 u16_t u16[2];
75 #if 0
76 u32_t u32;
77 #endif
78 } uip_ip4addr_t;
79 typedef uip_ip4addr_t uip_ipaddr_t;
80 #endif /* UIP_CONF_IPV6 */
81
82
83 /*---------------------------------------------------------------------------*/
84
85 /** \brief 16 bit 802.15.4 address */
86 typedef struct uip_802154_shortaddr {
87 u8_t addr[2];
88 } uip_802154_shortaddr;
89 /** \brief 64 bit 802.15.4 address */
90 typedef struct uip_802154_longaddr {
91 u8_t addr[8];
92 } uip_802154_longaddr;
93
94 /** \brief 802.11 address */
95 typedef struct uip_80211_addr {
96 u8_t addr[6];
97 } uip_80211_addr;
98
99 /** \brief 802.3 address */
100 typedef struct uip_eth_addr {
101 u8_t addr[6];
102 } uip_eth_addr;
103
104
105 #if UIP_CONF_LL_802154
106 /** \brief 802.15.4 address */
107 typedef uip_802154_longaddr uip_lladdr_t;
108 #define UIP_802154_SHORTADDR_LEN 2
109 #define UIP_802154_LONGADDR_LEN 8
110 #define UIP_LLADDR_LEN UIP_802154_LONGADDR_LEN
111 #else /*UIP_CONF_LL_802154*/
112 #if UIP_CONF_LL_80211
113 /** \brief 802.11 address */
114 typedef uip_80211_addr uip_lladdr_t;
115 #define UIP_LLADDR_LEN 6
116 #else /*UIP_CONF_LL_80211*/
117 /** \brief Ethernet address */
118 typedef uip_eth_addr uip_lladdr_t;
119 #define UIP_LLADDR_LEN 6
120 #endif /*UIP_CONF_LL_80211*/
121 #endif /*UIP_CONF_LL_802154*/
122
123 //#include "net/tcpip.h"
124
125 /*---------------------------------------------------------------------------*/
126 /* First, the functions that should be called from the
127 * system. Initialization, the periodic timer, and incoming packets are
128 * handled by the following three functions.
129 */
130 /**
131 * \defgroup uipconffunc uIP configuration functions
132 * @{
133 *
134 * The uIP configuration functions are used for setting run-time
135 * parameters in uIP such as IP addresses.
136 */
137
138 /**
139 * Set the IP address of this host.
140 *
141 * The IP address is represented as a 4-byte array where the first
142 * octet of the IP address is put in the first member of the 4-byte
143 * array.
144 *
145 * Example:
146 \code
147
148 uip_ipaddr_t addr;
149
150 uip_ipaddr(&addr, 192,168,1,2);
151 uip_sethostaddr(&addr);
152
153 \endcode
154 * \param addr A pointer to an IP address of type uip_ipaddr_t;
155 *
156 * \sa uip_ipaddr()
157 *
158 * \hideinitializer
159 */
160 #define uip_sethostaddr(addr) uip_ipaddr_copy(&uip_hostaddr, (addr))
161
162 /**
163 * Get the IP address of this host.
164 *
165 * The IP address is represented as a 4-byte array where the first
166 * octet of the IP address is put in the first member of the 4-byte
167 * array.
168 *
169 * Example:
170 \code
171 uip_ipaddr_t hostaddr;
172
173 uip_gethostaddr(&hostaddr);
174 \endcode
175 * \param addr A pointer to a uip_ipaddr_t variable that will be
176 * filled in with the currently configured IP address.
177 *
178 * \hideinitializer
179 */
180 #define uip_gethostaddr(addr) uip_ipaddr_copy((addr), &uip_hostaddr)
181
182 /**
183 * Set the default router's IP address.
184 *
185 * \param addr A pointer to a uip_ipaddr_t variable containing the IP
186 * address of the default router.
187 *
188 * \sa uip_ipaddr()
189 *
190 * \hideinitializer
191 */
192 #define uip_setdraddr(addr) uip_ipaddr_copy(&uip_draddr, (addr))
193
194 /**
195 * Set the netmask.
196 *
197 * \param addr A pointer to a uip_ipaddr_t variable containing the IP
198 * address of the netmask.
199 *
200 * \sa uip_ipaddr()
201 *
202 * \hideinitializer
203 */
204 #define uip_setnetmask(addr) uip_ipaddr_copy(&uip_netmask, (addr))
205
206
207 /**
208 * Get the default router's IP address.
209 *
210 * \param addr A pointer to a uip_ipaddr_t variable that will be
211 * filled in with the IP address of the default router.
212 *
213 * \hideinitializer
214 */
215 #define uip_getdraddr(addr) uip_ipaddr_copy((addr), &uip_draddr)
216
217 /**
218 * Get the netmask.
219 *
220 * \param addr A pointer to a uip_ipaddr_t variable that will be
221 * filled in with the value of the netmask.
222 *
223 * \hideinitializer
224 */
225 #define uip_getnetmask(addr) uip_ipaddr_copy((addr), &uip_netmask)
226
227 /** @} */
228
229 /**
230 * \defgroup uipinit uIP initialization functions
231 * @{
232 *
233 * The uIP initialization functions are used for booting uIP.
234 */
235
236 /**
237 * uIP initialization function.
238 *
239 * This function should be called at boot up to initilize the uIP
240 * TCP/IP stack.
241 */
242 void uip_init(void);
243
244 /**
245 * uIP initialization function.
246 *
247 * This function may be used at boot time to set the initial ip_id.
248 */
249 void uip_setipid(u16_t id);
250
251 /** @} */
252
253 /**
254 * \defgroup uipdevfunc uIP device driver functions
255 * @{
256 *
257 * These functions are used by a network device driver for interacting
258 * with uIP.
259 */
260
261 /**
262 * Process an incoming packet.
263 *
264 * This function should be called when the device driver has received
265 * a packet from the network. The packet from the device driver must
266 * be present in the uip_buf buffer, and the length of the packet
267 * should be placed in the uip_len variable.
268 *
269 * When the function returns, there may be an outbound packet placed
270 * in the uip_buf packet buffer. If so, the uip_len variable is set to
271 * the length of the packet. If no packet is to be sent out, the
272 * uip_len variable is set to 0.
273 *
274 * The usual way of calling the function is presented by the source
275 * code below.
276 \code
277 uip_len = devicedriver_poll();
278 if(uip_len > 0) {
279 uip_input();
280 if(uip_len > 0) {
281 devicedriver_send();
282 }
283 }
284 \endcode
285 *
286 * \note If you are writing a uIP device driver that needs ARP
287 * (Address Resolution Protocol), e.g., when running uIP over
288 * Ethernet, you will need to call the uIP ARP code before calling
289 * this function:
290 \code
291 #define BUF ((struct uip_eth_hdr *)&uip_buf[0])
292 uip_len = ethernet_devicedrver_poll();
293 if(uip_len > 0) {
294 if(BUF->type == UIP_HTONS(UIP_ETHTYPE_IP)) {
295 uip_arp_ipin();
296 uip_input();
297 if(uip_len > 0) {
298 uip_arp_out();
299 ethernet_devicedriver_send();
300 }
301 } else if(BUF->type == UIP_HTONS(UIP_ETHTYPE_ARP)) {
302 uip_arp_arpin();
303 if(uip_len > 0) {
304 ethernet_devicedriver_send();
305 }
306 }
307 \endcode
308 *
309 * \hideinitializer
310 */
311 #define uip_input() uip_process(UIP_DATA)
312
313
314 /**
315 * Periodic processing for a connection identified by its number.
316 *
317 * This function does the necessary periodic processing (timers,
318 * polling) for a uIP TCP conneciton, and should be called when the
319 * periodic uIP timer goes off. It should be called for every
320 * connection, regardless of whether they are open of closed.
321 *
322 * When the function returns, it may have an outbound packet waiting
323 * for service in the uIP packet buffer, and if so the uip_len
324 * variable is set to a value larger than zero. The device driver
325 * should be called to send out the packet.
326 *
327 * The usual way of calling the function is through a for() loop like
328 * this:
329 \code
330 for(i = 0; i < UIP_CONNS; ++i) {
331 uip_periodic(i);
332 if(uip_len > 0) {
333 devicedriver_send();
334 }
335 }
336 \endcode
337 *
338 * \note If you are writing a uIP device driver that needs ARP
339 * (Address Resolution Protocol), e.g., when running uIP over
340 * Ethernet, you will need to call the uip_arp_out() function before
341 * calling the device driver:
342 \code
343 for(i = 0; i < UIP_CONNS; ++i) {
344 uip_periodic(i);
345 if(uip_len > 0) {
346 uip_arp_out();
347 ethernet_devicedriver_send();
348 }
349 }
350 \endcode
351 *
352 * \param conn The number of the connection which is to be periodically polled.
353 *
354 * \hideinitializer
355 */
356 #if UIP_TCP
357 #define uip_periodic(conn) do { uip_conn = &uip_conns[conn]; \
358 uip_process(UIP_TIMER); } while (0)
359
360 /**
361 *
362 *
363 */
364 #define uip_conn_active(conn) (uip_conns[conn].tcpstateflags != UIP_CLOSED)
365
366 /**
367 * Perform periodic processing for a connection identified by a pointer
368 * to its structure.
369 *
370 * Same as uip_periodic() but takes a pointer to the actual uip_conn
371 * struct instead of an integer as its argument. This function can be
372 * used to force periodic processing of a specific connection.
373 *
374 * \param conn A pointer to the uip_conn struct for the connection to
375 * be processed.
