2
|
1 #include <time.h> |
|
2 |
|
3 #define TESTING |
|
4 |
|
5 #ifdef IOWNANATHLON |
|
6 #include <unistd.h> |
|
7 #define SLEEP sleep(4) |
|
8 #else |
|
9 #define SLEEP |
|
10 #endif |
|
11 |
|
12 #include "tommath.h" |
|
13 |
|
14 #ifdef TIMER |
|
15 ulong64 _tt; |
|
16 |
|
17 #if defined(__i386__) || defined(_M_IX86) || defined(_M_AMD64) |
|
18 /* RDTSC from Scott Duplichan */ |
|
19 static ulong64 TIMFUNC (void) |
|
20 { |
|
21 #if defined __GNUC__ |
|
22 #ifdef __i386__ |
|
23 ulong64 a; |
|
24 __asm__ __volatile__ ("rdtsc ":"=A" (a)); |
|
25 return a; |
|
26 #else /* gcc-IA64 version */ |
|
27 unsigned long result; |
|
28 __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory"); |
|
29 while (__builtin_expect ((int) result == -1, 0)) |
|
30 __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory"); |
|
31 return result; |
|
32 #endif |
|
33 |
|
34 // Microsoft and Intel Windows compilers |
|
35 #elif defined _M_IX86 |
|
36 __asm rdtsc |
|
37 #elif defined _M_AMD64 |
|
38 return __rdtsc (); |
|
39 #elif defined _M_IA64 |
|
40 #if defined __INTEL_COMPILER |
|
41 #include <ia64intrin.h> |
|
42 #endif |
|
43 return __getReg (3116); |
|
44 #else |
|
45 #error need rdtsc function for this build |
|
46 #endif |
|
47 } |
|
48 #else |
|
49 #define TIMFUNC clock |
|
50 #endif |
|
51 |
|
52 ulong64 rdtsc(void) { return TIMFUNC() - _tt; } |
|
53 void reset(void) { _tt = TIMFUNC(); } |
|
54 |
|
55 #endif |
|
56 |
|
57 void ndraw(mp_int *a, char *name) |
|
58 { |
|
59 char buf[4096]; |
|
60 printf("%s: ", name); |
|
61 mp_toradix(a, buf, 64); |
|
62 printf("%s\n", buf); |
|
63 } |
|
64 |
|
65 static void draw(mp_int *a) |
|
66 { |
|
67 ndraw(a, ""); |
|
68 } |
|
69 |
|
70 |
|
71 unsigned long lfsr = 0xAAAAAAAAUL; |
|
72 |
|
73 int lbit(void) |
|
74 { |
|
75 if (lfsr & 0x80000000UL) { |
|
76 lfsr = ((lfsr << 1) ^ 0x8000001BUL) & 0xFFFFFFFFUL; |
|
77 return 1; |
|
78 } else { |
|
79 lfsr <<= 1; |
|
80 return 0; |
|
81 } |
|
82 } |
|
83 |
|
84 int myrng(unsigned char *dst, int len, void *dat) |
|
85 { |
|
86 int x; |
|
87 for (x = 0; x < len; x++) dst[x] = rand() & 0xFF; |
|
88 return len; |
|
89 } |
|
90 |
|
91 |
|
92 #define DO2(x) x; x; |
|
93 #define DO4(x) DO2(x); DO2(x); |
|
94 #define DO8(x) DO4(x); DO4(x); |
|
95 #define DO(x) DO8(x); DO8(x); |
|
96 |
|
97 char cmd[4096], buf[4096]; |
|
98 int main(void) |
|
99 { |
|
100 mp_int a, b, c, d, e, f; |
|
101 unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n, |
|
102 div2_n, mul2_n, add_d_n, sub_d_n, t; |
|
103 unsigned rr; |
|
104 int i, n, err, cnt, ix, old_kara_m, old_kara_s; |
|
105 |
|
106 #ifdef TIMER |
|
107 ulong64 tt, CLK_PER_SEC; |
|
108 FILE *log, *logb, *logc; |
|
109 #endif |
|
110 |
|
111 mp_init(&a); |
|
112 mp_init(&b); |
|
113 mp_init(&c); |
|
114 mp_init(&d); |
|
115 mp_init(&e); |
|
116 mp_init(&f); |
|
117 |
|
118 srand(time(NULL)); |
|
119 |
|
120 #ifdef TESTING |
|
121 // test mp_get_int |
|
122 printf("Testing: mp_get_int\n"); |
|
123 for(i=0;i<1000;++i) { |
