3
|
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis |
|
2 * |
|
3 * LibTomCrypt is a library that provides various cryptographic |
|
4 * algorithms in a highly modular and flexible manner. |
|
5 * |
|
6 * The library is free for all purposes without any express |
|
7 * guarantee it works. |
|
8 * |
|
9 * Tom St Denis, [email protected], http://libtomcrypt.org |
|
10 */ |
|
11 |
|
12 /* RC6 code by Tom St Denis */ |
|
13 #include "mycrypt.h" |
|
14 |
|
15 #ifdef RC6 |
|
16 |
|
17 const struct _cipher_descriptor rc6_desc = |
|
18 { |
|
19 "rc6", |
|
20 3, |
|
21 8, 128, 16, 20, |
|
22 &rc6_setup, |
|
23 &rc6_ecb_encrypt, |
|
24 &rc6_ecb_decrypt, |
|
25 &rc6_test, |
|
26 &rc6_keysize |
|
27 }; |
|
28 |
|
29 static const ulong32 stab[44] = { |
|
30 0xb7e15163UL, 0x5618cb1cUL, 0xf45044d5UL, 0x9287be8eUL, 0x30bf3847UL, 0xcef6b200UL, 0x6d2e2bb9UL, 0x0b65a572UL, |
|
31 0xa99d1f2bUL, 0x47d498e4UL, 0xe60c129dUL, 0x84438c56UL, 0x227b060fUL, 0xc0b27fc8UL, 0x5ee9f981UL, 0xfd21733aUL, |
|
32 0x9b58ecf3UL, 0x399066acUL, 0xd7c7e065UL, 0x75ff5a1eUL, 0x1436d3d7UL, 0xb26e4d90UL, 0x50a5c749UL, 0xeedd4102UL, |
|
33 0x8d14babbUL, 0x2b4c3474UL, 0xc983ae2dUL, 0x67bb27e6UL, 0x05f2a19fUL, 0xa42a1b58UL, 0x42619511UL, 0xe0990ecaUL, |
|
34 0x7ed08883UL, 0x1d08023cUL, 0xbb3f7bf5UL, 0x5976f5aeUL, 0xf7ae6f67UL, 0x95e5e920UL, 0x341d62d9UL, 0xd254dc92UL, |
|
35 0x708c564bUL, 0x0ec3d004UL, 0xacfb49bdUL, 0x4b32c376UL }; |
|
36 |
|
37 #ifdef CLEAN_STACK |
|
38 static int _rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) |
|
39 #else |
|
40 int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) |
|
41 #endif |
|
42 { |
|
43 ulong32 L[64], S[50], A, B, i, j, v, s, l; |
|
44 |
|
45 _ARGCHK(key != NULL); |
|
46 _ARGCHK(skey != NULL); |
|
47 |
|
48 /* test parameters */ |
|
49 if (num_rounds != 0 && num_rounds != 20) { |
|
50 return CRYPT_INVALID_ROUNDS; |
|
51 } |
|
52 |
|
53 /* key must be between 64 and 1024 bits */ |
|
54 if (keylen < 8 || keylen > 128) { |
|
55 return CRYPT_INVALID_KEYSIZE; |
|
56 } |
|
57 |
|
58 /* copy the key into the L array */ |
|
59 for (A = i = j = 0; i < (ulong32)keylen; ) { |
|
60 A = (A << 8) | ((ulong32)(key[i++] & 255)); |
|
61 if (!(i & 3)) { |
|
62 L[j++] = BSWAP(A); |
|
63 A = 0; |
|
64 } |
|
65 } |
|
66 |
|
67 /* handle odd sized keys */ |
|
68 if (keylen & 3) { |
|
69 A <<= (8 * (4 - (keylen&3))); |
|
70 L[j++] = BSWAP(A); |
|
71 } |
|
72 |
|
73 /* setup the S array */ |
143
|
74 XMEMCPY(S, stab, 44 * sizeof(stab[0])); |
3
|
75 |
|
76 /* mix buffer */ |
|
77 s = 3 * MAX(44, j); |
|
78 l = j; |
|
79 for (A = B = i = j = v = 0; v < s; v++) { |
|
80 A = S[i] = ROL(S[i] + A + B, 3); |
|
81 B = L[j] = ROL(L[j] + A + B, (A+B)); |
|
82 if (++i == 44) { i = 0; } |
|
83 if (++j == l) { j = 0; } |
|
84 } |
|
85 |
|
86 /* copy to key */ |
|
87 for (i = 0; i < 44; i++) { |
|
88 skey->rc6.K[i] = S[i]; |
|
89 } |
|
90 return CRYPT_OK; |
|
91 } |
|
92 |
|
93 #ifdef CLEAN_STACK |
|
94 int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) |
|
95 { |
|
96 int x; |
|
97 x = _rc6_setup(key, keylen, num_rounds, skey); |
|
98 burn_stack(sizeof(ulong32) * 122); |
|
99 return x; |
|
100 } |
|
101 #endif |
|
102 |
|
103 #ifdef CLEAN_STACK |
|