376 *
377 * \hideinitializer
378 */
379 #define uip_periodic_conn(conn) do { uip_conn = conn; \
380 uip_process(UIP_TIMER); } while (0)
381
382 /**
383 * Request that a particular connection should be polled.
384 *
385 * Similar to uip_periodic_conn() but does not perform any timer
386 * processing. The application is polled for new data.
387 *
388 * \param conn A pointer to the uip_conn struct for the connection to
389 * be processed.
390 *
391 * \hideinitializer
392 */
393 #define uip_poll_conn(conn) do { uip_conn = conn; \
394 uip_process(UIP_POLL_REQUEST); } while (0)
395
396 #endif /* UIP_TCP */
397
398 #if UIP_UDP
399 /**
400 * Periodic processing for a UDP connection identified by its number.
401 *
402 * This function is essentially the same as uip_periodic(), but for
403 * UDP connections. It is called in a similar fashion as the
404 * uip_periodic() function:
405 \code
406 for(i = 0; i < UIP_UDP_CONNS; i++) {
407 uip_udp_periodic(i);
408 if(uip_len > 0) {
409 devicedriver_send();
410 }
411 }
412 \endcode
413 *
414 * \note As for the uip_periodic() function, special care has to be
415 * taken when using uIP together with ARP and Ethernet:
416 \code
417 for(i = 0; i < UIP_UDP_CONNS; i++) {
418 uip_udp_periodic(i);
419 if(uip_len > 0) {
420 uip_arp_out();
421 ethernet_devicedriver_send();
422 }
423 }
424 \endcode
425 *
426 * \param conn The number of the UDP connection to be processed.
427 *
428 * \hideinitializer
429 */
430 #define uip_udp_periodic(conn) do { uip_udp_conn = &uip_udp_conns[conn]; \
431 uip_process(UIP_UDP_TIMER); } while(0)
432
433 /**
434 * Periodic processing for a UDP connection identified by a pointer to
435 * its structure.
436 *
437 * Same as uip_udp_periodic() but takes a pointer to the actual
438 * uip_conn struct instead of an integer as its argument. This
439 * function can be used to force periodic processing of a specific
440 * connection.
441 *
442 * \param conn A pointer to the uip_udp_conn struct for the connection
443 * to be processed.
444 *
445 * \hideinitializer
446 */
447 #define uip_udp_periodic_conn(conn) do { uip_udp_conn = conn; \
448 uip_process(UIP_UDP_TIMER); } while(0)
449 #endif /* UIP_UDP */
450
451 /** \brief Abandon the reassembly of the current packet */
452 void uip_reass_over(void);
453
454 /**
455 * The uIP packet buffer.
456 *
457 * The uip_buf array is used to hold incoming and outgoing
458 * packets. The device driver should place incoming data into this
459 * buffer. When sending data, the device driver should read the link
460 * level headers and the TCP/IP headers from this buffer. The size of
461 * the link level headers is configured by the UIP_LLH_LEN define.
462 *
463 * \note The application data need not be placed in this buffer, so
464 * the device driver must read it from the place pointed to by the
465 * uip_appdata pointer as illustrated by the following example:
466 \code
467 void
468 devicedriver_send(void)
469 {
470 hwsend(&uip_buf[0], UIP_LLH_LEN);
471 if(uip_len <= UIP_LLH_LEN + UIP_TCPIP_HLEN) {
472 hwsend(&uip_buf[UIP_LLH_LEN], uip_len - UIP_LLH_LEN);
473 } else {
474 hwsend(&uip_buf[UIP_LLH_LEN], UIP_TCPIP_HLEN);
475 hwsend(uip_appdata, uip_len - UIP_TCPIP_HLEN - UIP_LLH_LEN);
476 }
477 }
478 \endcode
479 */
480
481 typedef union {
482 uint32_t u32[(UIP_BUFSIZE + 3) / 4];
483 uint8_t u8[UIP_BUFSIZE];
484 } uip_buf_t;
485
486 CCIF extern uip_buf_t uip_aligned_buf;
487 #define uip_buf (uip_aligned_buf.u8)
488
489
490 /** @} */
491
492 /*---------------------------------------------------------------------------*/
493 /* Functions that are used by the uIP application program. Opening and
494 * closing connections, sending and receiving data, etc. is all
495 * handled by the functions below.
496 */
497 /**
498 * \defgroup uipappfunc uIP application functions
499 * @{
500 *
501 * Functions used by an application running of top of uIP.
502 */
503
504 /**
505 * Start listening to the specified port.
506 *
507 * \note Since this function expects the port number in network byte
508 * order, a conversion using UIP_HTONS() or uip_htons() is necessary.
509 *
510 \code
511 uip_listen(UIP_HTONS(80));
512 \endcode
513 *
514 * \param port A 16-bit port number in network byte order.
515 */
516 void uip_listen(u16_t port);
517
518 /**
519 * Stop listening to the specified port.
520 *
521 * \note Since this function expects the port number in network byte
522 * order, a conversion using UIP_HTONS() or uip_htons() is necessary.
523 *
524 \code
525 uip_unlisten(UIP_HTONS(80));
526 \endcode
527 *
528 * \param port A 16-bit port number in network byte order.
529 */
530 void uip_unlisten(u16_t port);
531
532 /**
533 * Connect to a remote host using TCP.
534 *
535 * This function is used to start a new connection to the specified
536 * port on the specified host. It allocates a new connection identifier,
537 * sets the connection to the SYN_SENT state and sets the
538 * retransmission timer to 0. This will cause a TCP SYN segment to be
539 * sent out the next time this connection is periodically processed,
540 * which usually is done within 0.5 seconds after the call to
541 * uip_connect().
542 *
543 * \note This function is available only if support for active open
544 * has been configured by defining UIP_ACTIVE_OPEN to 1 in uipopt.h.
545 *
546 * \note Since this function requires the port number to be in network
547 * byte order, a conversion using UIP_HTONS() or uip_htons() is necessary.
548 *
549 \code
550 uip_ipaddr_t ipaddr;
551
552 uip_ipaddr(&ipaddr, 192,168,1,2);
553 uip_connect(&ipaddr, UIP_HTONS(80));
554 \endcode
555 *
556 * \param ripaddr The IP address of the remote host.
557 *
558 * \param port A 16-bit port number in network byte order.
559 *
560 * \return A pointer to the uIP connection identifier for the new connection,
561 * or NULL if no connection could be allocated.
562 *
563 */
564 struct uip_conn *uip_connect(uip_ipaddr_t *ripaddr, u16_t port);
565
566
567
568 /**
569 * \internal
570 *
571 * Check if a connection has outstanding (i.e., unacknowledged) data.
572 *
573 * \param conn A pointer to the uip_conn structure for the connection.
574 *
575 * \hideinitializer
576 */
577 #define uip_outstanding(conn) ((conn)->len)
578
579 /**
580 * Send data on the current connection.
581 *
582 * This function is used to send out a single segment of TCP
583 * data. Only applications that have been invoked by uIP for event
584 * processing can send data.
585 *
586 * The amount of data that actually is sent out after a call to this
587 * function is determined by the maximum amount of data TCP allows. uIP
588 * will automatically crop the data so that only the appropriate
589 * amount of data is sent. The function uip_mss() can be used to query
590 * uIP for the amount of data that actually will be sent.
591 *
592 * \note This function does not guarantee that the sent data will
593 * arrive at the destination. If the data is lost in the network, the
594 * application will be invoked with the uip_rexmit() event being
595 * set. The application will then have to resend the data using this
596 * function.
597 *
598 * \param data A pointer to the data which is to be sent.
599 *
600 * \param len The maximum amount of data bytes to be sent.
601 *
602 * \hideinitializer
603 */
604 CCIF void uip_send(const void *data, int len);
605
606 /**
607 * The length of any incoming data that is currently available (if available)
608 * in the uip_appdata buffer.
609 *
610 * The test function uip_data() must first be used to check if there
611 * is any data available at all.
612 *
613 * \hideinitializer
614 */
615 /*void uip_datalen(void);*/
616 #define uip_datalen() uip_len
617
618 /**
619 * The length of any out-of-band data (urgent data) that has arrived
620 * on the connection.
621 *
622 * \note The configuration parameter UIP_URGDATA must be set for this
623 * function to be enabled.
624 *
625 * \hideinitializer
626 */
627 #define uip_urgdatalen() uip_urglen
628
629 /**
630 * Close the current connection.
631 *
632 * This function will close the current connection in a nice way.
633 *
634 * \hideinitializer
635 */
636 #define uip_close() (uip_flags = UIP_CLOSE)
637
638 /**
639 * Abort the current connection.
640 *
641 * This function will abort (reset) the current connection, and is
642 * usually used when an error has occurred that prevents using the
643 * uip_close() function.
644 *
645 * \hideinitializer
646 */
647 #define uip_abort() (uip_flags = UIP_ABORT)
648
649 /**
650 * Tell the sending host to stop sending data.
651 *
652 * This function will close our receiver's window so that we stop
653 * receiving data for the current connection.
654 *
655 * \hideinitializer
656 */
657 #define uip_stop() (uip_conn->tcpstateflags |= UIP_STOPPED)
658
659 /**
660 * Find out if the current connection has been previously stopped with
661 * uip_stop().
662 *
663 * \hideinitializer
664 */
665 #define uip_stopped(conn) ((conn)->tcpstateflags & UIP_STOPPED)
666
667 /**
668 * Restart the current connection, if is has previously been stopped
669 * with uip_stop().
670 *
671 * This function will open the receiver's window again so that we
672 * start receiving data for the current connection.