|
124 t = (unsigned long)rand()*rand()+1; |
|
125 mp_set_int(&a,t); |
|
126 if (t!=mp_get_int(&a)) { |
|
127 printf("mp_get_int() bad result!\n"); |
|
128 return 1; |
|
129 } |
|
130 } |
|
131 mp_set_int(&a,0); |
|
132 if (mp_get_int(&a)!=0) |
|
133 { printf("mp_get_int() bad result!\n"); |
|
134 return 1; |
|
135 } |
|
136 mp_set_int(&a,0xffffffff); |
|
137 if (mp_get_int(&a)!=0xffffffff) |
|
138 { printf("mp_get_int() bad result!\n"); |
|
139 return 1; |
|
140 } |
|
141 |
|
142 // test mp_sqrt |
|
143 printf("Testing: mp_sqrt\n"); |
|
144 for (i=0;i<10000;++i) { |
|
145 printf("%6d\r", i); fflush(stdout); |
|
146 n = (rand()&15)+1; |
|
147 mp_rand(&a,n); |
|
148 if (mp_sqrt(&a,&b) != MP_OKAY) |
|
149 { printf("mp_sqrt() error!\n"); |
|
150 return 1; |
|
151 } |
|
152 mp_n_root(&a,2,&a); |
|
153 if (mp_cmp_mag(&b,&a) != MP_EQ) |
|
154 { printf("mp_sqrt() bad result!\n"); |
|
155 return 1; |
|
156 } |
|
157 } |
|
158 |
|
159 printf("\nTesting: mp_is_square\n"); |
|
160 for (i=0;i<100000;++i) { |
|
161 printf("%6d\r", i); fflush(stdout); |
|
162 |
|
163 /* test mp_is_square false negatives */ |
|
164 n = (rand()&7)+1; |
|
165 mp_rand(&a,n); |
|
166 mp_sqr(&a,&a); |
|
167 if (mp_is_square(&a,&n)!=MP_OKAY) { |
|
168 printf("fn:mp_is_square() error!\n"); |
|
169 return 1; |
|
170 } |
|
171 if (n==0) { |
|
172 printf("fn:mp_is_square() bad result!\n"); |
|
173 return 1; |
|
174 } |
|
175 |
|
176 /* test for false positives */ |
|
177 mp_add_d(&a, 1, &a); |
|
178 if (mp_is_square(&a,&n)!=MP_OKAY) { |
|
179 printf("fp:mp_is_square() error!\n"); |
|
180 return 1; |
|
181 } |
|
182 if (n==1) { |
|
183 printf("fp:mp_is_square() bad result!\n"); |
|
184 return 1; |
|
185 } |
|
186 |
|
187 } |
|
188 printf("\n\n"); |
|
189 #endif |
|
190 |
|
191 #ifdef TESTING |
|
192 /* test for size */ |
|
193 for (ix = 16; ix < 512; ix++) { |
|
194 printf("Testing (not safe-prime): %9d bits \r", ix); fflush(stdout); |
|
195 err = mp_prime_random_ex(&a, 8, ix, (rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON, myrng, NULL); |
|
196 if (err != MP_OKAY) { |
|
197 printf("failed with err code %d\n", err); |
|
198 return EXIT_FAILURE; |
|
199 } |
|
200 if (mp_count_bits(&a) != ix) { |
|
201 printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix); |
|
202 return EXIT_FAILURE; |
|
203 } |
|
204 } |
|
205 |
|
206 for (ix = 16; ix < 512; ix++) { |
|
207 printf("Testing ( safe-prime): %9d bits \r", ix); fflush(stdout); |
|
208 err = mp_prime_random_ex(&a, 8, ix, ((rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON)|LTM_PRIME_SAFE, myrng, NULL); |
|
209 if (err != MP_OKAY) { |
|
210 printf("failed with err code %d\n", err); |
|
211 return EXIT_FAILURE; |
|
212 } |
|
213 if (mp_count_bits(&a) != ix) { |
|
214 printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix); |
|
215 return EXIT_FAILURE; |
|
216 } |
|
217 /* let's see if it's really a safe prime */ |
|
218 mp_sub_d(&a, 1, &a); |
|
219 mp_div_2(&a, &a); |
|
