comparison main.c @ 319:9621436cfa07

Add eeprom stuff
author Matt Johnston <matt@ucc.asn.au>
date Sat, 19 May 2012 23:59:12 +0800
parents 31199b2941f6
children 426fb44ece3f
comparison
equal deleted inserted replaced
318:31199b2941f6 319:9621436cfa07
4 * License: <insert your license reference here> 4 * License: <insert your license reference here>
5 */ 5 */
6 6
7 #include <stdio.h> 7 #include <stdio.h>
8 #include <string.h> 8 #include <string.h>
9 #include <stddef.h>
9 #include <avr/io.h> 10 #include <avr/io.h>
10 #include <avr/interrupt.h> 11 #include <avr/interrupt.h>
11 #include <avr/sleep.h> 12 #include <avr/sleep.h>
12 #include <util/delay.h> 13 #include <util/delay.h>
13 #include <avr/pgmspace.h> 14 #include <avr/pgmspace.h>
15 #include <avr/eeprom.h>
14 #include <util/crc16.h> 16 #include <util/crc16.h>
15 17
16 // for DWORD of get_fattime() 18 // for DWORD of get_fattime()
17 #include "integer.h" 19 #include "integer.h"
18 20
19 #include "simple_ds18b20.h" 21 #include "simple_ds18b20.h"
22 #include "onewire.h"
20 23
21 // configuration params 24 // configuration params
22 // - measurement interval 25 // - measurement interval
23 // - transmit interval 26 // - transmit interval
24 // - bluetooth params 27 // - bluetooth params
26 29
27 // 1 second. we have 1024 prescaler, 32768 crystal. 30 // 1 second. we have 1024 prescaler, 32768 crystal.
28 #define SLEEP_COMPARE 32 31 #define SLEEP_COMPARE 32
29 #define MEASURE_WAKE 60 32 #define MEASURE_WAKE 60
30 33
34 #define VALUE_NOSENSOR -9000
35 #define VALUE_BROKEN -8000
36
31 #define COMMS_WAKE 3600 37 #define COMMS_WAKE 3600
32 38
33 #define BAUD 19200 39 #define BAUD 19200
34 #define UBRR ((F_CPU)/8/(BAUD)-1) 40 #define UBRR ((F_CPU)/8/(BAUD)-1)
35 41
36 #define PORT_LED PORTC 42 #define PORT_LED PORTC
37 #define DDR_LED DDRC 43 #define DDR_LED DDRC
38 #define PIN_LED PC4 44 #define PIN_LED PC4
39 45
40 #define NUM_MEASUREMENTS 300 46 #define NUM_MEASUREMENTS 100
47 #define MAX_SENSORS 5
41 48
42 int uart_putchar(char c, FILE *stream); 49 int uart_putchar(char c, FILE *stream);
43 static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL, 50 static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL,
44 _FDEV_SETUP_WRITE); 51 _FDEV_SETUP_WRITE);
45 52
46 static uint8_t n_measurements = 0; 53 static uint16_t n_measurements = 0;
47 // stored as 1/5 degree above 0 54 // stored as decidegrees
48 static uint8_t measurements[NUM_MEASUREMENTS]; 55 static int16_t measurements[MAX_SENSORS][NUM_MEASUREMENTS];
49 static uint8_t internal_measurements[NUM_MEASUREMENTS];
50 56
51 // boolean flags 57 // boolean flags
52 static uint8_t need_measurement = 0; 58 static uint8_t need_measurement = 0;
53 static uint8_t need_comms = 0; 59 static uint8_t need_comms = 0;
54 static uint8_t comms_done = 0; 60 static uint8_t comms_done = 0;
56 static uint8_t readpos = 0; 62 static uint8_t readpos = 0;
57 static char readbuf[30]; 63 static char readbuf[30];
58 64
59 static uint8_t measure_count = 0; 65 static uint8_t measure_count = 0;
60 static uint16_t comms_count = 0; 66 static uint16_t comms_count = 0;
67
68 // thanks to http://projectgus.com/2010/07/eeprom-access-with-arduino/
69 #define eeprom_read_to(dst_p, eeprom_field, dst_size) eeprom_read_block((dst_p), (void *)offsetof(struct __eeprom_data, eeprom_field), (dst_size))
70 #define eeprom_read(dst, eeprom_field) eeprom_read_to((&dst), eeprom_field, sizeof(dst))