673 *
674 * \hideinitializer
675 */
676 #define uip_restart() do { uip_flags |= UIP_NEWDATA; \
677 uip_conn->tcpstateflags &= ~UIP_STOPPED; \
678 } while(0)
679
680
681 /* uIP tests that can be made to determine in what state the current
682 connection is, and what the application function should do. */
683
684 /**
685 * Is the current connection a UDP connection?
686 *
687 * This function checks whether the current connection is a UDP connection.
688 *
689 * \hideinitializer
690 *
691 */
692 #define uip_udpconnection() (uip_conn == NULL)
693
694 /**
695 * Is new incoming data available?
696 *
697 * Will reduce to non-zero if there is new data for the application
698 * present at the uip_appdata pointer. The size of the data is
699 * available through the uip_len variable.
700 *
701 * \hideinitializer
702 */
703 #define uip_newdata() (uip_flags & UIP_NEWDATA)
704
705 /**
706 * Has previously sent data been acknowledged?
707 *
708 * Will reduce to non-zero if the previously sent data has been
709 * acknowledged by the remote host. This means that the application
710 * can send new data.
711 *
712 * \hideinitializer
713 */
714 #define uip_acked() (uip_flags & UIP_ACKDATA)
715
716 /**
717 * Has the connection just been connected?
718 *
719 * Reduces to non-zero if the current connection has been connected to
720 * a remote host. This will happen both if the connection has been
721 * actively opened (with uip_connect()) or passively opened (with
722 * uip_listen()).
723 *
724 * \hideinitializer
725 */
726 #define uip_connected() (uip_flags & UIP_CONNECTED)
727
728 /**
729 * Has the connection been closed by the other end?
730 *
731 * Is non-zero if the connection has been closed by the remote
732 * host. The application may then do the necessary clean-ups.
733 *
734 * \hideinitializer
735 */
736 #define uip_closed() (uip_flags & UIP_CLOSE)
737
738 /**
739 * Has the connection been aborted by the other end?
740 *
741 * Non-zero if the current connection has been aborted (reset) by the
742 * remote host.
743 *
744 * \hideinitializer
745 */
746 #define uip_aborted() (uip_flags & UIP_ABORT)
747
748 /**
749 * Has the connection timed out?
750 *
751 * Non-zero if the current connection has been aborted due to too many
752 * retransmissions.
753 *
754 * \hideinitializer
755 */
756 #define uip_timedout() (uip_flags & UIP_TIMEDOUT)
757
758 /**
759 * Do we need to retransmit previously data?
760 *
761 * Reduces to non-zero if the previously sent data has been lost in
762 * the network, and the application should retransmit it. The
763 * application should send the exact same data as it did the last
764 * time, using the uip_send() function.
765 *
766 * \hideinitializer
767 */
768 #define uip_rexmit() (uip_flags & UIP_REXMIT)
769
770 /**
771 * Is the connection being polled by uIP?
772 *
773 * Is non-zero if the reason the application is invoked is that the
774 * current connection has been idle for a while and should be
775 * polled.
776 *
777 * The polling event can be used for sending data without having to
778 * wait for the remote host to send data.
779 *
780 * \hideinitializer
781 */
782 #define uip_poll() (uip_flags & UIP_POLL)
783
784 /**
785 * Get the initial maximum segment size (MSS) of the current
786 * connection.
787 *
788 * \hideinitializer
789 */
790 #define uip_initialmss() (uip_conn->initialmss)
791
792 /**
793 * Get the current maximum segment size that can be sent on the current
794 * connection.
795 *
796 * The current maximum segment size that can be sent on the
797 * connection is computed from the receiver's window and the MSS of
798 * the connection (which also is available by calling
799 * uip_initialmss()).
800 *
801 * \hideinitializer
802 */
803 #define uip_mss() (uip_conn->mss)
804
805 /**
806 * Set up a new UDP connection.
807 *
808 * This function sets up a new UDP connection. The function will
809 * automatically allocate an unused local port for the new
810 * connection. However, another port can be chosen by using the
811 * uip_udp_bind() call, after the uip_udp_new() function has been
812 * called.
813 *
814 * Example:
815 \code
816 uip_ipaddr_t addr;
817 struct uip_udp_conn *c;
818
819 uip_ipaddr(&addr, 192,168,2,1);
820 c = uip_udp_new(&addr, UIP_HTONS(12345));
821 if(c != NULL) {
822 uip_udp_bind(c, UIP_HTONS(12344));
823 }
824 \endcode
825 * \param ripaddr The IP address of the remote host.
826 *
827 * \param rport The remote port number in network byte order.
828 *
829 * \return The uip_udp_conn structure for the new connection or NULL
830 * if no connection could be allocated.
831 */
832 struct uip_udp_conn *uip_udp_new(const uip_ipaddr_t *ripaddr, u16_t rport);
833
834 /**
835 * Removed a UDP connection.
836 *
837 * \param conn A pointer to the uip_udp_conn structure for the connection.
838 *
839 * \hideinitializer
840 */
841 #define uip_udp_remove(conn) (conn)->lport = 0
842
843 /**
844 * Bind a UDP connection to a local port.
845 *
846 * \param conn A pointer to the uip_udp_conn structure for the
847 * connection.
848 *
849 * \param port The local port number, in network byte order.
850 *
851 * \hideinitializer
852 */
853 #define uip_udp_bind(conn, port) (conn)->lport = port
854
855 /**
856 * Send a UDP datagram of length len on the current connection.
857 *
858 * This function can only be called in response to a UDP event (poll
859 * or newdata). The data must be present in the uip_buf buffer, at the
860 * place pointed to by the uip_appdata pointer.
861 *
862 * \param len The length of the data in the uip_buf buffer.
863 *
864 * \hideinitializer
865 */
866 #define uip_udp_send(len) uip_send((char *)uip_appdata, len)
867
868 /** @} */
869
870 /* uIP convenience and converting functions. */
871
872 /**
873 * \defgroup uipconvfunc uIP conversion functions
874 * @{
875 *
876 * These functions can be used for converting between different data
877 * formats used by uIP.
878 */
879
880 /**
881 * Convert an IP address to four bytes separated by commas.
882 *
883 * Example:
884 \code
885 uip_ipaddr_t ipaddr;
886 printf("ipaddr=%d.%d.%d.%d\n", uip_ipaddr_to_quad(&ipaddr));
887 \endcode
888 *
889 * \param a A pointer to a uip_ipaddr_t.
890 * \hideinitializer
891 */
892 #define uip_ipaddr_to_quad(a) (a)->u8[0],(a)->u8[1],(a)->u8[2],(a)->u8[3]
893
894 /**
895 * Construct an IP address from four bytes.
896 *
897 * This function constructs an IP address of the type that uIP handles
898 * internally from four bytes. The function is handy for specifying IP
899 * addresses to use with e.g. the uip_connect() function.
900 *
901 * Example:
902 \code
903 uip_ipaddr_t ipaddr;
904 struct uip_conn *c;
905
906 uip_ipaddr(&ipaddr, 192,168,1,2);
907 c = uip_connect(&ipaddr, UIP_HTONS(80));
908 \endcode
909 *
910 * \param addr A pointer to a uip_ipaddr_t variable that will be
911 * filled in with the IP address.
912 *
913 * \param addr0 The first octet of the IP address.
914 * \param addr1 The second octet of the IP address.
915 * \param addr2 The third octet of the IP address.
916 * \param addr3 The forth octet of the IP address.
917 *
918 * \hideinitializer
919 */
920 #define uip_ipaddr(addr, addr0,addr1,addr2,addr3) do { \
921 (addr)->u8[0] = addr0; \
922 (addr)->u8[1] = addr1; \
923 (addr)->u8[2] = addr2; \
924 (addr)->u8[3] = addr3; \
925 } while(0)
926
927 /**
928 * Construct an IPv6 address from eight 16-bit words.
929 *
930 * This function constructs an IPv6 address.
931 *
932 * \hideinitializer
933 */
934 #define uip_ip6addr(addr, addr0,addr1,addr2,addr3,addr4,addr5,addr6,addr7) do { \
935 (addr)->u16[0] = UIP_HTONS(addr0); \
936 (addr)->u16[1] = UIP_HTONS(addr1); \
937 (addr)->u16[2] = UIP_HTONS(addr2); \
938 (addr)->u16[3] = UIP_HTONS(addr3); \
939 (addr)->u16[4] = UIP_HTONS(addr4); \
940 (addr)->u16[5] = UIP_HTONS(addr5); \
941 (addr)->u16[6] = UIP_HTONS(addr6); \
942 (addr)->u16[7] = UIP_HTONS(addr7); \
943 } while(0)
944
945 /**
946 * Construct an IPv6 address from eight 8-bit words.
947 *
948 * This function constructs an IPv6 address.
949 *
950 * \hideinitializer
951 */
952 #define uip_ip6addr_u8(addr, addr0,addr1,addr2,addr3,addr4,addr5,addr6,addr7,addr8,addr9,addr10,addr11,addr12,addr13,addr14,addr15) do { \
953 (addr)->u8[0] = addr0; \
954 (addr)->u8[1] = addr1; \
955 (addr)->u8[2] = addr2; \
956 (addr)->u8[3] = addr3; \
957 (addr)->u8[4] = addr4; \
958 (addr)->u8[5] = addr5; \
959 (addr)->u8[6] = addr6; \
960 (addr)->u8[7] = addr7; \
961 (addr)->u8[8] = addr8; \
962 (addr)->u8[9] = addr9; \
963 (addr)->u8[10] = addr10; \
964 (addr)->u8[11] = addr11; \
965 (addr)->u8[12] = addr12; \
966 (addr)->u8[13] = addr13; \
967 (addr)->u8[14] = addr14; \
968 (addr)->u8[15] = addr15; \
969 } while(0)
970
971
972 /**
973 * Copy an IP address to another IP address.
