Mercurial > templog
diff old/main.c @ 203:11a1b59b0624
Move old stuff to its own place
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sun, 30 Mar 2014 20:21:56 +0800 |
parents | main.c@9091411be841 |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/old/main.c Sun Mar 30 20:21:56 2014 +0800 @@ -0,0 +1,1200 @@ +#include <stdio.h> +#include <string.h> +#include <stddef.h> +#include <stdbool.h> +#include <stdlib.h> +#include <avr/io.h> +#include <avr/interrupt.h> +#include <avr/sleep.h> +#include <util/delay.h> +#include <avr/pgmspace.h> +#include <avr/eeprom.h> +#include <avr/wdt.h> +#include <util/atomic.h> +#include <util/crc16.h> + +#include "simple_ds18b20.h" +#include "onewire.h" + +// configuration params +// - measurement interval +// - transmit interval +// - bluetooth params +// - number of sensors (and range?) + +#define MIN(X,Y) ((X) < (Y) ? (X) : (Y)) +#define MAX(X,Y) ((X) > (Y) ? (X) : (Y)) + +// TICK should be 8 or less (8 untested). all timers need +// to be a multiple. + +#define TICK 6 +// we have 1024 prescaler, 32768 crystal. +#define SLEEP_COMPARE (32*TICK-1) + +#define VALUE_NOSENSOR 0x07D0 // 125 degrees +#define VALUE_BROKEN 0x07D1 // 125.0625 + +#define OVERSHOOT_MAX_DIV 1800.0 // 30 mins +#define WORT_INVALID_TIME 900 // 15 mins +// fridge min/max are only used if the wort sensor is invalid +#define FRIDGE_AIR_MIN_RANGE 40 // 4º +#define FRIDGE_AIR_MAX_RANGE 40 // 4º + +#define BAUD 19200 +#define UBRR ((F_CPU)/8/(BAUD)-1) + +#define PORT_LED PORTC +#define DDR_LED DDRC +#define PIN_LED PC4 + +#define PORT_SHDN PORTD +#define DDR_SHDN DDRD +#define PIN_SHDN PD7 + +#define PORT_FRIDGE PORTD +#define DDR_FRIDGE DDRD +#define PIN_FRIDGE PD6 + +// total amount of 16bit values available for measurements. +// adjust emperically, be sure to allow enough stack space too +#define TOTAL_MEASUREMENTS 800 + +// each sensor slot uses 8 bytes +#define MAX_SENSORS 6 + +// fixed at 8, have a shorter name +#define ID_LEN OW_ROMCODE_SIZE + +// #define HAVE_UART_ECHO + +// stores a value of clock_epoch combined with the remainder of TCNT2, +// for 1/32 second accuracy +struct epoch_ticks +{ + uint32_t ticks; + // remainder + uint8_t rem; +}; + +// eeprom-settable parameters. all timeouts should +// be a multiple of TICK (6 seconds probably) +static uint16_t measure_wake = 61; // not a divisor of comms_wake +static uint16_t comms_wake = 600; +static uint8_t wake_secs = 30; +// decidegrees +static int16_t fridge_setpoint = 180; // 18.0ºC +static uint16_t fridge_difference = 3; // 0.3ºC +static uint16_t fridge_delay = 600; // seconds + +static uint16_t overshoot_delay = 720; // 12 mins +static uint8_t overshoot_factor = 10; // 1.0ºC + +// ---- Atomic guards required accessing these variables +// clock_epoch in seconds +static uint32_t clock_epoch; +static uint16_t comms_count; +static uint16_t measure_count; +// ---- End atomic guards required + +static uint16_t n_measurements; + +// calculated at startup as TOTAL_MEASUREMENTS/n_sensors +static uint16_t max_measurements; + +static uint16_t measurements[TOTAL_MEASUREMENTS]; + +static struct epoch_ticks first_measurement_clock; +// last_measurement_clock is redundant but checks that we're not missing +// samples +static struct epoch_ticks last_measurement_clock; +static struct epoch_ticks last_comms_clock; + +// boolean flags +static uint8_t