71 #define eeprom_write_from(src_p, eeprom_field, src_size) eeprom_write_block((src_p), (void *)offsetof(struct __eeprom_data, eeprom_field), (src_size))
72 #define eeprom_write(src, eeprom_field) { eeprom_write_from(&src, eeprom_field, sizeof(src)); }
73
74 #define EXPECT_MAGIC 0x67c9
75
76 struct __attribute__ ((__packed__)) __eeprom_data {
77 uint16_t magic;
78 uint8_t n_sensors;
79 uint8_t sensor_id[MAX_SENSORS][8];
80 };
61 81
62 #define DEBUG(str) printf_P(PSTR(str)) 82 #define DEBUG(str) printf_P(PSTR(str))
63 83
64 static void deep_sleep(); 84 static void deep_sleep();
65 85
110 130
111 static void 131 static void
112 cmd_fetch() 132 cmd_fetch()
113 { 133 {
114 uint16_t crc = 0; 134 uint16_t crc = 0;
115 int i; 135 uint16_t sens;
136 eeprom_read(sens, n_sensors);
137
116 printf_P(PSTR("%d measurements\n"), n_measurements); 138 printf_P(PSTR("%d measurements\n"), n_measurements);
117 for (i = 0; i < n_measurements; i++) 139 for (uint16_t i = 0; i < n_measurements; i++)
118 { 140 {
119 printf_P(PSTR("%3d : %d\n"), i, measurements[i]); 141 printf_P(PSTR("%3d :"), i);
120 crc = _crc_ccitt_update(crc, measurements[i]); 142 for (uint8_t s = 0; s < sens; s++)
143 {
144 printf_P(PSTR(" %6d"), measurements[s][i]);
145 crc = _crc_ccitt_update(crc, measurements[s][i]);
146 }
147 putchar('\n');
121 } 148 }
122 printf_P(PSTR("CRC : %d\n"), crc); 149 printf_P(PSTR("CRC : %d\n"), crc);
123 } 150 }
124 151
125 static void 152 static void
146 173
147 static void 174 static void
148 cmd_sensors() 175 cmd_sensors()
149 { 176 {
150 uint8_t ret = simple_ds18b20_start_meas(NULL); 177 uint8_t ret = simple_ds18b20_start_meas(NULL);
151 printf("All sensors, ret %d, waiting...\n", ret); 178 printf_P(("All sensors, ret %d, waiting...\n"), ret);
152 _delay_ms(DS18B20_TCONV_12BIT); 179 _delay_ms(DS18B20_TCONV_12BIT);
153 simple_ds18b20_read_all(); 180 simple_ds18b20_read_all();
154 } 181 }
155 182
183 // 0 on success
184 static uint8_t
185 get_hex_string(const char *hex, uint8_t *out, uint8_t size)
186 {
187 uint8_t upper;
188 uint8_t o;
189 for (uint8_t i = 0, z = 0; o < size; i++)
190 {
191 uint8_t h = hex[i];
192 if (h >= 'A' && h <= 'F')
193 {
194 // lower case
195 h += 0x20;
196 }
197 uint8_t nibble;
198 if (h >= '0' && h <= '9')
199 {
200 nibble = h - '0';
201 }
202 else if (h >= 'a' && h <= 'f')
203 {
204 nibble = 10 + h - 'a';
205 }
206 else if (h == ' ' || h == ':')
207 {
208 continue;
209 }
210 else
211 {
212 printf_P(PSTR("Bad hex 0x%x '%c'\n"), hex[i], hex[i]);
213 return 1;
214 }
215
216 if (z % 2 == 0)
217 {
218 upper = nibble << 4;
219 }
220 else
221 {
222 out[o] = upper | nibble;
223 o++;
224 }
225
226 z++;
227 }
228
229 if (o != size)
230 {
231 printf_P(PSTR("Short hex\n"));
232 return 1;
233 }
234 return 0;
235 }
236
237 static void
238 add_sensor(uint8_t *id)
239 {
240 uint8_t n;
241 eeprom_read(n, n_sensors);
242 if (n < MAX_SENSORS)
243 {
244 cli();
245 eeprom_write_from(id, sensor_id[n], 8);
246 n++;
247 eeprom_write(n, n_sensors);
248 sei();
249 printf_P(PSTR("Added sensor %d : "), n);
250 printhex(id, 8);
251 putchar('\n');
252 }
253 else
254 {
255 printf_P(PSTR("Too many sensors\n"));
256 }
257 }
258
259 static void
260 cmd_add_all()
261 {
262 uint8_t id[OW_ROMCODE_SIZE];
263 uint8_t sp[DS18X20_SP_SIZE];
264 printf_P("Adding all\n");
265 ow_reset();