974 *
975 * Copies an IP address from one place to another.
976 *
977 * Example:
978 \code
979 uip_ipaddr_t ipaddr1, ipaddr2;
980
981 uip_ipaddr(&ipaddr1, 192,16,1,2);
982 uip_ipaddr_copy(&ipaddr2, &ipaddr1);
983 \endcode
984 *
985 * \param dest The destination for the copy.
986 * \param src The source from where to copy.
987 *
988 * \hideinitializer
989 */
990 #ifndef uip_ipaddr_copy
991 #define uip_ipaddr_copy(dest, src) (*(dest) = *(src))
992 #endif
993
994 /**
995 * Compare two IP addresses
996 *
997 * Compares two IP addresses.
998 *
999 * Example:
1000 \code
1001 uip_ipaddr_t ipaddr1, ipaddr2;
1002
1003 uip_ipaddr(&ipaddr1, 192,16,1,2);
1004 if(uip_ipaddr_cmp(&ipaddr2, &ipaddr1)) {
1005 printf("They are the same");
1006 }
1007 \endcode
1008 *
1009 * \param addr1 The first IP address.
1010 * \param addr2 The second IP address.
1011 *
1012 * \hideinitializer
1013 */
1014 #if !UIP_CONF_IPV6
1015 #define uip_ipaddr_cmp(addr1, addr2) ((addr1)->u16[0] == (addr2)->u16[0] && \
1016 (addr1)->u16[1] == (addr2)->u16[1])
1017 #else /* !UIP_CONF_IPV6 */
1018 #define uip_ipaddr_cmp(addr1, addr2) (memcmp(addr1, addr2, sizeof(uip_ip6addr_t)) == 0)
1019 #endif /* !UIP_CONF_IPV6 */
1020
1021 /**
1022 * Compare two IP addresses with netmasks
1023 *
1024 * Compares two IP addresses with netmasks. The masks are used to mask
1025 * out the bits that are to be compared.
1026 *
1027 * Example:
1028 \code
1029 uip_ipaddr_t ipaddr1, ipaddr2, mask;
1030
1031 uip_ipaddr(&mask, 255,255,255,0);
1032 uip_ipaddr(&ipaddr1, 192,16,1,2);
1033 uip_ipaddr(&ipaddr2, 192,16,1,3);
1034 if(uip_ipaddr_maskcmp(&ipaddr1, &ipaddr2, &mask)) {
1035 printf("They are the same");
1036 }
1037 \endcode
1038 *
1039 * \param addr1 The first IP address.
1040 * \param addr2 The second IP address.
1041 * \param mask The netmask.
1042 *
1043 * \hideinitializer
1044 */
1045 #if !UIP_CONF_IPV6
1046 #define uip_ipaddr_maskcmp(addr1, addr2, mask) \
1047 (((((u16_t *)addr1)[0] & ((u16_t *)mask)[0]) == \
1048 (((u16_t *)addr2)[0] & ((u16_t *)mask)[0])) && \
1049 ((((u16_t *)addr1)[1] & ((u16_t *)mask)[1]) == \
1050 (((u16_t *)addr2)[1] & ((u16_t *)mask)[1])))
1051 #else
1052 #define uip_ipaddr_prefixcmp(addr1, addr2, length) (memcmp(addr1, addr2, length>>3) == 0)
1053 #endif
1054
1055
1056 /**
1057 * Check if an address is a broadcast address for a network.
1058 *
1059 * Checks if an address is the broadcast address for a network. The
1060 * network is defined by an IP address that is on the network and the
1061 * network's netmask.
1062 *
1063 * \param addr The IP address.
1064 * \param netaddr The network's IP address.
1065 * \param netmask The network's netmask.
1066 *
1067 * \hideinitializer
1068 */
1069 /*#define uip_ipaddr_isbroadcast(addr, netaddr, netmask)
1070 ((uip_ipaddr_t *)(addr)).u16 & ((uip_ipaddr_t *)(addr)).u16*/
1071
1072
1073
1074 /**
1075 * Mask out the network part of an IP address.
1076 *
1077 * Masks out the network part of an IP address, given the address and
1078 * the netmask.
1079 *
1080 * Example:
1081 \code
1082 uip_ipaddr_t ipaddr1, ipaddr2, netmask;
1083
1084 uip_ipaddr(&ipaddr1, 192,16,1,2);
1085 uip_ipaddr(&netmask, 255,255,255,0);
1086 uip_ipaddr_mask(&ipaddr2, &ipaddr1, &netmask);
1087 \endcode
1088 *
1089 * In the example above, the variable "ipaddr2" will contain the IP
1090 * address 192.168.1.0.
1091 *
1092 * \param dest Where the result is to be placed.
1093 * \param src The IP address.
1094 * \param mask The netmask.
1095 *
1096 * \hideinitializer
1097 */
1098 #define uip_ipaddr_mask(dest, src, mask) do { \
1099 ((u16_t *)dest)[0] = ((u16_t *)src)[0] & ((u16_t *)mask)[0]; \
1100 ((u16_t *)dest)[1] = ((u16_t *)src)[1] & ((u16_t *)mask)[1]; \
1101 } while(0)
1102
1103 /**
1104 * Pick the first octet of an IP address.
1105 *
1106 * Picks out the first octet of an IP address.
1107 *
1108 * Example:
1109 \code
1110 uip_ipaddr_t ipaddr;
1111 u8_t octet;
1112
1113 uip_ipaddr(&ipaddr, 1,2,3,4);
1114 octet = uip_ipaddr1(&ipaddr);
1115 \endcode
1116 *
1117 * In the example above, the variable "octet" will contain the value 1.
1118 *
1119 * \hideinitializer
1120 */
1121 #define uip_ipaddr1(addr) ((addr)->u8[0])
1122
1123 /**
1124 * Pick the second octet of an IP address.
1125 *
1126 * Picks out the second octet of an IP address.
1127 *
1128 * Example:
1129 \code
1130 uip_ipaddr_t ipaddr;
1131 u8_t octet;
1132
1133 uip_ipaddr(&ipaddr, 1,2,3,4);
1134 octet = uip_ipaddr2(&ipaddr);
1135 \endcode
1136 *
1137 * In the example above, the variable "octet" will contain the value 2.
1138 *
1139 * \hideinitializer
1140 */
1141 #define uip_ipaddr2(addr) ((addr)->u8[1])
1142
1143 /**
1144 * Pick the third octet of an IP address.
1145 *
1146 * Picks out the third octet of an IP address.
1147 *
1148 * Example:
1149 \code
1150 uip_ipaddr_t ipaddr;
1151 u8_t octet;
1152
1153 uip_ipaddr(&ipaddr, 1,2,3,4);
1154 octet = uip_ipaddr3(&ipaddr);
1155 \endcode
1156 *
1157 * In the example above, the variable "octet" will contain the value 3.
1158 *
1159 * \hideinitializer
1160 */
1161 #define uip_ipaddr3(addr) ((addr)->u8[2])
1162
1163 /**
1164 * Pick the fourth octet of an IP address.
1165 *
1166 * Picks out the fourth octet of an IP address.
1167 *
1168 * Example:
1169 \code
1170 uip_ipaddr_t ipaddr;
1171 u8_t octet;
1172
1173 uip_ipaddr(&ipaddr, 1,2,3,4);
1174 octet = uip_ipaddr4(&ipaddr);
1175 \endcode
1176 *
1177 * In the example above, the variable "octet" will contain the value 4.
1178 *
1179 * \hideinitializer
1180 */
1181 #define uip_ipaddr4(addr) ((addr)->u8[3])
1182
1183 /**
1184 * Convert 16-bit quantity from host byte order to network byte order.
1185 *
1186 * This macro is primarily used for converting constants from host
1187 * byte order to network byte order. For converting variables to
1188 * network byte order, use the uip_htons() function instead.
1189 *
1190 * \hideinitializer
1191 */
1192 #ifndef UIP_HTONS
1193 # if UIP_BYTE_ORDER == UIP_BIG_ENDIAN
1194 # define UIP_HTONS(n) (n)
1195 # define UIP_HTONL(n) (n)
1196 # else /* UIP_BYTE_ORDER == UIP_BIG_ENDIAN */
1197 # define UIP_HTONS(n) (u16_t)((((u16_t) (n)) << 8) | (((u16_t) (n)) >> 8))
1198 # define UIP_HTONL(n) (((u32_t)UIP_HTONS(n) << 16) | UIP_HTONS((u32_t)(n) >> 16))
1199 # endif /* UIP_BYTE_ORDER == UIP_BIG_ENDIAN */
1200 #else
1201 #error "UIP_HTONS already defined!"
1202 #endif /* UIP_HTONS */
1203
1204 /**
1205 * Convert 16-bit quantity from host byte order to network byte order.
1206 *
1207 * This function is primarily used for converting variables from host
1208 * byte order to network byte order. For converting constants to
1209 * network byte order, use the UIP_HTONS() macro instead.
1210 */
1211 #ifndef uip_htons
1212 CCIF u16_t uip_htons(u16_t val);
1213 #endif /* uip_htons */
1214 #ifndef uip_ntohs
1215 #define uip_ntohs uip_htons
1216 #endif
1217
1218 #ifndef uip_htonl
1219 CCIF u32_t uip_htonl(u32_t val);
1220 #endif /* uip_htonl */
1221 #ifndef uip_ntohl
1222 #define uip_ntohl uip_htonl
1223 #endif
1224
1225 /** @} */
1226
1227 /**
1228 * Pointer to the application data in the packet buffer.
