view ds18x20.c @ 81:4a2a82d6302c

try and be a bit more frugal with stack
author Matt Johnston <matt@ucc.asn.au>
date Wed, 11 Jul 2012 00:22:31 +0800
parents 7da9a3f23592
children
line wrap: on
line source

/*********************************************************************************
Title:    DS18X20-Functions via One-Wire-Bus
Author:   Martin Thomas <[email protected]>   
          http://www.siwawi.arubi.uni-kl.de/avr-projects
Software: avr-gcc 4.3.3 / avr-libc 1.6.7 (WinAVR 3/2010) 
Hardware: any AVR - tested with ATmega16/ATmega32/ATmega324P and 3 DS18B20

Partly based on code from Peter Dannegger and others.

changelog:
20041124 - Extended measurements for DS18(S)20 contributed by Carsten Foss (CFO)
200502xx - function DS18X20_read_meas_single
20050310 - DS18x20 EEPROM functions (can be disabled to save flash-memory)
           (DS18X20_EEPROMSUPPORT in ds18x20.h)
20100625 - removed inner returns, added static function for read scratchpad
         . replaced full-celcius and fractbit method with decicelsius
           and maxres (degreeCelsius*10e-4) functions, renamed eeprom-functions,
           delay in recall_e2 replaced by timeout-handling
20100714 - ow_command_skip_last_recovery used for parasite-powerd devices so the
           strong pull-up can be enabled in time even with longer OW recovery times
20110209 - fix in DS18X20_format_from_maxres() by Marian Kulesza
**********************************************************************************/

#include <stdlib.h>
#include <stdint.h>

#include <avr/io.h>
#include <avr/pgmspace.h>

#include "ds18x20.h"
#include "onewire.h"
#include "crc8.h"

#if DS18X20_EEPROMSUPPORT
// for 10ms delay in copy scratchpad
#include <util/delay.h>
#endif /* DS18X20_EEPROMSUPPORT */

/*----------- start of "debug-functions" ---------------*/

#if DS18X20_VERBOSE
#if (!DS18X20_DECICELSIUS)
#error "DS18X20_DECICELSIUS must be enabled for verbose-mode"
#endif

/* functions for debugging-output - undef DS18X20_VERBOSE in .h
   if you run out of program-memory */
#include <string.h>
#include "uart.h"
#include "uart_addon.h"

static int16_t DS18X20_raw_to_decicelsius( uint8_t fc, uint8_t sp[] );

void DS18X20_show_id_uart( uint8_t *id, size_t n )
{
	size_t i;

	for( i = 0; i < n; i++ ) {
		if ( i == 0 ) { uart_puts_P( "FC:" ); }
		else if ( i == n-1 ) { uart_puts_P( "CRC:" ); }
		if ( i == 1 ) { uart_puts_P( "SN: " ); }
		uart_puthex_byte(id[i]);
		uart_puts_P(" ");
		if ( i == 0 ) {
			if ( id[0] == DS18S20_FAMILY_CODE ) { uart_puts_P ("(18S)"); }
			else if ( id[0] == DS18B20_FAMILY_CODE ) { uart_puts_P ("(18B)"); }
			else if ( id[0] == DS1822_FAMILY_CODE ) { uart_puts_P ("(22)"); }
			else { uart_puts_P ("( ? )"); }
		}
	}
	if ( crc8( id, OW_ROMCODE_SIZE) )
		uart_puts_P( " CRC FAIL " );
	else 
		uart_puts_P( " CRC O.K. " );
}

static void show_sp_uart( uint8_t *sp, size_t n )
{
	size_t i;

	uart_puts_P( "SP:" );
	for( i = 0; i < n; i++ ) {
		if ( i == n-1 ) { uart_puts_P( "CRC:" ); }
		uart_puthex_byte(sp[i]);
		uart_puts_P(" ");
	}
}