266 for( uint8_t diff = OW_SEARCH_FIRST; diff != OW_LAST_DEVICE; )
267 {
268 diff = ow_rom_search( diff, &id[0] );
269 if( diff == OW_PRESENCE_ERR ) {
270 printf_P( PSTR("No Sensor found\r") );
271 return;
272 }
273
274 if( diff == OW_DATA_ERR ) {
275 printf_P( PSTR("Bus Error\r") );
276 return;
277 }
278 add_sensor(id);
279 }
280 }
281
282 static void
283 cmd_add_sensor(const char* hex_addr)
284 {
285 uint8_t id[8];
286 uint8_t ret = get_hex_string(hex_addr, id, 8);
287 if (ret)
288 {
289 return;
290 }
291 add_sensor(id);
292
293 }
294
295 static void
296 cmd_init()
297 {
298 printf_P(PSTR("Resetting sensor list\n"));
299 uint8_t zero = 0;
300 cli();
301 eeprom_write(zero, n_sensors);
302 sei();
303 printf_P(PSTR("Done.\n"));
304 }
305
306 static void
307 check_first_startup()
308 {
309 uint16_t magic;
310 eeprom_read(magic, magic);
311 if (magic != EXPECT_MAGIC)
312 {
313 printf_P(PSTR("First boot, looking for sensors...\n"));
314 cmd_init();
315 cmd_add_all();
316 }
317 }
318
156 static void 319 static void
157 read_handler() 320 read_handler()
158 { 321 {
159 if (strcmp_P(readbuf, PSTR("fetch")) == 0) 322 if (strcmp_P(readbuf, PSTR("fetch")) == 0)
160 { 323 {
173 cmd_measure(); 336 cmd_measure();
174 } 337 }
175 else if (strcmp_P(readbuf, PSTR("sensors")) == 0) 338 else if (strcmp_P(readbuf, PSTR("sensors")) == 0)
176 { 339 {
177 cmd_sensors(); 340 cmd_sensors();
341 }
342 else if (strncmp_P(readbuf, PSTR("adds "), strlen("adds ")) == 0)
343 {
344 cmd_add_sensor(readbuf + strlen("adds "));
345 }
346 else if (strcmp_P(readbuf, PSTR("addall"))== 0)
347 {
348 cmd_add_all();
349 }
350 else if (strcmp_P(readbuf, PSTR("init")) == 0)
351 {
352 cmd_init();
178 } 353 }
179 else 354 else
180 { 355 {
181 printf_P(PSTR("Bad command\n")); 356 printf_P(PSTR("Bad command\n"));
182 } 357 }
273 float res_volts = 1.1 * f_measure / f_11; 448 float res_volts = 1.1 * f_measure / f_11;
274 449
275 // 10mV/degree 450 // 10mV/degree
276 // scale to 1/5 degree units above 0C 451 // scale to 1/5 degree units above 0C
277 int temp = (res_volts - 2.73) * 500; 452 int temp = (res_volts - 2.73) * 500;
278 measurements[n_measurements] = temp; 453 // XXX fixme
454 //measurements[n_measurements] = temp;
279 // XXX something if it hits the limit 455 // XXX something if it hits the limit
280 456
281 // measure AVR internal temperature against 1.1 ref. 457 // measure AVR internal temperature against 1.1 ref.
282 ADMUX = _BV(ADLAR) | _BV(MUX3) | _BV(REFS1) | _BV(REFS0); 458 ADMUX = _BV(ADLAR) | _BV(MUX3) | _BV(REFS1) | _BV(REFS0);
283 ADCSRA |= _BV(ADSC); 459 ADCSRA |= _BV(ADSC);
287 463
288 float internal_volts = res_internal * (1.1 / 1024.0); 464 float internal_volts = res_internal * (1.1 / 1024.0);
289 465
290 // 1mV/degree 466 // 1mV/degree
291 int internal_temp = (internal_volts - 2.73) * 5000; 467 int internal_temp = (internal_volts - 2.73) * 5000;
292 internal_measurements[n_measurements] = internal_temp; 468 // XXX fixme
469 //internal_measurements[n_measurements] = internal_temp;
293 470
294 printf_P("measure %d: external %d, internal %d, 1.1 %d\n", 471 printf_P("measure %d: external %d, internal %d, 1.1 %d\n",
295 n_measurements, temp, internal_temp, f_11); 472 n_measurements, temp, internal_temp, f_11);
296 473
297 n_measurements++; 474 n_measurements++;
299 } 476 }
300 477
301 static void 478 static void
302 do_measurement() 479 do_measurement()
303 { 480 {