1229 *
1230 * This pointer points to the application data when the application is
1231 * called. If the application wishes to send data, the application may
1232 * use this space to write the data into before calling uip_send().
1233 */
1234 CCIF extern void *uip_appdata;
1235
1236 #if UIP_URGDATA > 0
1237 /* u8_t *uip_urgdata:
1238 *
1239 * This pointer points to any urgent data that has been received. Only
1240 * present if compiled with support for urgent data (UIP_URGDATA).
1241 */
1242 extern void *uip_urgdata;
1243 #endif /* UIP_URGDATA > 0 */
1244
1245
1246 /**
1247 * \defgroup uipdrivervars Variables used in uIP device drivers
1248 * @{
1249 *
1250 * uIP has a few global variables that are used in device drivers for
1251 * uIP.
1252 */
1253
1254 /**
1255 * The length of the packet in the uip_buf buffer.
1256 *
1257 * The global variable uip_len holds the length of the packet in the
1258 * uip_buf buffer.
1259 *
1260 * When the network device driver calls the uIP input function,
1261 * uip_len should be set to the length of the packet in the uip_buf
1262 * buffer.
1263 *
1264 * When sending packets, the device driver should use the contents of
1265 * the uip_len variable to determine the length of the outgoing
1266 * packet.
1267 *
1268 */
1269 CCIF extern u16_t uip_len;
1270
1271 /**
1272 * The length of the extension headers
1273 */
1274 extern u8_t uip_ext_len;
1275 /** @} */
1276
1277 #if UIP_URGDATA > 0
1278 extern u16_t uip_urglen, uip_surglen;
1279 #endif /* UIP_URGDATA > 0 */
1280
1281
1282 /**
1283 * Representation of a uIP TCP connection.
1284 *
1285 * The uip_conn structure is used for identifying a connection. All
1286 * but one field in the structure are to be considered read-only by an
1287 * application. The only exception is the appstate field whose purpose
1288 * is to let the application store application-specific state (e.g.,
1289 * file pointers) for the connection. The type of this field is
1290 * configured in the "uipopt.h" header file.
1291 */
1292 struct uip_conn {
1293 uip_ipaddr_t ripaddr; /**< The IP address of the remote host. */
1294
1295 u16_t lport; /**< The local TCP port, in network byte order. */
1296 u16_t rport; /**< The local remote TCP port, in network byte
1297 order. */
1298
1299 u8_t rcv_nxt[4]; /**< The sequence number that we expect to
1300 receive next. */
1301 u8_t snd_nxt[4]; /**< The sequence number that was last sent by
1302 us. */
1303 u16_t len; /**< Length of the data that was previously sent. */
1304 u16_t mss; /**< Current maximum segment size for the
1305 connection. */
1306 u16_t initialmss; /**< Initial maximum segment size for the
1307 connection. */
1308 u8_t sa; /**< Retransmission time-out calculation state
1309 variable. */
1310 u8_t sv; /**< Retransmission time-out calculation state
1311 variable. */
1312 u8_t rto; /**< Retransmission time-out. */
1313 u8_t tcpstateflags; /**< TCP state and flags. */
1314 u8_t timer; /**< The retransmission timer. */
1315 u8_t nrtx; /**< The number of retransmissions for the last
1316 segment sent. */
1317
1318 /** The application state. */
1319 uip_tcp_appstate_t appstate;
1320 };
1321
1322
1323 /**
1324 * Pointer to the current TCP connection.
1325 *
1326 * The uip_conn pointer can be used to access the current TCP
1327 * connection.
1328 */
1329
1330 CCIF extern struct uip_conn *uip_conn;
1331 #if UIP_TCP
1332 /* The array containing all uIP connections. */
1333 CCIF extern struct uip_conn uip_conns[UIP_CONNS];
1334 #endif
1335
1336 /**
1337 * \addtogroup uiparch
1338 * @{
1339 */
1340
1341 /**
1342 * 4-byte array used for the 32-bit sequence number calculations.
1343 */
1344 extern u8_t uip_acc32[4];
1345 /** @} */
1346
1347 /**
1348 * Representation of a uIP UDP connection.
1349 */
1350 struct uip_udp_conn {
1351 uip_ipaddr_t ripaddr; /**< The IP address of the remote peer. */
1352 u16_t lport; /**< The local port number in network byte order. */
1353 u16_t rport; /**< The remote port number in network byte order. */
1354 u8_t ttl; /**< Default time-to-live. */
1355
1356 /** The application state. */
1357 uip_udp_appstate_t appstate;
1358 };
1359
1360 /**
1361 * The current UDP connection.
1362 */
1363 extern struct uip_udp_conn *uip_udp_conn;
1364 extern struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS];
1365
1366 struct uip_fallback_interface {
1367 void (*init)(void);
1368 void (*output)(void);
1369 };
1370
1371 #if UIP_CONF_ICMP6
1372 struct uip_icmp6_conn {
1373 uip_icmp6_appstate_t appstate;
1374 };
1375 extern struct uip_icmp6_conn uip_icmp6_conns;
1376 #endif /*UIP_CONF_ICMP6*/
1377
1378 /**
1379 * The uIP TCP/IP statistics.
1380 *
1381 * This is the variable in which the uIP TCP/IP statistics are gathered.
1382 */
1383 #if UIP_STATISTICS == 1
1384 extern struct uip_stats uip_stat;
1385 #define UIP_STAT(s) s
1386 #else
1387 #define UIP_STAT(s)
1388 #endif /* UIP_STATISTICS == 1 */
1389
1390 /**
1391 * The structure holding the TCP/IP statistics that are gathered if
1392 * UIP_STATISTICS is set to 1.
1393 *
1394 */
1395 struct uip_stats {
1396 struct {
1397 uip_stats_t recv; /**< Number of received packets at the IP
1398 layer. */
1399 uip_stats_t sent; /**< Number of sent packets at the IP
1400 layer. */
1401 uip_stats_t forwarded;/**< Number of forwarded packets at the IP
1402 layer. */
1403 uip_stats_t drop; /**< Number of dropped packets at the IP
1404 layer. */
1405 uip_stats_t vhlerr; /**< Number of packets dropped due to wrong
1406 IP version or header length. */
1407 uip_stats_t hblenerr; /**< Number of packets dropped due to wrong
1408 IP length, high byte. */
1409 uip_stats_t lblenerr; /**< Number of packets dropped due to wrong
1410 IP length, low byte. */
1411 uip_stats_t fragerr; /**< Number of packets dropped since they
1412 were IP fragments. */
1413 uip_stats_t chkerr; /**< Number of packets dropped due to IP
1414 checksum errors. */
1415 uip_stats_t protoerr; /**< Number of packets dropped since they
1416 were neither ICMP, UDP nor TCP. */
1417 } ip; /**< IP statistics. */
1418 struct {
1419 uip_stats_t recv; /**< Number of received ICMP packets. */
1420 uip_stats_t sent; /**< Number of sent ICMP packets. */
1421 uip_stats_t drop; /**< Number of dropped ICMP packets. */
1422 uip_stats_t typeerr; /**< Number of ICMP packets with a wrong
1423 type. */
1424 uip_stats_t chkerr; /**< Number of ICMP packets with a bad
1425 checksum. */
1426 } icmp; /**< ICMP statistics. */
1427 #if UIP_TCP
1428 struct {
1429 uip_stats_t recv; /**< Number of recived TCP segments. */
1430 uip_stats_t sent; /**< Number of sent TCP segments. */
1431 uip_stats_t drop; /**< Number of dropped TCP segments. */
1432 uip_stats_t chkerr; /**< Number of TCP segments with a bad
1433 checksum. */
1434 uip_stats_t ackerr; /**< Number of TCP segments with a bad ACK
1435 number. */
1436 uip_stats_t rst; /**< Number of recevied TCP RST (reset) segments. */
1437 uip_stats_t rexmit; /**< Number of retransmitted TCP segments. */
1438 uip_stats_t syndrop; /**< Number of dropped SYNs due to too few
1439 connections was avaliable. */
1440 uip_stats_t synrst; /**< Number of SYNs for closed ports,
1441 triggering a RST. */
1442 } tcp; /**< TCP statistics. */
1443 #endif
1444 #if UIP_UDP
1445 struct {
1446 uip_stats_t drop; /**< Number of dropped UDP segments. */
1447 uip_stats_t recv; /**< Number of recived UDP segments. */
1448 uip_stats_t sent; /**< Number of sent UDP segments. */
1449 uip_stats_t chkerr; /**< Number of UDP segments with a bad
1450 checksum. */
1451 } udp; /**< UDP statistics. */
1452 #endif /* UIP_UDP */
1453 #if UIP_CONF_IPV6
1454 struct {
1455 uip_stats_t drop; /**< Number of dropped ND6 packets. */
1456 uip_stats_t recv; /**< Number of recived ND6 packets */
1457 uip_stats_t sent; /**< Number of sent ND6 packets */
1458 } nd6;
1459 #endif /*UIP_CONF_IPV6*/
1460 };
1461
1462
1463 /*---------------------------------------------------------------------------*/
1464 /* All the stuff below this point is internal to uIP and should not be
1465 * used directly by an application or by a device driver.
1466 */
1467 /*---------------------------------------------------------------------------*/
1468
1469
1470
1471 /* u8_t uip_flags:
1472 *
1473 * When the application is called, uip_flags will contain the flags
1474 * that are defined in this file. Please read below for more
1475 * information.