104 static void _rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key) |
|
105 #else |
|
106 void rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key) |
|
107 #endif |
|
108 { |
|
109 ulong32 a,b,c,d,t,u, *K; |
|
110 int r; |
|
111 |
|
112 _ARGCHK(key != NULL); |
|
113 _ARGCHK(pt != NULL); |
|
114 _ARGCHK(ct != NULL); |
|
115 LOAD32L(a,&pt[0]);LOAD32L(b,&pt[4]);LOAD32L(c,&pt[8]);LOAD32L(d,&pt[12]); |
|
116 |
|
117 b += key->rc6.K[0]; |
|
118 d += key->rc6.K[1]; |
|
119 |
|
120 #define RND(a,b,c,d) \ |
|
121 t = (b * (b + b + 1)); t = ROL(t, 5); \ |
|
122 u = (d * (d + d + 1)); u = ROL(u, 5); \ |
|
123 a = ROL(a^t,u) + K[0]; \ |
|
124 c = ROL(c^u,t) + K[1]; K += 2; |
|
125 |
|
126 K = key->rc6.K + 2; |
|
127 for (r = 0; r < 20; r += 4) { |
|
128 RND(a,b,c,d); |
|
129 RND(b,c,d,a); |
|
130 RND(c,d,a,b); |
|
131 RND(d,a,b,c); |
|
132 } |
|
133 |
|
134 #undef RND |
|
135 |
|
136 a += key->rc6.K[42]; |
|
137 c += key->rc6.K[43]; |
|
138 STORE32L(a,&ct[0]);STORE32L(b,&ct[4]);STORE32L(c,&ct[8]);STORE32L(d,&ct[12]); |
|
139 } |
|
140 |
|
141 #ifdef CLEAN_STACK |
|
142 void rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key) |
|
143 { |
|
144 _rc6_ecb_encrypt(pt, ct, key); |
|
145 burn_stack(sizeof(ulong32) * 6 + sizeof(int)); |
|
146 } |
|
147 #endif |
|
148 |
|
149 #ifdef CLEAN_STACK |
|
150 static void _rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key) |
|
151 #else |
|
152 void rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key) |
|
153 #endif |
|
154 { |
|
155 ulong32 a,b,c,d,t,u, *K; |
|
156 int r; |
|
157 |
|
158 _ARGCHK(key != NULL); |
|
159 _ARGCHK(pt != NULL); |
|
160 _ARGCHK(ct != NULL); |
|
161 |
|
162 LOAD32L(a,&ct[0]);LOAD32L(b,&ct[4]);LOAD32L(c,&ct[8]);LOAD32L(d,&ct[12]); |
|
163 a -= key->rc6.K[42]; |
|
164 c -= key->rc6.K[43]; |
|
165 |
|
166 #define RND(a,b,c,d) \ |
|
167 t = (b * (b + b + 1)); t = ROL(t, 5); \ |
|
168 u = (d * (d + d + 1)); u = ROL(u, 5); \ |
|
169 c = ROR(c - K[1], t) ^ u; \ |
|
170 a = ROR(a - K[0], u) ^ t; K -= 2; |
|
171 |
|
172 K = key->rc6.K + 40; |
|
173 |
|
174 for (r = 0; r < 20; r += 4) { |
|
175 RND(d,a,b,c); |
|
176 RND(c,d,a,b); |
|
177 RND(b,c,d,a); |
|
178 RND(a,b,c,d); |
|
179 } |
|
180 |
|
181 #undef RND |
|
182 |
|
183 b -= key->rc6.K[0]; |
|
184 d -= key->rc6.K[1]; |
|
185 STORE32L(a,&pt[0]);STORE32L(b,&pt[4]);STORE32L(c,&pt[8]);STORE32L(d,&pt[12]); |
|
186 } |
|
187 |
|
188 #ifdef CLEAN_STACK |
|
189 void rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key) |
|
190 { |
|
191 _rc6_ecb_decrypt(ct, pt, key); |
|
192 burn_stack(sizeof(ulong32) * 6 + sizeof(int)); |
|
193 } |
|
194 #endif |
|
195 |
|
196 int rc6_test(void) |
|
197 { |
|
198 #ifndef LTC_TEST |
|
199 return CRYPT_NOP; |
|
200 #else |
|
201 static const struct { |
|
202 int keylen; |
|
203 unsigned char key[32], pt[16], ct[16]; |
|
204 } tests[] = { |
|
205 { |
|
206 16, |
|
207 { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, |
|
208 0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78, |
|
209 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
210 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
|
211 { 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79, |
|