220 mp_prime_is_prime(&a, 8, &cnt); |
|
221 if (cnt != MP_YES) { |
|
222 printf("sub is not prime!\n"); |
|
223 return EXIT_FAILURE; |
|
224 } |
|
225 } |
|
226 |
|
227 printf("\n\n"); |
|
228 #endif |
|
229 |
|
230 #ifdef TESTING |
|
231 mp_read_radix(&a, "123456", 10); |
|
232 mp_toradix_n(&a, buf, 10, 3); |
|
233 printf("a == %s\n", buf); |
|
234 mp_toradix_n(&a, buf, 10, 4); |
|
235 printf("a == %s\n", buf); |
|
236 mp_toradix_n(&a, buf, 10, 30); |
|
237 printf("a == %s\n", buf); |
|
238 #endif |
|
239 |
|
240 |
|
241 #if 0 |
|
242 for (;;) { |
|
243 fgets(buf, sizeof(buf), stdin); |
|
244 mp_read_radix(&a, buf, 10); |
|
245 mp_prime_next_prime(&a, 5, 1); |
|
246 mp_toradix(&a, buf, 10); |
|
247 printf("%s, %lu\n", buf, a.dp[0] & 3); |
|
248 } |
|
249 #endif |
|
250 |
|
251 #if 0 |
|
252 { |
|
253 mp_word aa, bb; |
|
254 |
|
255 for (;;) { |
|
256 aa = abs(rand()) & MP_MASK; |
|
257 bb = abs(rand()) & MP_MASK; |
|
258 if (MULT(aa,bb) != (aa*bb)) { |
|
259 printf("%llu * %llu == %llu or %llu?\n", aa, bb, (ulong64)MULT(aa,bb), (ulong64)(aa*bb)); |
|
260 return 0; |
|
261 } |
|
262 } |
|
263 } |
|
264 #endif |
|
265 |
|
266 #ifdef TESTING |
|
267 /* test mp_cnt_lsb */ |
|
268 printf("testing mp_cnt_lsb...\n"); |
|
269 mp_set(&a, 1); |
|
270 for (ix = 0; ix < 1024; ix++) { |
|
271 if (mp_cnt_lsb(&a) != ix) { |
|
272 printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a)); |
|
273 return 0; |
|
274 } |
|
275 mp_mul_2(&a, &a); |
|
276 } |
|
277 #endif |
|
278 |
|
279 /* test mp_reduce_2k */ |
|
280 #ifdef TESTING |
|
281 printf("Testing mp_reduce_2k...\n"); |
|
282 for (cnt = 3; cnt <= 384; ++cnt) { |
|
283 mp_digit tmp; |
|
284 mp_2expt(&a, cnt); |
|
285 mp_sub_d(&a, 2, &a); /* a = 2**cnt - 2 */ |
|
286 |
|
287 |
|
288 printf("\nTesting %4d bits", cnt); |
|
289 printf("(%d)", mp_reduce_is_2k(&a)); |
|
290 mp_reduce_2k_setup(&a, &tmp); |
|
291 printf("(%d)", tmp); |
|
292 for (ix = 0; ix < 10000; ix++) { |
|
293 if (!(ix & 127)) {printf("."); fflush(stdout); } |
|
294 mp_rand(&b, (cnt/DIGIT_BIT + 1) * 2); |
|
295 mp_copy(&c, &b); |
|
296 mp_mod(&c, &a, &c); |
|
297 mp_reduce_2k(&b, &a, 1); |
|
298 if (mp_cmp(&c, &b)) { |
|
299 printf("FAILED\n"); |
|
300 exit(0); |
|
301 } |
|
302 } |
|
303 } |
|
304 #endif |
|
305 |
|
306 |
|
307 /* test mp_div_3 */ |
|
308 #ifdef TESTING |
|
309 printf("Testing mp_div_3...\n"); |
|
310 mp_set(&d, 3); |
|
311 for (cnt = 0; cnt < 1000000; ) { |
|
312 mp_digit r1, r2; |
|
313 |
|
314 if (!(++cnt & 127)) printf("%9d\r", cnt); |
|
315 mp_rand(&a, abs(rand()) % 128 + 1); |
|
316 mp_div(&a, &d, &b, &e); |
|
317 mp_div_3(&a, &c, &r2); |
|
318 |
|
319 if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) { |
|
320 printf("\n\nmp_div_3 => Failure\n"); |
|
321 } |
|
322 } |
|
323 printf("\n\nPassed div_3 testing\n"); |
|
324 #endif |
|
325 |
|
326 /* test the DR reduction */ |
|
327 #ifdef TESTING |
|
328 printf("testing mp_dr_reduce...\n"); |
|
329 for (cnt = 2; cnt < 128; cnt++) { |
|