/* 
   convert raw value from DS18x20 to Celsius
   input is: 
   - familycode fc (0x10/0x28 see header)
   - scratchpad-buffer
   output is:
   - cel full celsius
   - fractions of celsius in millicelsius*(10^-1)/625 (the 4 LS-Bits)
   - subzero =0 positiv / 1 negativ
   always returns  DS18X20_OK
*/
static uint8_t DS18X20_meas_to_cel( uint8_t fc, uint8_t *sp, 
	uint8_t* subzero, uint8_t* cel, uint8_t* cel_frac_bits)
{
	uint16_t meas;
	uint8_t  i;
	
	meas = sp[0];  // LSB
	meas |= ( (uint16_t)sp[1] ) << 8; // MSB
	
	//  only work on 12bit-base
	if( fc == DS18S20_FAMILY_CODE ) { // 9 -> 12 bit if 18S20
		/* Extended res. measurements for DS18S20 contributed by Carsten Foss */
		meas &= (uint16_t) 0xfffe;    // Discard LSB, needed for later extended precicion calc
		meas <<= 3;                   // Convert to 12-bit, now degrees are in 1/16 degrees units
		meas += ( 16 - sp[6] ) - 4;   // Add the compensation and remember to subtract 0.25 degree (4/16)
	}
	
	// check for negative 
	if ( meas & 0x8000 )  {
		*subzero=1;      // mark negative
		meas ^= 0xffff;  // convert to positive => (twos complement)++
		meas++;
	}
	else {
		*subzero=0;
	}
	
	// clear undefined bits for B != 12bit
	if ( fc == DS18B20_FAMILY_CODE || fc == DS1822_FAMILY_CODE ) {
		i = sp[DS18B20_CONF_REG];
		if ( (i & DS18B20_12_BIT) == DS18B20_12_BIT ) { ; }
		else if ( (i & DS18B20_11_BIT) == DS18B20_11_BIT ) {
			meas &= ~(DS18B20_11_BIT_UNDF);
		} else if ( (i & DS18B20_10_BIT) == DS18B20_10_BIT ) {
			meas &= ~(DS18B20_10_BIT_UNDF);
		} else { // if ( (i & DS18B20_9_BIT) == DS18B20_9_BIT ) { 
			meas &= ~(DS18B20_9_BIT_UNDF);
		}
	}
	
	*cel  = (uint8_t)(meas >> 4); 
	*cel_frac_bits = (uint8_t)(meas & 0x000F);
	
	return DS18X20_OK;
}

static void DS18X20_uart_put_temp(const uint8_t subzero, 
	const uint8_t cel, const uint8_t cel_frac_bits)
{
	char buffer[sizeof(int)*8+1];
	size_t i;
	
	uart_putc((subzero)?'-':'+');
	uart_put_int((int)cel);
	uart_puts_P(".");
	itoa(cel_frac_bits*DS18X20_FRACCONV,buffer,10);
	for ( i = 0; i < 4-strlen(buffer); i++ ) {
		uart_puts_P("0");
	}
	uart_puts(buffer);
	uart_puts_P("�C");
}

/* verbose output rom-search follows read-scratchpad in one loop */
uint8_t DS18X20_read_meas_all_verbose( void )
{
	uint8_t id[OW_ROMCODE_SIZE], sp[DS18X20_SP_SIZE], diff;
	uint8_t i;
	uint16_t meas;
	int16_t decicelsius;
	char s[10];
	uint8_t subzero, cel, cel_frac_bits;
	
	for( diff = OW_SEARCH_FIRST; diff != OW_LAST_DEVICE; )
	{
		diff = ow_rom_search( diff, &id[0] );

		if( diff == OW_PRESENCE_ERR ) {
			uart_puts_P( "No Sensor found\r" );
			return OW_PRESENCE_ERR; // <--- early exit!
		}
		
		if( diff == OW_DATA_ERR ) {
			uart_puts_P( "Bus Error\r" );
			return OW_DATA_ERR;     // <--- early exit!
		}
		