212 0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 }, |
|
213 { 0x52, 0x4e, 0x19, 0x2f, 0x47, 0x15, 0xc6, 0x23, |
|
214 0x1f, 0x51, 0xf6, 0x36, 0x7e, 0xa4, 0x3f, 0x18 } |
|
215 }, |
|
216 { |
|
217 24, |
|
218 { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, |
|
219 0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78, |
|
220 0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0, |
|
221 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
|
222 { 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79, |
|
223 0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 }, |
|
224 { 0x68, 0x83, 0x29, 0xd0, 0x19, 0xe5, 0x05, 0x04, |
|
225 0x1e, 0x52, 0xe9, 0x2a, 0xf9, 0x52, 0x91, 0xd4 } |
|
226 }, |
|
227 { |
|
228 32, |
|
229 { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, |
|
230 0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78, |
|
231 0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0, |
|
232 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe }, |
|
233 { 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79, |
|
234 0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 }, |
|
235 { 0xc8, 0x24, 0x18, 0x16, 0xf0, 0xd7, 0xe4, 0x89, |
|
236 0x20, 0xad, 0x16, 0xa1, 0x67, 0x4e, 0x5d, 0x48 } |
|
237 } |
|
238 }; |
|
239 unsigned char tmp[2][16]; |
|
240 int x, y, err; |
|
241 symmetric_key key; |
|
242 |
|
243 for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) { |
|
244 /* setup key */ |
|
245 if ((err = rc6_setup(tests[x].key, tests[x].keylen, 0, &key)) != CRYPT_OK) { |
|
246 return err; |
|
247 } |
|
248 |
|
249 /* encrypt and decrypt */ |
|
250 rc6_ecb_encrypt(tests[x].pt, tmp[0], &key); |
|
251 rc6_ecb_decrypt(tmp[0], tmp[1], &key); |
|
252 |
|
253 /* compare */ |
|
254 if (memcmp(tmp[0], tests[x].ct, 16) || memcmp(tmp[1], tests[x].pt, 16)) { |
|
255 #if 0 |
|
256 printf("\n\nFailed test %d\n", x); |
|
257 if (memcmp(tmp[0], tests[x].ct, 16)) { |
|
258 printf("Ciphertext: "); |
|
259 for (y = 0; y < 16; y++) printf("%02x ", tmp[0][y]); |
|
260 printf("\nExpected : "); |
|
261 for (y = 0; y < 16; y++) printf("%02x ", tests[x].ct[y]); |
|
262 printf("\n"); |
|
263 } |
|
264 if (memcmp(tmp[1], tests[x].pt, 16)) { |
|
265 printf("Plaintext: "); |
|
266 for (y = 0; y < 16; y++) printf("%02x ", tmp[0][y]); |
|
267 printf("\nExpected : "); |
|
268 for (y = 0; y < 16; y++) printf("%02x ", tests[x].pt[y]); |
|
269 printf("\n"); |
|
270 } |
|
271 #endif |
|
272 return CRYPT_FAIL_TESTVECTOR; |
|
273 } |
|
274 |
|
275 /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ |
|
276 for (y = 0; y < 16; y++) tmp[0][y] = 0; |
|
277 for (y = 0; y < 1000; y++) rc6_ecb_encrypt(tmp[0], tmp[0], &key); |
|
278 for (y = 0; y < 1000; y++) rc6_ecb_decrypt(tmp[0], tmp[0], &key); |
|
279 for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; |
|
280 } |
|
281 return CRYPT_OK; |
|
282 #endif |
|
283 } |
|
284 |
|
285 int rc6_keysize(int *desired_keysize) |
|
286 { |
|
287 _ARGCHK(desired_keysize != NULL); |
|
288 if (*desired_keysize < 8) { |
|
289 return CRYPT_INVALID_KEYSIZE; |
|
290 } else if (*desired_keysize > 128) { |
|
291 *desired_keysize = 128; |
|
292 } |
|
293 return CRYPT_OK; |
|
294 } |
|
295 |
|
296 #endif /*RC6*/ |
|
297 |
|
298 |