330 printf("%d digit modulus\n", cnt); |
|
331 mp_grow(&a, cnt); |
|
332 mp_zero(&a); |
|
333 for (ix = 1; ix < cnt; ix++) { |
|
334 a.dp[ix] = MP_MASK; |
|
335 } |
|
336 a.used = cnt; |
|
337 mp_prime_next_prime(&a, 3, 0); |
|
338 |
|
339 mp_rand(&b, cnt - 1); |
|
340 mp_copy(&b, &c); |
|
341 |
|
342 rr = 0; |
|
343 do { |
|
344 if (!(rr & 127)) { printf("%9lu\r", rr); fflush(stdout); } |
|
345 mp_sqr(&b, &b); mp_add_d(&b, 1, &b); |
|
346 mp_copy(&b, &c); |
|
347 |
|
348 mp_mod(&b, &a, &b); |
|
349 mp_dr_reduce(&c, &a, (1<<DIGIT_BIT)-a.dp[0]); |
|
350 |
|
351 if (mp_cmp(&b, &c) != MP_EQ) { |
|
352 printf("Failed on trial %lu\n", rr); exit(-1); |
|
353 |
|
354 } |
|
355 } while (++rr < 100000); |
|
356 printf("Passed DR test for %d digits\n", cnt); |
|
357 } |
|
358 #endif |
|
359 |
|
360 #ifdef TIMER |
|
361 /* temp. turn off TOOM */ |
|
362 TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000; |
|
363 |
|
364 reset(); |
|
365 sleep(1); |
|
366 CLK_PER_SEC = rdtsc(); |
|
367 |
|
368 printf("CLK_PER_SEC == %lu\n", CLK_PER_SEC); |
|
369 |
|
370 |
|
371 log = fopen("logs/add.log", "w"); |
|
372 for (cnt = 8; cnt <= 128; cnt += 8) { |
|
373 SLEEP; |
|
374 mp_rand(&a, cnt); |
|
375 mp_rand(&b, cnt); |
|
376 reset(); |
|
377 rr = 0; |
|
378 do { |
|
379 DO(mp_add(&a,&b,&c)); |
|
380 rr += 16; |
|
381 } while (rdtsc() < (CLK_PER_SEC * 2)); |
|
382 tt = rdtsc(); |
|
383 printf("Adding\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); |
|
384 fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log); |
|
385 } |
|
386 fclose(log); |
|
387 |
|
388 log = fopen("logs/sub.log", "w"); |
|
389 for (cnt = 8; cnt <= 128; cnt += 8) { |
|
390 SLEEP; |
|
391 mp_rand(&a, cnt); |
|
392 mp_rand(&b, cnt); |
|
393 reset(); |
|
394 rr = 0; |
|
395 do { |
|
396 DO(mp_sub(&a,&b,&c)); |
|
397 rr += 16; |
|
398 } while (rdtsc() < (CLK_PER_SEC * 2)); |
|
399 tt = rdtsc(); |
|
400 printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); |
|
401 fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log); |
|
402 } |
|
403 fclose(log); |
|
404 |
|
405 /* do mult/square twice, first without karatsuba and second with */ |
|
406 mult_test: |
|
407 old_kara_m = KARATSUBA_MUL_CUTOFF; |
|
408 old_kara_s = KARATSUBA_SQR_CUTOFF; |
|
409 for (ix = 0; ix < 2; ix++) { |
|
410 printf("With%s Karatsuba\n", (ix==0)?"out":""); |
|
411 |
|
412 KARATSUBA_MUL_CUTOFF = (ix==0)?9999:old_kara_m; |
|
413 KARATSUBA_SQR_CUTOFF = (ix==0)?9999:old_kara_s; |
|
414 |
|
415 log = fopen((ix==0)?"logs/mult.log":"logs/mult_kara.log", "w"); |
|
416 for (cnt = 32; cnt <= 288; cnt += 8) { |
|
417 SLEEP; |
|
418 mp_rand(&a, cnt); |
|
419 mp_rand(&b, cnt); |
|
420 reset(); |
|
421 rr = 0; |
|
422 do { |
|
423 DO(mp_mul(&a, &b, &c)); |
|
424 rr += 16; |
|
425 } while (rdtsc() < (CLK_PER_SEC * 2)); |
|
426 tt = rdtsc(); |
|
427 printf("Multiplying\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); |
|
428 fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log); |
|
429 } |
|
430 fclose(log); |