		DS18X20_show_id_uart( id, OW_ROMCODE_SIZE );
		
		if( id[0] == DS18B20_FAMILY_CODE || id[0] == DS18S20_FAMILY_CODE ||
		    id[0] == DS1822_FAMILY_CODE ) { 
			// temperature sensor
			
			uart_putc ('\r');
			
			ow_byte_wr( DS18X20_READ );           // read command
			
			for ( i=0 ; i< DS18X20_SP_SIZE; i++ ) {
				sp[i]=ow_byte_rd();
			}
			
			show_sp_uart( sp, DS18X20_SP_SIZE );

			if ( crc8( &sp[0], DS18X20_SP_SIZE ) ) {
				uart_puts_P( " CRC FAIL " );
			} else {
				uart_puts_P( " CRC O.K. " );
			}
			uart_putc ('\r');
		
			meas = sp[0]; // LSB Temp. from Scrachpad-Data
			meas |= (uint16_t) (sp[1] << 8); // MSB
			
			uart_puts_P( " T_raw=");
			uart_puthex_byte( (uint8_t)(meas >> 8) );
			uart_puthex_byte( (uint8_t)meas );
			uart_puts_P( " " );

			if( id[0] == DS18S20_FAMILY_CODE ) { // 18S20
				uart_puts_P( "S20/09" );
			}
			else if ( id[0] == DS18B20_FAMILY_CODE ||
			          id[0] == DS1822_FAMILY_CODE ) { // 18B20 or 1822
				i=sp[DS18B20_CONF_REG];
				if ( (i & DS18B20_12_BIT) == DS18B20_12_BIT ) {
					uart_puts_P( "B20/12" );
				}
				else if ( (i & DS18B20_11_BIT) == DS18B20_11_BIT ) {
					uart_puts_P( "B20/11" );
				}
				else if ( (i & DS18B20_10_BIT) == DS18B20_10_BIT ) {
					uart_puts_P( " B20/10 " );
				}
				else { // if ( (i & DS18B20_9_BIT) == DS18B20_9_BIT ) { 
					uart_puts_P( "B20/09" );
				}
			}			
			uart_puts_P(" ");
			
			DS18X20_meas_to_cel( id[0], sp, &subzero, &cel, &cel_frac_bits );
			DS18X20_uart_put_temp( subzero, cel, cel_frac_bits );

			decicelsius = DS18X20_raw_to_decicelsius( id[0], sp );
			if ( decicelsius == DS18X20_INVALID_DECICELSIUS ) {
				uart_puts_P("* INVALID *");
			} else {
				uart_puts_P(" conv: ");
				uart_put_int(decicelsius);
				uart_puts_P(" deci�C ");
				DS18X20_format_from_decicelsius( decicelsius, s, 10 );
				uart_puts_P(" fmt: ");
				uart_puts(s);
				uart_puts_P(" �C ");
			}

			uart_puts("\r");
			
		} // if meas-sensor
		
	} // loop all sensors
	
	uart_puts_P( "\r" );
	
	return DS18X20_OK;
}

#endif /* DS18X20_VERBOSE */

#if DS18X20_VERBOSE
#define uart_puts_P_verbose(s__) uart_puts_P(s__)
#else 
#define uart_puts_P_verbose(s__)
#endif


/*----------- end of "debug-functions" ---------------*/


/* find DS18X20 Sensors on 1-Wire-Bus
   input/ouput: diff is the result of the last rom-search
                *diff = OW_SEARCH_FIRST for first call
   output: id is the rom-code of the sensor found */
uint8_t DS18X20_find_sensor( uint8_t *diff, uint8_t id[] )
{
	uint8_t go;
	uint8_t ret;