need_measurement; +static uint8_t need_comms; +static uint8_t uart_enabled; +static uint8_t stay_awake; +static uint8_t button_pressed; + +// counts down from WAKE_SECS to 0, goes to deep sleep when hits 0 +static uint8_t comms_timeout; + +static uint8_t readpos; +static char readbuf[30]; +static uint8_t have_cmd; + +static uint8_t n_sensors; +static uint8_t sensor_id[MAX_SENSORS][ID_LEN]; + +static int16_t last_fridge = DS18X20_INVALID_DECICELSIUS; +static int16_t last_wort = DS18X20_INVALID_DECICELSIUS; +static struct epoch_ticks fridge_off_clock = {0}; +static struct epoch_ticks fridge_on_clock = {0}; +static struct epoch_ticks wort_valid_clock = {0}; + +int uart_putchar(char c, FILE *stream); +static void long_delay(int ms); +static void blink(); +static uint16_t adc_vcc(); + +static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL, + _FDEV_SETUP_WRITE); + +static uint16_t crc_out; +static FILE _crc_stdout = FDEV_SETUP_STREAM(uart_putchar, NULL, + _FDEV_SETUP_WRITE); +// convenience +static FILE *crc_stdout = &_crc_stdout; + + +// thanks to http://projectgus.com/2010/07/eeprom-access-with-arduino/ +#define eeprom_read_to(dst_p, eeprom_field, dst_size) eeprom_read_block((dst_p), (void *)offsetof(struct __eeprom_data, eeprom_field), (dst_size)) +#define eeprom_read(dst, eeprom_field) eeprom_read_to((&dst), eeprom_field, sizeof(dst)) +#define eeprom_write_from(src_p, eeprom_field, src_size) eeprom_write_block((src_p), (void *)offsetof(struct __eeprom_data, eeprom_field), (src_size)) +#define eeprom_write(src, eeprom_field) { eeprom_write_from(&src, eeprom_field, sizeof(src)); } + +#define EXPECT_MAGIC 0x67c9 + +struct __attribute__ ((__packed__)) __eeprom_data { + uint16_t measure_wake; + uint16_t comms_wake; + uint8_t wake_secs; + + int16_t fridge_setpoint; // decidegrees + uint16_t fridge_difference; // decidegrees + uint16_t fridge_delay; + + uint16_t overshoot_delay; + uint8_t overshoot_factor; // decidegrees + +#if 0 + static uint8_t wort_id[ID_LEN]; + static uint8_t fridge_id[ID_LEN]; +#endif + + uint16_t magic; +}; + +static const uint8_t fridge_id[ID_LEN] = + {0x28,0xCE,0xB2,0x1A,0x03,0x00,0x00,0x99}; +static const uint8_t wort_id[ID_LEN] = + {0x28,0x49,0xBC,0x1A,0x03,0x00,0x00,0x54}; + +static void deep_sleep(); + +// 0 or 1 +static uint8_t +is_fridge_on() +{ + if (PORT_FRIDGE & _BV(PIN_FRIDGE)) + { + return 1; + } + else + { + return 0; + } +} + +// Very first setup +static void +setup_chip() +{ + cli(); + + // stop watchdog timer (might have been used to cause a reset) + wdt_reset(); + MCUSR &= ~_BV(WDRF); + WDTCSR |= _BV(WDCE) | _BV(WDE); + WDTCSR = 0; + + // Set clock to 2mhz + CLKPR = _BV(CLKPCE); + // divide by 4 + CLKPR = _BV(CLKPS1); + + // enable pullups + PORTB = 0xff; // XXX change when using SPI + PORTD = 0xff; + PORTC = 0xff; + + // 3.3v power for bluetooth and SD + DDR_LED |= _BV(PIN_LED); + DDR_SHDN |= _BV(PIN_SHDN); + + PORT_FRIDGE &= ~_BV(PIN_FRIDGE); + DDR_FRIDGE |= _BV(PIN_FRIDGE); + + // set pullup + PORTD |= _BV(PD2); + // INT0 setup + EICRA = (1<<ISC01); // falling edge - data sheet says it won't work? + EIMSK = _BV(INT0); + + // comparator disable + ACSR = _BV(ACD); + + // disable adc pin input buffers + DIDR0 = 0x3F; // acd0-adc5 + DIDR1 = (1<<AIN1D)|(1<<AIN0D); // ain0/ain1 + + sei(); +} + +static void +set_aux_power(uint8_t on) +{ + if (on) + { + PORT_SHDN &= ~_BV(PIN_SHDN); + } + else + { + PORT_SHDN |= _BV(PIN_SHDN); + } +} + +static void +get_epoch_ticks(struct epoch_ticks *t) +{ + ATOMIC_BLOCK(ATOMIC_RESTORESTATE) + { + t->ticks = clock_epoch; + t->rem = TCNT2; + } +} + +static void +set_measurement(uint8_t sensor, uint16_t measurement, uint16_t reading) +{ + measurements[sensor*max_measurements + measurement] = reading; +} + +static uint16_t +get_measurement(uint8_t sensor, uint16_t measurement) +{ + return measurements[sensor*max_measurements + measurement]; +} + +static void +setup_tick_counter() +{ + // set up counter2. + // COM21 COM20 Set OC2 on Compare Match (p116) + // WGM21 Clear counter on compare + //TCCR2A = _BV(COM2A1) | _BV(COM2A0) | _BV(WGM21); + // toggle on match + TCCR2A = _BV(COM2A0); + // CS22 CS21 CS20 clk/1024 + TCCR2B = _BV(CS22) | _BV(CS21) | _BV(CS20); + // set async mode + ASSR |= _BV(AS2); + TCNT2 = 0; + OCR2A = SLEEP_COMPARE; + // interrupt + TIMSK2 = _BV(OCIE2A); +} + +static void +uart_on() +{ + // Power reduction register + PRR &= ~_BV(PRUSART0); + + // All of this needs to be done each time after turning off the PRR + // baud rate + UBRR0H = (unsigned char)(UBRR >> 8); + UBRR0L = (unsigned char)UBRR; + // set 2x clock, improves accuracy of UBRR + UCSR0A |= _BV(U2X0); + UCSR0B = _BV(RXCIE0) | _BV(RXEN0) | _BV(TXEN0); + //8N1 + UCSR0C = _BV(UCSZ01) | _BV(UCSZ00); + uart_enabled = 1; +} + +static void +uart_off() +{ + // Turn off interrupts and disable tx/rx + UCSR0B = 0; + uart_enabled = 0; + + // Power reduction register + PRR |= _BV(PRUSART0); +} + +int +uart_putchar(char c, FILE *stream) +{ + if (!uart_enabled) + { + return EOF; + } + // XXX could perhaps sleep in the loop for power. + if (c == '\n') + { + loop_until_bit_is_set(UCSR0A, UDRE0); + UDR0 = '\r'; + } + loop_until_bit_is_set(UCSR0A, UDRE0); + UDR0 = c; + if (stream == crc_stdout) + { + crc_out = _crc_ccitt_update(crc_out, c); + } + if (c == '\r') + { + loop_until_bit_is_set(UCSR0A, UDRE0); + UDR0 = '\n'; + if (stream == crc_stdout) + { + crc_out = _crc_ccitt_update(crc_out, '\n'); + } + } + return (unsigned char)c; +} + +static void +cmd_fetch() +{ + crc_out = 0; + + fprintf_P(crc_stdout, PSTR("START\n")); + { + struct epoch_ticks now; + get_epoch_ticks(&now); + fprintf_P(crc_stdout, PSTR("now=%lu\n"), now.ticks); + fprintf_P(crc_stdout, PSTR("now_rem=%hhu\n"), now.rem); + } + fprintf_P(crc_stdout, PSTR("time_step=%hu\n"), measure_wake); + fprintf_P(crc_stdout, PSTR("first_time=%lu\n"), first_measurement_clock.ticks); + fprintf_P(crc_stdout, PSTR("first_time_rem=%hhu\n"), first_measurement_clock.rem); + fprintf_P(crc_stdout, PSTR("last_time=%lu\n"), last_measurement_clock.ticks); + fprintf_P(crc_stdout, PSTR("last_time_rem=%hhu\n"), last_measurement_clock.rem); + fprintf_P(crc_stdout, PSTR("comms_time=%lu\n"), last_comms_clock.ticks); + fprintf_P(crc_stdout, PSTR("comms_time_rem=%hhu\n"), last_comms_clock.rem); + fprintf_P(crc_stdout, PSTR("voltage=%hu\n"), adc_vcc()); + fprintf_P(crc_stdout, PSTR("measure=%hu\n"), measure_wake); + fprintf_P(crc_stdout, PSTR("comms=%hu\n"), comms_wake); + fprintf_P(crc_stdout, PSTR("wake=%hhu\n"), wake_secs); + fprintf_P(crc_stdout, PSTR("fridge=%.1f\n"), fridge_setpoint/10.0); + fprintf_P(crc_stdout, PSTR("fridge_diff=%.1f\n"), fridge_difference/10.0); + fprintf_P(crc_stdout, PSTR("fridge_delay=%hu\n"), fridge_delay); + fprintf_P(crc_stdout, PSTR("overshoot_factor=%.1f\n"), overshoot_factor/10.0); + fprintf_P(crc_stdout, PSTR("overshoot_delay=%hu\n"), overshoot_delay); + fprintf_P(crc_stdout, PSTR("fridge_status=%hhu\n"), is_fridge_on()); + fprintf_P(crc_stdout, PSTR("fridge_last_on=%lu\n"), fridge_on_clock.ticks); + fprintf_P(crc_stdout, PSTR("fridge_last_off=%lu\n"), fridge_off_clock.ticks); + fprintf_P(crc_stdout, PSTR("last_fridge=%hu\n"), last_fridge); + fprintf_P(crc_stdout, PSTR("last_wort=%hu\n"), last_wort); + fprintf_P(crc_stdout, PSTR("tick_secs=%d\n"), TICK); + fprintf_P(crc_stdout, PSTR("tick_wake=%d\n"), SLEEP_COMPARE); + fprintf_P(crc_stdout, PSTR("maxsens=%hhu\n"), MAX_SENSORS); + fprintf_P(crc_stdout, PSTR("totalmeas=%hu\n"), TOTAL_MEASUREMENTS); + fprintf_P(crc_stdout, PSTR("sensors=%hhu\n"), n_sensors); + for (uint8_t s = 0; s < n_sensors; s++) + { + fprintf_P(crc_stdout, PSTR("sensor_id%hhu="), s); + printhex(sensor_id[s], ID_LEN, crc_stdout); + fputc('\n', crc_stdout); + } + fprintf_P(crc_stdout, PSTR("measurements=%hu\n"), n_measurements); + for (uint16_t n = 0; n < n_measurements; n++) + { + fprintf_P(crc_stdout, PSTR("meas%hu="), n); + for (uint8_t s = 0; s < n_sensors; s++) + { + fprintf_P(crc_stdout, PSTR(" %04hx"), get_measurement(s, n)); + } + fputc('\n', crc_stdout); + } + fprintf_P(crc_stdout, PSTR("END\n")); + fprintf_P(stdout, PSTR("CRC=%hu\n"), crc_out); +} + +static void +cmd_clear() +{ + n_measurements = 0; + printf_P(PSTR("cleared\n")); +} + +static void +cmd_btoff() +{ + uint8_t rem; + uint16_t count_copy; + ATOMIC_BLOCK(ATOMIC_RESTORESTATE) + { + count_copy = comms_count; + rem = TCNT2; + } + printf_P(PSTR("next_wake=%hu,"), comms_wake-count_copy); + printf_P(PSTR("rem=%hhu,"), rem); + printf_P(PSTR("tick_secs=%hhu,"), TICK); + printf_P(PSTR("tick_wake=%hhu\n"), SLEEP_COMPARE); + _delay_ms(100); + comms_timeout = 0; + stay_awake = 0; +} + +static void +cmd_reset() +{ + printf_P(PSTR("reset\n")); + _delay_ms(100); + cli(); // disable interrupts + wdt_enable(WDTO_15MS); // enable watchdog + while(1); // wait for watchdog to reset processor +} + +static void +cmd_measure() +{ + printf_P(PSTR("measuring\n")); + need_measurement = 1; +} + +static void +cmd_sensors() +{ + uint8_t ret = simple_ds18b20_start_meas(NULL); + printf_P(PSTR("All sensors, ret %hhu, waiting...\n"), ret); + long_delay(DS18B20_TCONV_12BIT); + simple_ds18b20_read_all(); +} + +static void +init_sensors() +{ + uint8_t id[OW_ROMCODE_SIZE]; + printf_P(PSTR("init sensors\n")); + ow_reset(); + for( uint8_t diff = OW_SEARCH_FIRST; diff != OW_LAST_DEVICE; ) + { + diff = ow_rom_search( diff, &id[0] ); + if( diff == OW_PRESENCE_ERR ) { + printf_P( PSTR("No Sensor found\r") ); + return; + } + + if( diff == OW_DATA_ERR ) { + printf_P( PSTR("Bus Error\r") ); + return; + } + + if (n_sensors < MAX_SENSORS) + { + memcpy(sensor_id[n_sensors], id, ID_LEN); + printf_P(PSTR("Added sensor %hhu : "), n_sensors); + printhex(id, ID_LEN, stdout); + putchar('\n'); + n_sensors++; + } + else + { + printf_P(PSTR("Too many sensors\n")); + } + } + + max_measurements = TOTAL_MEASUREMENTS / n_sensors; +} + +static void +load_params() +{ + uint16_t magic; + eeprom_read(magic, magic); + if (magic == EXPECT_MAGIC) + { + eeprom_read(measure_wake, measure_wake); + eeprom_read(comms_wake, comms_wake); + eeprom_read(wake_secs, wake_secs); + eeprom_read(fridge_setpoint, fridge_setpoint); + eeprom_read(fridge_difference, fridge_difference); + eeprom_read(fridge_delay, fridge_delay); + eeprom_read(overshoot_delay, overshoot_delay); + eeprom_read(overshoot_factor, overshoot_factor); + } +} + +static void +cmd_get_params() +{ + printf_P(PSTR("measure %hu\n"), measure_wake); + printf_P(PSTR("comms %hu\n"), comms_wake); + printf_P(PSTR("wake %hhu\n"), wake_secs); + printf_P(PSTR("tick %d\n"), TICK); + printf_P(PSTR("fridge %.1fº\n"), fridge_setpoint / 10.0f); + printf_P(PSTR("fridge difference %.1fº\n"), fridge_difference / 10.0f); + printf_P(PSTR("fridge_delay %hu\n"), fridge_delay); + printf_P(PSTR("overshoot factor %.1fº\n"), overshoot_factor / 10.0f); + printf_P(PSTR("overshoot delay %hu\n"), overshoot_delay); + printf_P(PSTR("sensors %hhu (%hhu)\n"), + n_sensors, MAX_SENSORS); + printf_P(PSTR("meas %hu (%hu)\n"), + max_measurements, TOTAL_MEASUREMENTS); +} + +static void +cmd_set_params(const char *params) +{ + uint16_t new_measure_wake; + uint16_t new_comms_wake; + uint8_t new_wake_secs; + int ret = sscanf_P(params, PSTR("%hu %hu %hhu"), + &new_measure_wake, &new_comms_wake, &new_wake_secs); + + if (ret != 3) + { + printf_P(PSTR("Bad values\n")); + } + else + { + ATOMIC_BLOCK(ATOMIC_RESTORESTATE) + { + eeprom_write(new_measure_wake, measure_wake); + eeprom_write(new_comms_wake, comms_wake); + eeprom_write(new_wake_secs, wake_secs); + uint16_t magic = EXPECT_MAGIC; + eeprom_write(magic, magic); + } + printf_P(PSTR("set_params for next boot\n")); + printf_P(PSTR("measure %hu comms %hu wake %hhu\n"), + new_measure_wake, new_comms_wake, new_wake_secs); + } +} + +// returns true if eeprom was written +static bool +set_initial_eeprom() +{ + uint16_t magic; + eeprom_read(magic, magic); + if (magic == EXPECT_MAGIC) + { + return false; + } + + ATOMIC_BLOCK(ATOMIC_RESTORESTATE) + { + eeprom_write(measure_wake, measure_wake); + eeprom_write(comms_wake, comms_wake); + eeprom_write(wake_secs, wake_secs); + eeprom_write(fridge_setpoint, fridge_setpoint); + eeprom_write(fridge_difference, fridge_difference); + eeprom_write(fridge_delay, fridge_delay); + eeprom_write(overshoot_delay, overshoot_delay); + eeprom_write(overshoot_factor, overshoot_factor); + magic = EXPECT_MAGIC; + eeprom_write(magic, magic); + } + + return true; +} + +static void +cmd_set_fridge_setpoint(char *params) +{ + float new_f = atof(params); + if (new_f < 2 || new_f > 30) + { + printf_P(PSTR("Bad fridge value %f\n"), new_f); + return; + } + + int16_t old_setpoint = fridge_setpoint; + + fridge_setpoint = new_f * 10; + bool written = set_initial_eeprom(); + if (!written) + { + if (old_setpoint != fridge_setpoint) + { + ATOMIC_BLOCK(ATOMIC_RESTORESTATE) + { + eeprom_write(fridge_setpoint, fridge_setpoint); + } + } + } + printf_P(PSTR("old fridge %.1fº new fridge %.1fº\n"), + old_setpoint / 10.0f, fridge_setpoint / 10.0f); +} + +static void +cmd_set_fridge_difference(char *params) +{ + float new_f = atof(params); + if (new_f < 0 || new_f > 30) + { + printf_P(PSTR("Bad fridge value %f\n"), new_f); + return; + } + + fridge_difference = new_f * 10; + bool written = set_initial_eeprom(); + if (!written) + { + ATOMIC_BLOCK(ATOMIC_RESTORESTATE) + { + eeprom_write(fridge_difference, fridge_difference); + } + } + printf_P(PSTR("new fridge difference %.1fº\n"), fridge_difference / 10.0f); +} + +static void +cmd_set_fridge_delay(char *params) +{ + uint16_t