|
431 |
|
432 log = fopen((ix==0)?"logs/sqr.log":"logs/sqr_kara.log", "w"); |
|
433 for (cnt = 32; cnt <= 288; cnt += 8) { |
|
434 SLEEP; |
|
435 mp_rand(&a, cnt); |
|
436 reset(); |
|
437 rr = 0; |
|
438 do { |
|
439 DO(mp_sqr(&a, &b)); |
|
440 rr += 16; |
|
441 } while (rdtsc() < (CLK_PER_SEC * 2)); |
|
442 tt = rdtsc(); |
|
443 printf("Squaring\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); |
|
444 fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log); |
|
445 } |
|
446 fclose(log); |
|
447 |
|
448 } |
|
449 expt_test: |
|
450 { |
|
451 char *primes[] = { |
|
452 /* 2K moduli mersenne primes */ |
|
453 "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", |
|
454 "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127", |
|
455 "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087", |
|
456 "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007", |
|
457 "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071", |
|
458 "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991", |
|
459 |
|
460 /* DR moduli */ |
|
461 "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079", |
|
462 "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039", |
|
463 "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431", |
|
464 "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783", |
|
465 "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147", |
|
466 "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503", |
|
467 "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679", |
|
468 |
|
469 /* generic unrestricted moduli */ |
|
470 "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203", |
|
471 "2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487", |
|
472 "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319", |
|
473 "47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887", |
|
474 "436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227", |
|
475 "11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207", |
|
476 "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979", |
|
477 NULL |
|
478 }; |
|
479 log = fopen("logs/expt.log", "w"); |
|
480 logb = fopen("logs/expt_dr.log", "w"); |
|
481 logc = fopen("logs/expt_2k.log", "w"); |
|
482 for (n = 0; primes[n]; n++) { |
|
483 SLEEP; |
|
484 mp_read_radix(&a, primes[n], 10); |
|
485 mp_zero(&b); |
|
486 for (rr = 0; rr < mp_count_bits(&a); rr++) { |
|
487 mp_mul_2(&b, &b); |
|
488 b.dp[0] |= lbit(); |
|
489 b.used += 1; |
|
490 } |
|
491 mp_sub_d(&a, 1, &c); |
|
492 mp_mod(&b, &c, &b); |
|
493 mp_set(&c, 3); |
|
494 reset(); |
|
495 rr = 0; |
|
496 do { |
|
497 DO(mp_exptmod(&c, &b, &a, &d)); |
|
498 rr += 16; |
|
499 } while (rdtsc() < (CLK_PER_SEC * 2)); |
|
500 tt = rdtsc(); |
|
501 mp_sub_d(&a, 1, &e); |
|
502 mp_sub(&e, &b, &b); |
|
503 mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */ |
|
504 mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */ |
|
505 if (mp_cmp_d(&d, 1)) { |
|