	ret = DS18X20_OK;
	go = 1;
	do {
		*diff = ow_rom_search( *diff, &id[0] );
		if ( *diff == OW_PRESENCE_ERR || *diff == OW_DATA_ERR ||
		     *diff == OW_LAST_DEVICE ) { 
			go  = 0;
			ret = DS18X20_ERROR;
		} else {
			if ( id[0] == DS18B20_FAMILY_CODE || id[0] == DS18S20_FAMILY_CODE ||
			     id[0] == DS1822_FAMILY_CODE ) { 
				go = 0;
			}
		}
	} while (go);

	return ret;
}

/* get power status of DS18x20 
   input:   id = rom_code 
   returns: DS18X20_POWER_EXTERN or DS18X20_POWER_PARASITE */
uint8_t DS18X20_get_power_status( uint8_t id[] )
{
	uint8_t pstat;

	ow_reset();
	ow_command( DS18X20_READ_POWER_SUPPLY, id );
	pstat = ow_bit_io( 1 );
	ow_reset();
	return ( pstat ) ? DS18X20_POWER_EXTERN : DS18X20_POWER_PARASITE;
}

/* start measurement (CONVERT_T) for all sensors if input id==NULL 
   or for single sensor where id is the rom-code */
uint8_t DS18X20_start_meas( uint8_t with_power_extern, uint8_t id[])
{
	uint8_t ret;

	ow_reset();
	if( ow_input_pin_state() ) { // only send if bus is "idle" = high
		if ( with_power_extern != DS18X20_POWER_EXTERN ) {
			ow_command_with_parasite_enable( DS18X20_CONVERT_T, id );
			/* not longer needed: ow_parasite_enable(); */
		} else {
			ow_command( DS18X20_CONVERT_T, id );
		}
		ret = DS18X20_OK;
	} 
	else { 
		uart_puts_P_verbose( "DS18X20_start_meas: Short Circuit!\r" );
		ret = DS18X20_START_FAIL;
	}

	return ret;
}

// returns 1 if conversion is in progress, 0 if finished
// not available when parasite powered.
uint8_t DS18X20_conversion_in_progress(void)
{
	return ow_bit_io( 1 ) ? DS18X20_CONVERSION_DONE : DS18X20_CONVERTING;
}

static uint8_t read_scratchpad( uint8_t id[], uint8_t sp[], uint8_t n )
{
	uint8_t i;
	uint8_t ret;

	ow_command( DS18X20_READ, id );
	for ( i = 0; i < n; i++ ) {
		sp[i] = ow_byte_rd();
	}
	if ( crc8( &sp[0], DS18X20_SP_SIZE ) ) {
		ret = DS18X20_ERROR_CRC;
	} else {
		ret = DS18X20_OK;
	}

	return ret;
}


#if DS18X20_DECICELSIUS

/* convert scratchpad data to physical value in unit decicelsius */
static int16_t DS18X20_raw_to_decicelsius( uint8_t familycode, uint8_t sp[] )
{
	uint16_t measure;
	uint8_t  negative;
	int16_t  decicelsius;
	uint16_t fract;

	measure = sp[0] | (sp[1] << 8);
	//measure = 0xFF5E; // test -10.125
	//measure = 0xFE6F; // test -25.0625

	if( familycode == DS18S20_FAMILY_CODE ) {   // 9 -> 12 bit if 18S20
		/* Extended measurements for DS18S20 contributed by Carsten Foss */
		measure &= (uint16_t)0xfffe;   // Discard LSB, needed for later extended precicion calc
		measure <<= 3;                 // Convert to 12-bit, now degrees are in 1/16 degrees units
		measure += (16 - sp[6]) - 4;   // Add the compensation and remember to subtract 0.25 degree (4/16)
	}

	// check for negative 
	if ( measure & 0x8000 )  {
		negative = 1;       // mark negative
		measure ^= 0xffff;  // convert to positive => (twos complement)++
		measure++;
	}
	else {
		negative = 0;
	}