304 printf("do_measurement\n"); 481 uint8_t n_sensors;
305 need_measurement = 0; 482 eeprom_read(n_sensors, n_sensors);
306 483
484 uint8_t ret = simple_ds18b20_start_meas(NULL);
485 printf_P(("Read all sensors, ret %d, waiting...\n"), ret);
486 _delay_ms(DS18B20_TCONV_12BIT);
487
488 if (n_measurements == NUM_MEASUREMENTS)
489 {
490 printf_P(PSTR("Measurements overflow\n"));
491 n_measurements = 0;
492 }
493
494 for (uint8_t n = 0; n < MAX_SENSORS; n++)
495 {
496 int16_t decicelsius;
497 if (n >= n_sensors)
498 {
499 decicelsius = VALUE_NOSENSOR;
500 }
501 else
502 {
503 uint8_t id[8];
504 eeprom_read_to(id, sensor_id[n], 8);
505
506 uint8_t ret = simple_ds18b20_read_decicelsius(id, &decicelsius);
507 if (ret != DS18X20_OK)
508 {
509 decicelsius = VALUE_BROKEN;
510 }
511 }
512 measurements[n_measurements][n] = decicelsius;
513 }
307 //do_adc_335(); 514 //do_adc_335();
308 } 515 }
309 516
310 static void 517 static void
311 do_comms() 518 do_comms()
346 PORT_LED &= ~_BV(PIN_LED); 553 PORT_LED &= ~_BV(PIN_LED);
347 _delay_ms(1); 554 _delay_ms(1);
348 PORT_LED |= _BV(PIN_LED); 555 PORT_LED |= _BV(PIN_LED);
349 } 556 }
350 557
558 #if 0
351 static void 559 static void
352 long_delay(int ms) 560 long_delay(int ms)
353 { 561 {
354 int iter = ms / 100; 562 int iter = ms / 100;
355 563
356 for (int i = 0; i < iter; i++) 564 for (int i = 0; i < iter; i++)
357 { 565 {
358 _delay_ms(100); 566 _delay_ms(100);
359 } 567 }
360 } 568 }
569 #endif
361 570
362 ISR(BADISR_vect) 571 ISR(BADISR_vect)
363 { 572 {
364 uart_on(); 573 uart_on();
365 printf_P(PSTR("Bad interrupt\n")); 574 printf_P(PSTR("Bad interrupt\n"));
373 // divide by 4 582 // divide by 4
374 CLKPR = _BV(CLKPS1); 583 CLKPR = _BV(CLKPS1);
375 sei(); 584 sei();
376 } 585 }
377 586
378 static void
379 dump_ds18x20()
380 {
381 }
382
383 int main(void) 587 int main(void)
384 { 588 {
385 set_2mhz(); 589 set_2mhz();
386 590
387 DDR_LED |= _BV(PIN_LED); 591 DDR_LED |= _BV(PIN_LED);
389 593
390 stdout = &mystdout; 594 stdout = &mystdout;
391 uart_on(); 595 uart_on();
392 596
393 fprintf_P(&mystdout, PSTR("hello %d\n"), 12); 597 fprintf_P(&mystdout, PSTR("hello %d\n"), 12);
598
599 check_first_startup();
600
394 uart_off(); 601 uart_off();
395 602
396 // turn off everything except timer2 603 // turn off everything except timer2
397 //PRR = _BV(PRTWI) | _BV(PRTIM0) | _BV(PRTIM1) | _BV(PRSPI) | _BV(PRUSART0) | _BV(PRADC); 604 //PRR = _BV(PRTWI) | _BV(PRTIM0) | _BV(PRTIM1) | _BV(PRSPI) | _BV(PRUSART0) | _BV(PRADC);
398 605
399 // for testing 606 // for testing
400 uart_on(); 607 uart_on();
401 608
402 sei(); 609 sei();
403 610
404 #if 0
405 // set up counter2. 611 // set up counter2.
406 // COM21 COM20 Set OC2 on Compare Match (p116) 612 // COM21 COM20 Set OC2 on Compare Match (p116)
407 // WGM21 Clear counter on compare 613 // WGM21 Clear counter on compare
408 TCCR2A = _BV(COM2A1) | _BV(COM2A0) | _BV(WGM21); 614 TCCR2A = _BV(COM2A1) | _BV(COM2A0);// | _BV(WGM21);
409 // CS22 CS21 CS20 clk/1024 615 // CS22 CS21 CS20 clk/1024
410 TCCR2B = _BV(CS22) | _BV(CS21) | _BV(CS20); 616 TCCR2B = _BV(CS22) | _BV(CS21) | _BV(CS20);
411 // set async mode 617 // set async mode
412 ASSR |= _BV(AS2); 618 ASSR |= _BV(AS2);
413 // interrupt 619 // interrupt
414 TIMSK2 = _BV(OCIE2A); 620 TIMSK2 = _BV(OCIE2A);
415 #endif
416 621
417 for (;;) 622 for (;;)
418 { 623 {
419 do_comms(); 624 do_comms();
420 } 625 }