1476 */
1477 CCIF extern u8_t uip_flags;
1478
1479 /* The following flags may be set in the global variable uip_flags
1480 before calling the application callback. The UIP_ACKDATA,
1481 UIP_NEWDATA, and UIP_CLOSE flags may both be set at the same time,
1482 whereas the others are mutually exclusive. Note that these flags
1483 should *NOT* be accessed directly, but only through the uIP
1484 functions/macros. */
1485
1486 #define UIP_ACKDATA 1 /* Signifies that the outstanding data was
1487 acked and the application should send
1488 out new data instead of retransmitting
1489 the last data. */
1490 #define UIP_NEWDATA 2 /* Flags the fact that the peer has sent
1491 us new data. */
1492 #define UIP_REXMIT 4 /* Tells the application to retransmit the
1493 data that was last sent. */
1494 #define UIP_POLL 8 /* Used for polling the application, to
1495 check if the application has data that
1496 it wants to send. */
1497 #define UIP_CLOSE 16 /* The remote host has closed the
1498 connection, thus the connection has
1499 gone away. Or the application signals
1500 that it wants to close the
1501 connection. */
1502 #define UIP_ABORT 32 /* The remote host has aborted the
1503 connection, thus the connection has
1504 gone away. Or the application signals
1505 that it wants to abort the
1506 connection. */
1507 #define UIP_CONNECTED 64 /* We have got a connection from a remote
1508 host and have set up a new connection
1509 for it, or an active connection has
1510 been successfully established. */
1511
1512 #define UIP_TIMEDOUT 128 /* The connection has been aborted due to
1513 too many retransmissions. */
1514
1515
1516 /**
1517 * \brief process the options within a hop by hop or destination option header
1518 * \retval 0: nothing to send,
1519 * \retval 1: drop pkt
1520 * \retval 2: ICMP error message to send
1521 */
1522 /*static u8_t
1523 uip_ext_hdr_options_process(); */
1524
1525 /* uip_process(flag):
1526 *
1527 * The actual uIP function which does all the work.
1528 */
1529 void uip_process(u8_t flag);
1530
1531 /* The following flags are passed as an argument to the uip_process()
1532 function. They are used to distinguish between the two cases where
1533 uip_process() is called. It can be called either because we have
1534 incoming data that should be processed, or because the periodic
1535 timer has fired. These values are never used directly, but only in
1536 the macros defined in this file. */
1537
1538 #define UIP_DATA 1 /* Tells uIP that there is incoming
1539 data in the uip_buf buffer. The
1540 length of the data is stored in the
1541 global variable uip_len. */
1542 #define UIP_TIMER 2 /* Tells uIP that the periodic timer
1543 has fired. */
1544 #define UIP_POLL_REQUEST 3 /* Tells uIP that a connection should
1545 be polled. */
1546 #define UIP_UDP_SEND_CONN 4 /* Tells uIP that a UDP datagram
1547 should be constructed in the
1548 uip_buf buffer. */
1549 #if UIP_UDP
1550 #define UIP_UDP_TIMER 5
1551 #endif /* UIP_UDP */
1552
1553 /* The TCP states used in the uip_conn->tcpstateflags. */
1554 #define UIP_CLOSED 0
1555 #define UIP_SYN_RCVD 1
1556 #define UIP_SYN_SENT 2
1557 #define UIP_ESTABLISHED 3
1558 #define UIP_FIN_WAIT_1 4
1559 #define UIP_FIN_WAIT_2 5
1560 #define UIP_CLOSING 6
1561 #define UIP_TIME_WAIT 7
1562 #define UIP_LAST_ACK 8
1563 #define UIP_TS_MASK 15
1564
1565 #define UIP_STOPPED 16
1566
1567 /* The TCP and IP headers. */
1568 struct uip_tcpip_hdr {
1569 #if UIP_CONF_IPV6
1570 /* IPv6 header. */
1571 u8_t vtc,
1572 tcflow;
1573 u16_t flow;
1574 u8_t len[2];
1575 u8_t proto, ttl;
1576 uip_ip6addr_t srcipaddr, destipaddr;
1577 #else /* UIP_CONF_IPV6 */
1578 /* IPv4 header. */
1579 u8_t vhl,
1580 tos,
1581 len[2],
1582 ipid[2],
1583 ipoffset[2],
1584 ttl,
1585 proto;
1586 u16_t ipchksum;
1587 uip_ipaddr_t srcipaddr, destipaddr;
1588 #endif /* UIP_CONF_IPV6 */
1589
1590 /* TCP header. */
1591 u16_t srcport,
1592 destport;
1593 u8_t seqno[4],
1594 ackno[4],
1595 tcpoffset,
1596 flags,
1597 wnd[2];
1598 u16_t tcpchksum;
1599 u8_t urgp[2];
1600 u8_t optdata[4];
1601 };
1602
1603 /* The ICMP and IP headers. */
1604 struct uip_icmpip_hdr {
1605 #if UIP_CONF_IPV6
1606 /* IPv6 header. */
1607 u8_t vtc,
1608 tcf;
1609 u16_t flow;
1610 u8_t len[2];
1611 u8_t proto, ttl;
1612 uip_ip6addr_t srcipaddr, destipaddr;
1613 #else /* UIP_CONF_IPV6 */
1614 /* IPv4 header. */
1615 u8_t vhl,
1616 tos,
1617 len[2],
1618 ipid[2],
1619 ipoffset[2],
1620 ttl,
1621 proto;
1622 u16_t ipchksum;
1623 uip_ipaddr_t srcipaddr, destipaddr;
1624 #endif /* UIP_CONF_IPV6 */
1625
1626 /* ICMP header. */
1627 u8_t type, icode;
1628 u16_t icmpchksum;
1629 #if !UIP_CONF_IPV6
1630 u16_t id, seqno;
1631 u8_t payload[1];
1632 #endif /* !UIP_CONF_IPV6 */
1633 };
1634
1635
1636 /* The UDP and IP headers. */
1637 struct uip_udpip_hdr {
1638 #if UIP_CONF_IPV6
1639 /* IPv6 header. */
1640 u8_t vtc,
1641 tcf;
1642 u16_t flow;
1643 u8_t len[2];
1644 u8_t proto, ttl;
1645 uip_ip6addr_t srcipaddr, destipaddr;
1646 #else /* UIP_CONF_IPV6 */
1647 /* IP header. */
1648 u8_t vhl,
1649 tos,
1650 len[2],
1651 ipid[2],
1652 ipoffset[2],
1653 ttl,
1654 proto;
1655 u16_t ipchksum;
1656 uip_ipaddr_t srcipaddr, destipaddr;
1657 #endif /* UIP_CONF_IPV6 */
1658
1659 /* UDP header. */
1660 u16_t srcport,
1661 destport;
1662 u16_t udplen;
1663 u16_t udpchksum;
1664 };
1665
1666 /*
1667 * In IPv6 the length of the L3 headers before the transport header is
1668 * not fixed, due to the possibility to include extension option headers
1669 * after the IP header. hence we split here L3 and L4 headers
1670 */
1671 /* The IP header */
1672 struct uip_ip_hdr {
1673 #if UIP_CONF_IPV6
1674 /* IPV6 header */
1675 u8_t vtc;
1676 u8_t tcflow;
1677 u16_t flow;
1678 u8_t len[2];
1679 u8_t proto, ttl;
1680 uip_ip6addr_t srcipaddr, destipaddr;
1681 #else /* UIP_CONF_IPV6 */
1682 /* IPV4 header */
1683 u8_t vhl,
1684 tos,
1685 len[2],
1686 ipid[2],
1687 ipoffset[2],
1688 ttl,
1689 proto;
1690 u16_t ipchksum;
1691 uip_ipaddr_t srcipaddr, destipaddr;
1692 #endif /* UIP_CONF_IPV6 */
1693 };
1694
1695
1696 /*
1697 * IPv6 extension option headers: we are able to process
1698 * the 4 extension headers defined in RFC2460 (IPv6):
1699 * - Hop by hop option header, destination option header:
1700 * These two are not used by any core IPv6 protocol, hence
1701 * we just read them and go to the next. They convey options,
1702 * the options defined in RFC2460 are Pad1 and PadN, which do
1703 * some padding, and that we do not need to read (the length
1704 * field in the header is enough)
1705 * - Routing header: this one is most notably used by MIPv6,
1706 * which we do not implement, hence we just read it and go
1707 * to the next
1708 * - Fragmentation header: we read this header and are able to
1709 * reassemble packets
1710 *
1711 * We do not offer any means to send packets with extension headers
1712 *
1713 * We do not implement Authentication and ESP headers, which are
1714 * used in IPSec and defined in RFC4302,4303,4305,4385
1715 */
1716 /* common header part */
1717 typedef struct uip_ext_hdr {
1718 u8_t next;
1719 u8_t len;
1720 } uip_ext_hdr;
1721
1722 /* Hop by Hop option header */
1723 typedef struct uip_hbho_hdr {
1724 u8_t next;
1725 u8_t len;
1726 } uip_hbho_hdr;
1727
1728 /* destination option header */
1729 typedef struct uip_desto_hdr {
1730 u8_t next;
1731 u8_t len;
1732 } uip_desto_hdr;
1733
1734 /* We do not define structures for PAD1 and PADN options */
1735
1736 /*
1737 * routing header
1738 * the routing header as 4 common bytes, then routing header type
1739 * specific data there are several types of routing header. Type 0 was
1740 * deprecated as per RFC5095 most notable other type is 2, used in
1741 * RFC3775 (MIPv6) here we do not implement MIPv6, so we just need to
1742 * parse the 4 first bytes
1743 */
1744 typedef struct uip_routing_hdr {
1745 u8_t next;
1746 u8_t len;
1747 u8_t routing_type;
1748 u8_t seg_left;
1749 } uip_routing_hdr;
1750
1751 /* fragmentation header */
1752 typedef struct uip_frag_hdr {
1753 u8_t next;
1754 u8_t res;
1755 u16_t offsetresmore;
1756 u32_t id;
1757 } uip_frag_hdr;
1758
1759 /*
1760 * an option within the destination or hop by hop option headers
1761 * it contains type an length, which is true for all options but PAD1
1762 */
1763 typedef struct uip_ext_hdr_opt {
1764 u8_t type;
1765 u8_t len;
1766 } uip_ext_hdr_opt;
1767
1768 /* PADN option */
1769 typedef struct uip_ext_hdr_opt_padn {
1770 u8_t opt_type;
1771 u8_t opt_len;
1772 } uip_ext_hdr_opt_padn;
1773
1774 /* TCP header */
1775 struct uip_tcp_hdr {
1776 u16_t srcport;
1777 u16_t destport;
1778 u8_t seqno[4];
1779 u8_t ackno[4];
1780 u8_t tcpoffset;
1781 u8_t flags;
1782 u8_t wnd[2];
1783 u16_t tcpchksum;
1784 u8_t urgp[2];
1785 u8_t optdata[4];
1786 };
1787
1788 /* The ICMP headers. */
1789 struct uip_icmp_hdr {
1790 u8_t type, icode;
1791 u16_t icmpchksum;
1792 #if !UIP_CONF_IPV6
1793 u16_t id, seqno;
1794 #endif /* !UIP_CONF_IPV6 */
1795 };
1796
1797
1798 /* The UDP headers. */
1799 struct uip_udp_hdr {
1800 u16_t srcport;
1801 u16_t destport;
1802 u16_t udplen;
1803 u16_t udpchksum;
1804 };
1805
1806
1807 /**
1808 * The buffer size available for user data in the \ref uip_buf buffer.