	// clear undefined bits for DS18B20 != 12bit resolution
	if ( familycode == DS18B20_FAMILY_CODE || familycode == DS1822_FAMILY_CODE ) {
		switch( sp[DS18B20_CONF_REG] & DS18B20_RES_MASK ) {
		case DS18B20_9_BIT:
			measure &= ~(DS18B20_9_BIT_UNDF);
			break;
		case DS18B20_10_BIT:
			measure &= ~(DS18B20_10_BIT_UNDF);
			break;
		case DS18B20_11_BIT:
			measure &= ~(DS18B20_11_BIT_UNDF);
			break;
		default:
			// 12 bit - all bits valid
			break;
		}
	}

	decicelsius = (measure >> 4);
	decicelsius *= 10;

	// decicelsius += ((measure & 0x000F) * 640 + 512) / 1024;
	// 625/1000 = 640/1024
	fract = ( measure & 0x000F ) * 640;
	if ( !negative ) {
		fract += 512;
	}
	fract /= 1024;
	decicelsius += fract;

	if ( negative ) {
		decicelsius = -decicelsius;
	}

	if ( /* decicelsius == 850 || */ decicelsius < -550 || decicelsius > 1250 ) {
		return DS18X20_INVALID_DECICELSIUS;
	} else {
		return decicelsius;
	}
}

/* format decicelsius-value into string, itoa method inspired 
   by code from Chris Takahashi for the MSP430 libc, BSD-license 
   modifications mthomas: variable-types, fixed radix 10, use div(), 
   insert decimal-point */
uint8_t DS18X20_format_from_decicelsius( int16_t decicelsius, char str[], uint8_t n)
{
	uint8_t sign = 0;
	char temp[7];
	int8_t temp_loc = 0;
	uint8_t str_loc = 0;
	div_t dt;
	uint8_t ret;

	// range from -550:-55.0�C to 1250:+125.0�C -> min. 6+1 chars
	if ( n >= (6+1) && decicelsius > -1000 && decicelsius < 10000 ) {

		if ( decicelsius < 0) {
			sign = 1;
			decicelsius = -decicelsius;
		}

		// construct a backward string of the number.
		do {
			dt = div(decicelsius,10);
			temp[temp_loc++] = dt.rem + '0';
			decicelsius = dt.quot;
		} while ( decicelsius > 0 );

		if ( sign ) {
			temp[temp_loc] = '-';
		} else {
			///temp_loc--;
			temp[temp_loc] = '+';
		}

		// reverse the string.into the output
		while ( temp_loc >=0 ) {
			str[str_loc++] = temp[(uint8_t)temp_loc--];
			if ( temp_loc == 0 ) {
				str[str_loc++] = DS18X20_DECIMAL_CHAR;
			}
		}
		str[str_loc] = '\0';

		ret = DS18X20_OK;
	} else {
		ret = DS18X20_ERROR;
	}
	
	return ret;
}

/* reads temperature (scratchpad) of sensor with rom-code id
   output: decicelsius 
   returns DS18X20_OK on success */
uint8_t DS18X20_read_decicelsius( uint8_t id[], int16_t *decicelsius )
{
	uint8_t sp[DS18X20_SP_SIZE];
	uint8_t ret;
	
	ow_reset();
	ret = read_scratchpad( id, sp, DS18X20_SP_SIZE );
	if ( ret == DS18X20_OK ) {
		*decicelsius = DS18X20_raw_to_decicelsius( id[0], sp );
	}
	return ret;
}

/* reads temperature (scratchpad) of sensor without id (single sensor)
   output: decicelsius 
   returns DS18X20_OK on success */
uint8_t DS18X20_read_decicelsius_single( uint8_t familycode, int16_t *decicelsius )
{
	uint8_t sp[DS18X20_SP_SIZE];
	uint8_t ret;
	
	ret = read_scratchpad( NULL, sp, DS18X20_SP_SIZE );
	if ( ret == DS18X20_OK ) {
		*decicelsius = DS18X20_raw_to_decicelsius( familycode, sp );
	}
	return ret;
}