new_delay = atoi(params); + if (new_delay < 5) + { + printf_P(PSTR("Bad fridge delay %d\n"), new_delay); + return; + } + + fridge_delay = new_delay; + bool written = set_initial_eeprom(); + if (!written) + { + ATOMIC_BLOCK(ATOMIC_RESTORESTATE) + { + eeprom_write(fridge_delay, fridge_delay); + } + } + printf_P(PSTR("new fridge delay %hu\n"), fridge_delay); +} + +static void +cmd_set_overshoot_factor(char *params) +{ + float new_f = atof(params); + if (new_f <= 0 || new_f > 20) + { + printf_P(PSTR("Bad overshoot factor %f\n"), new_f); + return; + } + + uint8_t old = overshoot_factor; + + overshoot_factor = new_f * 10; + bool written = set_initial_eeprom(); + if (!written) + { + if (old != overshoot_factor) + { + ATOMIC_BLOCK(ATOMIC_RESTORESTATE) + { + eeprom_write(overshoot_factor, overshoot_factor); + } + } + } + printf_P(PSTR("old factor %.1fº new factor %.1fº\n"), + old / 10.0f, overshoot_factor / 10.0f); +} + +static void +cmd_set_overshoot_delay(char *params) +{ + uint16_t new_delay = atoi(params); + if (new_delay < 5) + { + printf_P(PSTR("Bad overshoot delay %d\n"), new_delay); + return; + } + + overshoot_delay = new_delay; + bool written = set_initial_eeprom(); + if (!written) + { + ATOMIC_BLOCK(ATOMIC_RESTORESTATE) + { + eeprom_write(overshoot_delay, overshoot_delay); + } + } + printf_P(PSTR("new overshoot delay %hu\n"), overshoot_delay); +} + +static void +cmd_awake() +{ + stay_awake = 1; + printf_P(PSTR("awake\n")); +} + +static void +read_handler() +{ + if (strcmp_P(readbuf, PSTR("fetch")) == 0) + { + cmd_fetch(); + } + else if (strcmp_P(readbuf, PSTR("clear")) == 0) + { + cmd_clear(); + } + else if (strcmp_P(readbuf, PSTR("btoff")) == 0) + { + cmd_btoff(); + } + else if (strcmp_P(readbuf, PSTR("measure")) == 0) + { + cmd_measure(); + } + else if (strcmp_P(readbuf, PSTR("sensors")) == 0) + { + cmd_sensors(); + } + else if (strcmp_P(readbuf, PSTR("get_params")) == 0) + { + cmd_get_params(); + } + else if (strncmp_P(readbuf, PSTR("set_params "), 11) == 0) + { + cmd_set_params(&readbuf[11]); + } + else if (strcmp_P(readbuf, PSTR("awake")) == 0) + { + cmd_awake(); + } + else if (strncmp_P(readbuf, PSTR("fridge_setpoint "), 16) == 0) + { + cmd_set_fridge_setpoint(&readbuf[16]); + } + else if (strncmp_P(readbuf, PSTR("fridge_diff "), 12) == 0) + { + cmd_set_fridge_difference(&readbuf[12]); + } + else if (strncmp_P(readbuf, PSTR("fridge_delay "), 13) == 0) + { + cmd_set_fridge_delay(&readbuf[13]); + } + else if (strncmp_P(readbuf, PSTR("overshoot_delay "), 16) == 0) + { + cmd_set_overshoot_delay(&readbuf[16]); + } + else if (strncmp_P(readbuf, PSTR("overshoot_factor "), 17) == 0) + { + cmd_set_overshoot_factor(&readbuf[17]); + } + else if (strcmp_P(readbuf, PSTR("reset")) == 0) + { + cmd_reset(); + } + else + { + printf_P(PSTR("Bad command '%s'\n"), readbuf); + } +} + +ISR(INT0_vect) +{ + button_pressed = 1; + blink(); + _delay_ms(100); + blink(); +} + + +ISR(USART_RX_vect) +{ + char c = UDR0; +#ifdef HAVE_UART_ECHO + uart_putchar(c, NULL); +#endif + if (c == '\r' || c == '\n') + { + if (readpos > 0) + { + readbuf[readpos] = '\0'; + have_cmd = 1; + readpos = 0; + } + } + else + { + readbuf[readpos] = c; + readpos++; + if (readpos >= sizeof(readbuf)) + { + readpos = 0; + } + } +} + +ISR(TIMER2_COMPA_vect) +{ + TCNT2 = 0; + measure_count += TICK; + comms_count += TICK; + + clock_epoch += TICK; + + if (comms_timeout != 0) + { + comms_timeout -= TICK; + } + + if (measure_count >= measure_wake) + { + measure_count = 0; + need_measurement = 1; + } + + if (comms_count >= comms_wake) + { + comms_count = 0; + need_comms = 1; + } +} + +static void +deep_sleep() +{ + // p119 of manual + OCR2A = SLEEP_COMPARE; + loop_until_bit_is_clear(ASSR, OCR2AUB); + + set_sleep_mode(SLEEP_MODE_PWR_SAVE); + sleep_mode(); +} + +static void +idle_sleep() +{ + set_sleep_mode(SLEEP_MODE_IDLE); + sleep_mode(); +} + +static uint16_t +adc_vcc() +{ + PRR &= ~_BV(PRADC); + + // /16 prescaler + ADCSRA = _BV(ADEN) | _BV(ADPS2); + + // set to measure 1.1 reference + ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1); + // average a number of samples + uint16_t sum = 0; + uint8_t num = 0; + for (uint8_t n = 0; n < 20; n++) + { + ADCSRA |= _BV(ADSC); + loop_until_bit_is_clear(ADCSRA, ADSC); + + uint8_t low_11 = ADCL; + uint8_t high_11 = ADCH; + uint16_t val = low_11 + (high_11 << 8); + + if (n >= 4) + { + sum += val; + num++; + } + } + ADCSRA = 0; + PRR |= _BV(PRADC); + + //float res_volts = 1.1 * 1024 * num / sum; + //return 1000 * res_volts; + return ((uint32_t)1100*1024*num) / sum; +} + +static void +do_fridge() +{ + struct epoch_ticks now; + get_epoch_ticks(&now); + uint32_t off_time = now.ticks - fridge_off_clock.ticks; + bool wort_valid = last_wort != DS18X20_INVALID_DECICELSIUS; + bool fridge_valid = last_fridge != DS18X20_INVALID_DECICELSIUS; + + int16_t wort_max = fridge_setpoint + fridge_difference; + int16_t wort_min = fridge_setpoint; + + // the fridge min/max only apply if the wort sensor is broken + int16_t fridge_min = fridge_setpoint - FRIDGE_AIR_MIN_RANGE; + int16_t fridge_max = fridge_setpoint + FRIDGE_AIR_MAX_RANGE; + + uint8_t fridge_on = PORT_FRIDGE & _BV(PIN_FRIDGE); + printf_P(PSTR("last_wort %hd (%hd, %hd), last_fridge %hd (%hd, %hd), setpoint %hd, diff %hd, fridge_on %hhu\n"), + last_wort, wort_min, wort_max, + last_fridge, fridge_min, fridge_max, + fridge_setpoint, fridge_difference, fridge_on); + + if (off_time < fridge_delay) + { + printf_P(PSTR("waiting for fridge delay current %hu, wait %hu\n"), + off_time, fridge_delay); + return; + } + + // handle failure of the wort sensor. if it is a short (intermittent?) + // failure we wait until it has been broken for a period of time + // (WORT_INVALID_TIME) before doing anything. + if (wort_valid) + { + wort_valid_clock = now; + } + else + { + printf_P(PSTR("wort sensor is invalid\n")); + uint32_t invalid_time = now.ticks - wort_valid_clock.ticks; + if (invalid_time < WORT_INVALID_TIME) + { + printf("only been invalid for %ld, waiting\n", invalid_time); + return; + } + } + + if (!fridge_valid) + { + printf_P(PSTR("fridge sensor is invalid\n")); + } + + if (fridge_on) + { + bool turn_off = false; + uint16_t on_time = now.ticks - fridge_on_clock.ticks; + + uint16_t overshoot = 0; + if (on_time > overshoot_delay) + { + overshoot = overshoot_factor * MIN(OVERSHOOT_MAX_DIV, on_time) / OVERSHOOT_MAX_DIV; + } + + printf_P(PSTR("on_time %hu, overshoot %hu\n"), on_time, overshoot); + + // wort has cooled enough. will probably cool a bit more by itself + if (wort_valid) + { + if ((last_wort - overshoot) < fridge_setpoint) + { + printf_P(PSTR("wort has cooled enough, overshoot %hu on_time %hu\n"), overshoot, on_time); + turn_off = true; + } + } + else + { + if (fridge_valid && last_fridge < fridge_min) + { + printf_P(PSTR("fridge off fallback\n")); + turn_off = true; + } + } + + if (turn_off) + { + // too cold, turn off + printf_P(PSTR("Turning fridge off\n")); + PORT_FRIDGE &= ~_BV(PIN_FRIDGE); + fridge_off_clock = now; + } + } + else + { + bool turn_on = false; + + if (wort_valid) + { + if (last_wort >= wort_max) + { + printf_P(PSTR("wort is too hot\n")); + turn_on = true; + } + } + else + { + if (fridge_valid && last_fridge >= fridge_max) + { + printf_P(PSTR("fridge on fallback\n")); + turn_on = true; + } + } + + if (turn_on) + { + // too hot, turn on + printf_P(PSTR("Turning fridge on\n")); + PORT_FRIDGE |= _BV(PIN_FRIDGE); + fridge_on_clock = now; + } + } +} + +static void +do_measurement() +{ + blink(); + + /* Take the timer here since deep_sleep() below could take 6 seconds */ + get_epoch_ticks(&last_measurement_clock); + if (n_measurements == 0) + { + first_measurement_clock = last_measurement_clock; + } + + simple_ds18b20_start_meas(NULL); + _delay_ms(DS18B20_TCONV_12BIT); + + if (n_measurements == max_measurements) + { + n_measurements = 0; + } + + for (uint8_t s = 0; s < n_sensors; s++) + { + uint16_t reading; + uint8_t ret = simple_ds18b20_read_raw(sensor_id[s], &reading); + if (ret != DS18X20_OK) + { + reading = VALUE_BROKEN; + } + set_measurement(s, n_measurements, reading); + + if (memcmp(sensor_id[s], fridge_id, sizeof(fridge_id)) == 0) + { + last_fridge = ds18b20_raw16_to_decicelsius(reading); + } + if (memcmp(sensor_id[s], wort_id, sizeof(wort_id)) == 0) + { + last_wort = ds18b20_raw16_to_decicelsius(reading); + } + } + + n_measurements++; +} + +static void +do_comms() +{ + get_epoch_ticks(&last_comms_clock); + + // turn on bluetooth + set_aux_power(1); + // avoid receiving rubbish, perhaps + _delay_ms(50); + uart_on(); + + // write sd card here? same 3.3v regulator... + + for (comms_timeout = wake_secs; + comms_timeout > 0 || stay_awake; + ) + { + if (need_measurement) + { + need_measurement = 0; + do_measurement(); + do_fridge(); + continue; + } + + if (have_cmd) + { + have_cmd = 0; + read_handler(); + continue; + } + + // wait for commands from the master + idle_sleep(); + } + + uart_off(); + // in case bluetooth takes time to flush + _delay_ms(100); + set_aux_power(0); +} + +static void +blink() +{ + PORT_LED &= ~_BV(PIN_LED); + _delay_ms(1); + PORT_LED |= _BV(PIN_LED); +} + +static void +long_delay(int ms) +{ + int iter = ms / 100; + + for (int i = 0; i < iter; i++) + { + _delay_ms(100); + } +} + +ISR(BADISR_vect) +{ + //uart_on(); + printf_P(PSTR("Bad interrupt\n")); +} + +int main(void) +{ + setup_chip(); + blink(); + + set_aux_power(0); + + stdout = &mystdout; + uart_on(); + + printf(PSTR("Started.\n")); + + load_params(); + + init_sensors(); + + uart_off(); + + // turn off everything except timer2 + PRR = _BV(PRTWI) | _BV(PRTIM0) | _BV(PRTIM1) | _BV(PRSPI) | _BV(PRUSART0) | _BV(PRADC); + + setup_tick_counter(); + + sei(); + + need_comms = 1; + need_measurement = 1; + + stay_awake = 1; + + for(;;) + { + if (button_pressed) + { + // debounce + _delay_ms(200); + need_comms = 1; + comms_timeout = wake_secs; + button_pressed = 0; + continue; + } + + if (need_comms) + { + need_comms = 0; + do_comms(); + continue; + } + + if (need_measurement) + { + need_measurement = 0; + do_measurement(); + do_fridge(); + continue; + } + + deep_sleep(); + } + + return 0; /* never reached */ +}