1809 *
1810 * This macro holds the available size for user data in the \ref
1811 * uip_buf buffer. The macro is intended to be used for checking
1812 * bounds of available user data.
1813 *
1814 * Example:
1815 \code
1816 snprintf(uip_appdata, UIP_APPDATA_SIZE, "%u\n", i);
1817 \endcode
1818 *
1819 * \hideinitializer
1820 */
1821 #define UIP_APPDATA_SIZE (UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN)
1822 #define UIP_APPDATA_PTR (void *)&uip_buf[UIP_LLH_LEN + UIP_TCPIP_HLEN]
1823
1824 #define UIP_PROTO_ICMP 1
1825 #define UIP_PROTO_TCP 6
1826 #define UIP_PROTO_UDP 17
1827 #define UIP_PROTO_ICMP6 58
1828
1829
1830 #if UIP_CONF_IPV6
1831 /** @{ */
1832 /** \brief extension headers types */
1833 #define UIP_PROTO_HBHO 0
1834 #define UIP_PROTO_DESTO 60
1835 #define UIP_PROTO_ROUTING 43
1836 #define UIP_PROTO_FRAG 44
1837 #define UIP_PROTO_NONE 59
1838 /** @} */
1839
1840 /** @{ */
1841 /** \brief Destination and Hop By Hop extension headers option types */
1842 #define UIP_EXT_HDR_OPT_PAD1 0
1843 #define UIP_EXT_HDR_OPT_PADN 1
1844 /** @} */
1845
1846 /** @{ */
1847 /**
1848 * \brief Bitmaps for extension header processing
1849 *
1850 * When processing extension headers, we should record somehow which one we
1851 * see, because you cannot have twice the same header, except for destination
1852 * We store all this in one u8_t bitmap one bit for each header expected. The
1853 * order in the bitmap is the order recommended in RFC2460
1854 */
1855 #define UIP_EXT_HDR_BITMAP_HBHO 0x01
1856 #define UIP_EXT_HDR_BITMAP_DESTO1 0x02
1857 #define UIP_EXT_HDR_BITMAP_ROUTING 0x04
1858 #define UIP_EXT_HDR_BITMAP_FRAG 0x08
1859 #define UIP_EXT_HDR_BITMAP_AH 0x10
1860 #define UIP_EXT_HDR_BITMAP_ESP 0x20
1861 #define UIP_EXT_HDR_BITMAP_DESTO2 0x40
1862 /** @} */
1863
1864
1865 #endif /* UIP_CONF_IPV6 */
1866
1867
1868 /* Header sizes. */
1869 #if UIP_CONF_IPV6
1870 #define UIP_IPH_LEN 40
1871 #define UIP_FRAGH_LEN 8
1872 #else /* UIP_CONF_IPV6 */
1873 #define UIP_IPH_LEN 20 /* Size of IP header */
1874 #endif /* UIP_CONF_IPV6 */
1875
1876 #define UIP_UDPH_LEN 8 /* Size of UDP header */
1877 #define UIP_TCPH_LEN 20 /* Size of TCP header */
1878 #ifdef UIP_IPH_LEN
1879 #define UIP_ICMPH_LEN 4 /* Size of ICMP header */
1880 #endif
1881 #define UIP_IPUDPH_LEN (UIP_UDPH_LEN + UIP_IPH_LEN) /* Size of IP +
1882 * UDP
1883 * header */
1884 #define UIP_IPTCPH_LEN (UIP_TCPH_LEN + UIP_IPH_LEN) /* Size of IP +
1885 * TCP
1886 * header */
1887 #define UIP_TCPIP_HLEN UIP_IPTCPH_LEN
1888 #define UIP_IPICMPH_LEN (UIP_IPH_LEN + UIP_ICMPH_LEN) /* size of ICMP
1889 + IP header */
1890 #define UIP_LLIPH_LEN (UIP_LLH_LEN + UIP_IPH_LEN) /* size of L2
1891 + IP header */
1892 #if UIP_CONF_IPV6
1893 /**
1894 * The sums below are quite used in ND. When used for uip_buf, we
1895 * include link layer length when used for uip_len, we do not, hence
1896 * we need values with and without LLH_LEN we do not use capital
1897 * letters as these values are variable
1898 */
1899 #define uip_l2_l3_hdr_len (UIP_LLH_LEN + UIP_IPH_LEN + uip_ext_len)
1900 #define uip_l2_l3_icmp_hdr_len (UIP_LLH_LEN + UIP_IPH_LEN + uip_ext_len + UIP_ICMPH_LEN)
1901 #define uip_l3_hdr_len (UIP_IPH_LEN + uip_ext_len)
1902 #define uip_l3_icmp_hdr_len (UIP_IPH_LEN + uip_ext_len + UIP_ICMPH_LEN)
1903 #endif /*UIP_CONF_IPV6*/
1904
1905
1906 #if UIP_FIXEDADDR
1907 CCIF extern const uip_ipaddr_t uip_hostaddr, uip_netmask, uip_draddr;
1908 #else /* UIP_FIXEDADDR */
1909 CCIF extern uip_ipaddr_t uip_hostaddr, uip_netmask, uip_draddr;
1910 #endif /* UIP_FIXEDADDR */
1911 CCIF extern const uip_ipaddr_t uip_broadcast_addr;
1912 CCIF extern const uip_ipaddr_t uip_all_zeroes_addr;
1913
1914 #if UIP_FIXEDETHADDR
1915 CCIF extern const uip_lladdr_t uip_lladdr;
1916 #else
1917 CCIF extern uip_lladdr_t uip_lladdr;
1918 #endif
1919
1920
1921
1922
1923 #ifdef UIP_CONF_IPV6
1924 /** Length of the link local prefix */
1925 #define UIP_LLPREF_LEN 10
1926
1927 /**
1928 * \brief Is IPv6 address a the unspecified address
1929 * a is of type uip_ipaddr_t
1930 */
1931 #define uip_is_addr_loopback(a) \
1932 ((((a)->u16[0]) == 0) && \
1933 (((a)->u16[1]) == 0) && \
1934 (((a)->u16[2]) == 0) && \
1935 (((a)->u16[3]) == 0) && \
1936 (((a)->u16[4]) == 0) && \
1937 (((a)->u16[5]) == 0) && \
1938 (((a)->u16[6]) == 0) && \
1939 (((a)->u16[7]) == 1))
1940 /**
1941 * \brief Is IPv6 address a the unspecified address
1942 * a is of type uip_ipaddr_t
1943 */
1944 #define uip_is_addr_unspecified(a) \
1945 ((((a)->u16[0]) == 0) && \
1946 (((a)->u16[1]) == 0) && \
1947 (((a)->u16[2]) == 0) && \
1948 (((a)->u16[3]) == 0) && \
1949 (((a)->u16[4]) == 0) && \
1950 (((a)->u16[5]) == 0) && \
1951 (((a)->u16[6]) == 0) && \
1952 (((a)->u16[7]) == 0))
1953
1954 /** \brief Is IPv6 address a the link local all-nodes multicast address */
1955 #define uip_is_addr_linklocal_allnodes_mcast(a) \
1956 ((((a)->u8[0]) == 0xff) && \
1957 (((a)->u8[1]) == 0x02) && \
1958 (((a)->u16[1]) == 0) && \
1959 (((a)->u16[2]) == 0) && \
1960 (((a)->u16[3]) == 0) && \
1961 (((a)->u16[4]) == 0) && \
1962 (((a)->u16[5]) == 0) && \
1963 (((a)->u16[6]) == 0) && \
1964 (((a)->u8[14]) == 0) && \
1965 (((a)->u8[15]) == 0x01))
1966
1967 /** \brief Is IPv6 address a the link local all-routers multicast address */
1968 #define uip_is_addr_linklocal_allrouters_mcast(a) \
1969 ((((a)->u8[0]) == 0xff) && \
1970 (((a)->u8[1]) == 0x02) && \
1971 (((a)->u16[1]) == 0) && \
1972 (((a)->u16[2]) == 0) && \
1973 (((a)->u16[3]) == 0) && \
1974 (((a)->u16[4]) == 0) && \
1975 (((a)->u16[5]) == 0) && \
1976 (((a)->u16[6]) == 0) && \
1977 (((a)->u8[14]) == 0) && \
1978 (((a)->u8[15]) == 0x02))
1979
1980 /**
1981 * \brief Checks whether the address a is link local.
1982 * a is of type uip_ipaddr_t
1983 */
1984 #define uip_is_addr_linklocal(a) \
1985 ((a)->u8[0] == 0xfe && \
1986 (a)->u8[1] == 0x80)
1987
1988 /** \brief set IP address a to unspecified */
1989 #define uip_create_unspecified(a) uip_ip6addr(a, 0, 0, 0, 0, 0, 0, 0, 0)
1990
1991 /** \brief set IP address a to the link local all-nodes multicast address */
1992 #define uip_create_linklocal_allnodes_mcast(a) uip_ip6addr(a, 0xff02, 0, 0, 0, 0, 0, 0, 0x0001)
1993
1994 /** \brief set IP address a to the link local all-routers multicast address */
1995 #define uip_create_linklocal_allrouters_mcast(a) uip_ip6addr(a, 0xff02, 0, 0, 0, 0, 0, 0, 0x0002)
1996 #define uip_create_linklocal_prefix(addr) do { \
1997 (addr)->u16[0] = UIP_HTONS(0xfe80); \
1998 (addr)->u16[1] = 0; \
1999 (addr)->u16[2] = 0; \
2000 (addr)->u16[3] = 0; \
2001 } while(0)
2002
2003 /**
2004 * \brief is addr (a) a solicited node multicast address, see RFC3513
2005 * a is of type uip_ipaddr_t*
2006 */
2007 #define uip_is_addr_solicited_node(a) \
2008 ((((a)->u8[0]) == 0xFF) && \
2009 (((a)->u8[1]) == 0x02) && \
2010 (((a)->u16[1]) == 0x00) && \
2011 (((a)->u16[2]) == 0x00) && \
2012 (((a)->u16[3]) == 0x00) && \
2013 (((a)->u16[4]) == 0x00) && \
2014 (((a)->u8[10]) == 0x00) && \
2015 (((a)->u8[11]) == 0x01) && \
2016 (((a)->u8[12]) == 0xFF))
2017
2018 /**
2019 * \briefput in b the solicited node address corresponding to address a
2020 * both a and b are of type uip_ipaddr_t*
2021 * */
2022 #define uip_create_solicited_node(a, b) \
2023 (((b)->u8[0]) = 0xFF); \
2024 (((b)->u8[1]) = 0x02); \
2025 (((b)->u16[1]) = 0); \
2026 (((b)->u16[2]) = 0); \
2027 (((b)->u16[3]) = 0); \
2028 (((b)->u16[4]) = 0); \
2029 (((b)->u8[10]) = 0); \
2030 (((b)->u8[11]) = 0x01); \
2031 (((b)->u8[12]) = 0xFF); \
2032 (((b)->u8[13]) = ((a)->u8[13])); \
2033 (((b)->u16[7]) = ((a)->u16[7]))
2034
2035 /**
2036 * \brief is addr (a) a link local unicast address, see RFC3513
2037 * i.e. is (a) on prefix FE80::/10
2038 * a is of type uip_ipaddr_t*
2039 */
2040 #define uip_is_addr_link_local(a) \
2041 ((((a)->u8[0]) == 0xFE) && \
2042 (((a)->u8[1]) == 0x80))
2043
2044 /**
2045 * \brief was addr (a) forged based on the mac address m
2046 * a type is uip_ipaddr_t
2047 * m type is uiplladdr_t
2048 */
2049 #if UIP_CONF_LL_802154
2050 #define uip_is_addr_mac_addr_based(a, m) \
2051 ((((a)->u8[8]) == (((m)->addr[0]) ^ 0x02)) && \
2052 (((a)->u8[9]) == (m)->addr[1]) && \
2053 (((a)->u8[10]) == (m)->addr[2]) && \
2054 (((a)->u8[11]) == (m)->addr[3]) && \
2055 (((a)->u8[12]) == (m)->addr[4]) && \
2056 (((a)->u8[13]) == (m)->addr[5]) && \
2057 (((a)->u8[14]) == (m)->addr[6]) && \
2058 (((a)->u8[15]) == (m)->addr[7]))
2059 #else
2060
2061 #define uip_is_addr_mac_addr_based(a, m) \
2062 ((((a)->u8[8]) == (((m)->addr[0]) | 0x02)) && \
2063 (((a)->u8[9]) == (m)->addr[1]) && \
2064 (((a)->u8[10]) == (m)->addr[2]) && \
2065 (((a)->u8[11]) == 0xff) && \
2066 (((a)->u8[12]) == 0xfe) && \
2067 (((a)->u8[13]) == (m)->addr[3]) && \
2068 (((a)->u8[14]) == (m)->addr[4]) && \
2069 (((a)->u8[15]) == (m)->addr[5]))
2070
2071 #endif /*UIP_CONF_LL_802154*/
2072
2073 /**
2074 * \brief is address a multicast address, see RFC 3513
2075 * a is of type uip_ipaddr_t*
2076 * */
2077 #define uip_is_addr_mcast(a) \
2078 (((a)->u8[0]) == 0xFF)
2079
2080 /**
2081 * \brief is group-id of multicast address a
2082 * the all nodes group-id
2083 */
2084 #define uip_is_mcast_group_id_all_nodes(a) \
2085 ((((a)->u16[1]) == 0) && \
2086 (((a)->u16[2]) == 0) && \
2087 (((a)->u16[3]) == 0) && \
2088 (((a)->u16[4]) == 0) && \
2089 (((a)->u16[5]) == 0) && \
2090 (((a)->u16[6]) == 0) && \
2091 (((a)->u8[14]) == 0) && \
2092 (((a)->u8[15]) == 1))
2093
2094 /**
2095 * \brief is group-id of multicast address a
2096 * the all routers group-id
2097 */
2098 #define uip_is_mcast_group_id_all_routers(a) \
2099 ((((a)->u16[1]) == 0) && \
2100 (((a)->u16[2]) == 0) && \
2101 (((a)->u16[3]) == 0) && \
2102 (((a)->u16[4]) == 0) && \
2103 (((a)->u16[5]) == 0) && \
2104 (((a)->u16[6]) == 0) && \
2105 (((a)->u8[14]) == 0) && \
2106 (((a)->u8[15]) == 2))
2107
2108
2109 /**
2110 * \brief are last three bytes of both addresses equal?
2111 * This is used to compare solicited node multicast addresses
2112 */
2113 #define uip_are_solicited_bytes_equal(a, b) \
2114 ((((a)->u8[13]) == ((b)->u8[13])) && \
2115 (((a)->u8[14]) == ((b)->u8[14])) && \
2116 (((a)->u8[15]) == ((b)->u8[15])))
2117
2118 #endif /*UIP_CONF_IPV6*/
2119
2120 /**
2121 * Calculate the Internet checksum over a buffer.
2122 *
2123 * The Internet checksum is the one's complement of the one's
2124 * complement sum of all 16-bit words in the buffer.
2125 *
2126 * See RFC1071.
2127 *
2128 * \param buf A pointer to the buffer over which the checksum is to be
2129 * computed.
2130 *
2131 * \param len The length of the buffer over which the checksum is to
2132 * be computed.
2133 *
2134 * \return The Internet checksum of the buffer.
2135 */
2136 u16_t uip_chksum(u16_t *buf, u16_t len);
2137
2138 /**
2139 * Calculate the IP header checksum of the packet header in uip_buf.
2140 *
2141 * The IP header checksum is the Internet checksum of the 20 bytes of
2142 * the IP header.
2143 *
2144 * \return The IP header checksum of the IP header in the uip_buf
2145 * buffer.
2146 */
2147 u16_t uip_ipchksum(void);
2148
2149 /**
2150 * Calculate the TCP checksum of the packet in uip_buf and uip_appdata.
2151 *
2152 * The TCP checksum is the Internet checksum of data contents of the
2153 * TCP segment, and a pseudo-header as defined in RFC793.
2154 *
2155 * \return The TCP checksum of the TCP segment in uip_buf and pointed
2156 * to by uip_appdata.
2157 */
2158 u16_t uip_tcpchksum(void);
2159
2160 /**
2161 * Calculate the UDP checksum of the packet in uip_buf and uip_appdata.
2162 *
2163 * The UDP checksum is the Internet checksum of data contents of the
2164 * UDP segment, and a pseudo-header as defined in RFC768.
2165 *
2166 * \return The UDP checksum of the UDP segment in uip_buf and pointed
2167 * to by uip_appdata.
2168 */
2169 u16_t uip_udpchksum(void);
2170
2171 /**
2172 * Calculate the ICMP checksum of the packet in uip_buf.
2173 *
2174 * \return The ICMP checksum of the ICMP packet in uip_buf
2175 */
2176 u16_t uip_icmp6chksum(void);
2177
2178
2179 #endif /* __UIP_H__ */
2180
2181
2182 /** @} */