#endif /* DS18X20_DECICELSIUS */


#if DS18X20_MAX_RESOLUTION

static int32_t DS18X20_raw_to_maxres( uint8_t familycode, uint8_t sp[] )
{
	uint16_t measure;
	uint8_t  negative;
	int32_t  temperaturevalue;

	measure = sp[0] | (sp[1] << 8);
	//measure = 0xFF5E; // test -10.125
	//measure = 0xFE6F; // test -25.0625

	if( familycode == DS18S20_FAMILY_CODE ) {   // 9 -> 12 bit if 18S20
		/* Extended measurements for DS18S20 contributed by Carsten Foss */
		measure &= (uint16_t)0xfffe;   // Discard LSB, needed for later extended precicion calc
		measure <<= 3;                 // Convert to 12-bit, now degrees are in 1/16 degrees units
		measure += ( 16 - sp[6] ) - 4; // Add the compensation and remember to subtract 0.25 degree (4/16)
	}

	// check for negative 
	if ( measure & 0x8000 )  {
		negative = 1;       // mark negative
		measure ^= 0xffff;  // convert to positive => (twos complement)++
		measure++;
	}
	else {
		negative = 0;
	}

	// clear undefined bits for DS18B20 != 12bit resolution
	if ( familycode == DS18B20_FAMILY_CODE || familycode == DS1822_FAMILY_CODE ) {
		switch( sp[DS18B20_CONF_REG] & DS18B20_RES_MASK ) {
		case DS18B20_9_BIT:
			measure &= ~(DS18B20_9_BIT_UNDF);
			break;
		case DS18B20_10_BIT:
			measure &= ~(DS18B20_10_BIT_UNDF);
			break;
		case DS18B20_11_BIT:
			measure &= ~(DS18B20_11_BIT_UNDF);
			break;
		default:
			// 12 bit - all bits valid
			break;
		}
	}

	temperaturevalue  = (measure >> 4);
	temperaturevalue *= 10000;
	temperaturevalue +=( measure & 0x000F ) * DS18X20_FRACCONV;

	if ( negative ) {
		temperaturevalue = -temperaturevalue;
	}

	return temperaturevalue;
}

uint8_t DS18X20_read_maxres( uint8_t id[], int32_t *temperaturevalue )
{
	uint8_t sp[DS18X20_SP_SIZE];
	uint8_t ret;
	
	ow_reset();
	ret = read_scratchpad( id, sp, DS18X20_SP_SIZE );
	if ( ret == DS18X20_OK ) {
		*temperaturevalue = DS18X20_raw_to_maxres( id[0], sp );
	}
	return ret;
}

uint8_t DS18X20_read_maxres_single( uint8_t familycode, int32_t *temperaturevalue )
{
	uint8_t sp[DS18X20_SP_SIZE];
	uint8_t ret;
	
	ret = read_scratchpad( NULL, sp, DS18X20_SP_SIZE );
	if ( ret == DS18X20_OK ) {
		*temperaturevalue = DS18X20_raw_to_maxres( familycode, sp );
	}
	return ret;

}

uint8_t DS18X20_format_from_maxres( int32_t temperaturevalue, char str[], uint8_t n)
{
	uint8_t sign = 0;
	char temp[10];
	int8_t temp_loc = 0;
	uint8_t str_loc = 0;
	ldiv_t ldt;
	uint8_t ret;

	// range from -550000:-55.0000�C to 1250000:+125.0000�C -> min. 9+1 chars
	if ( n >= (9+1) && temperaturevalue > -1000000L && temperaturevalue < 10000000L ) {

		if ( temperaturevalue < 0) {
			sign = 1;
			temperaturevalue = -temperaturevalue;
		}

		do {
			ldt = ldiv( temperaturevalue, 10 );
			temp[temp_loc++] = ldt.rem + '0';
			temperaturevalue = ldt.quot;
		} while ( temperaturevalue > 0 );
		
		// mk 20110209
		if ((temp_loc < 4)&&(temp_loc > 1)) {
			temp[temp_loc++] = '0';
		} // mk end

		if ( sign ) {
			temp[temp_loc] = '-';
		} else {
			temp[temp_loc] = '+';
		}

		while ( temp_loc >= 0 ) {
			str[str_loc++] = temp[(uint8_t)temp_loc--];
			if ( temp_loc == 3 ) {
				str[str_loc++] = DS18X20_DECIMAL_CHAR;
			}
		}
		str[str_loc] = '\0';

		ret = DS18X20_OK;
	} else {
		ret = DS18X20_ERROR;
	}
	
	return ret;
}

#endif /* DS18X20_MAX_RESOLUTION */


#if DS18X20_EEPROMSUPPORT

uint8_t DS18X20_write_scratchpad( uint8_t id[], 
	uint8_t th, uint8_t tl, uint8_t conf)
{
	uint8_t ret;

	ow_reset();
	if( ow_input_pin_state() ) { // only send if bus is "idle" = high
		ow_command( DS18X20_WRITE_SCRATCHPAD, id );
		ow_byte_wr( th );
		ow_byte_wr( tl );
		if ( id[0] == DS18B20_FAMILY_CODE || id[0] == DS1822_FAMILY_CODE ) {
			ow_byte_wr( conf ); // config only available on DS18B20 and DS1822
		}
		ret = DS18X20_OK;
	} 
	else { 
		uart_puts_P_verbose( "DS18X20_write_scratchpad: Short Circuit!\r" );
		ret = DS18X20_ERROR;
	}

	return ret;
}

uint8_t DS18X20_read_scratchpad( uint8_t id[], uint8_t sp[], uint8_t n )
{
	uint8_t ret;

	ow_reset();
	if( ow_input_pin_state() ) { // only send if bus is "idle" = high
		ret = read_scratchpad( id, sp, n );
	} 
	else {
		uart_puts_P_verbose( "DS18X20_read_scratchpad: Short Circuit!\r" );
		ret = DS18X20_ERROR;
	}

	return ret;
}

uint8_t DS18X20_scratchpad_to_eeprom( uint8_t with_power_extern, 
	uint8_t id[] )
{
	uint8_t ret;

	ow_reset();
	if( ow_input_pin_state() ) { // only send if bus is "idle" = high
		if ( with_power_extern != DS18X20_POWER_EXTERN ) {
			ow_command_with_parasite_enable( DS18X20_COPY_SCRATCHPAD, id );
			/* not longer needed: ow_parasite_enable(); */
		} else {
			ow_command( DS18X20_COPY_SCRATCHPAD, id );
		}
		_delay_ms(DS18X20_COPYSP_DELAY); // wait for 10 ms 
		if ( with_power_extern != DS18X20_POWER_EXTERN ) {
			ow_parasite_disable();
		}
		ret = DS18X20_OK;
	} 
	else { 
		uart_puts_P_verbose( "DS18X20_copy_scratchpad: Short Circuit!\r" );
		ret = DS18X20_START_FAIL;
	}

	return ret;
}

uint8_t DS18X20_eeprom_to_scratchpad( uint8_t id[] )
{
	uint8_t ret;
	uint8_t retry_count=255;

	ow_reset();
	if( ow_input_pin_state() ) { // only send if bus is "idle" = high
		ow_command( DS18X20_RECALL_E2, id );
		while( retry_count-- && !( ow_bit_io( 1 ) ) ) { 
			;
		}
		if ( retry_count ) {
			ret = DS18X20_OK;
		} else {
			uart_puts_P_verbose( "DS18X20_recall_E2: timeout!\r" );
			ret = DS18X20_ERROR;
		}
	} 
	else { 
		uart_puts_P_verbose( "DS18X20_recall_E2: Short Circuit!\r" );
		ret = DS18X20_ERROR;
	}

	return ret;
}

#endif /* DS18X20_EEPROMSUPPORT */