506 printf("Different (%d)!!!\n", mp_count_bits(&a)); |
|
507 draw(&d); |
|
508 exit(0); |
|
509 } |
|
510 printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); |
|
511 fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt); |
|
512 } |
|
513 } |
|
514 fclose(log); |
|
515 fclose(logb); |
|
516 fclose(logc); |
|
517 |
|
518 log = fopen("logs/invmod.log", "w"); |
|
519 for (cnt = 4; cnt <= 128; cnt += 4) { |
|
520 SLEEP; |
|
521 mp_rand(&a, cnt); |
|
522 mp_rand(&b, cnt); |
|
523 |
|
524 do { |
|
525 mp_add_d(&b, 1, &b); |
|
526 mp_gcd(&a, &b, &c); |
|
527 } while (mp_cmp_d(&c, 1) != MP_EQ); |
|
528 |
|
529 reset(); |
|
530 rr = 0; |
|
531 do { |
|
532 DO(mp_invmod(&b, &a, &c)); |
|
533 rr += 16; |
|
534 } while (rdtsc() < (CLK_PER_SEC * 2)); |
|
535 tt = rdtsc(); |
|
536 mp_mulmod(&b, &c, &a, &d); |
|
537 if (mp_cmp_d(&d, 1) != MP_EQ) { |
|
538 printf("Failed to invert\n"); |
|
539 return 0; |
|
540 } |
|
541 printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); |
|
542 fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt); |
|
543 } |
|
544 fclose(log); |
|
545 |
|
546 return 0; |
|
547 |
|
548 #endif |
|
549 |
|
550 div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n = |
|
551 sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n = sub_d_n= 0; |
|
552 |
|
553 /* force KARA and TOOM to enable despite cutoffs */ |
|
554 KARATSUBA_SQR_CUTOFF = KARATSUBA_MUL_CUTOFF = 110; |
|
555 TOOM_SQR_CUTOFF = TOOM_MUL_CUTOFF = 150; |
|
556 |
|
557 for (;;) { |
|
558 /* randomly clear and re-init one variable, this has the affect of triming the alloc space */ |
|
559 switch (abs(rand()) % 7) { |
|
560 case 0: mp_clear(&a); mp_init(&a); break; |
|
561 case 1: mp_clear(&b); mp_init(&b); break; |
|
562 case 2: mp_clear(&c); mp_init(&c); break; |
|
563 case 3: mp_clear(&d); mp_init(&d); break; |
|
564 case 4: mp_clear(&e); mp_init(&e); break; |
|
565 case 5: mp_clear(&f); mp_init(&f); break; |
|
566 case 6: break; /* don't clear any */ |
|
567 } |
|
568 |
|
569 |
|
570 printf("%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu ", add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, expt_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n); |
|
571 fgets(cmd, 4095, stdin); |
|
572 cmd[strlen(cmd)-1] = 0; |
|
573 printf("%s ]\r",cmd); fflush(stdout); |
|
574 if (!strcmp(cmd, "mul2d")) { ++mul2d_n; |
|
575 fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); |
|
576 fgets(buf, 4095, stdin); sscanf(buf, "%d", &rr); |
|
577 fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); |
|
578 |
|
579 mp_mul_2d(&a, rr, &a); |
|
580 a.sign = b.sign; |
|
581 if (mp_cmp(&a, &b) != MP_EQ) { |
|
582 printf("mul2d failed, rr == %d\n",rr); |
|
583 draw(&a); |
|
584 draw(&b); |
|
585 return 0; |
|
586 } |
|
587 } else if (!strcmp(cmd, "div2d")) { ++div2d_n; |
|
588 fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); |
|
589 fgets(buf, 4095, stdin); sscanf(buf, "%d", &rr); |
|
590 fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); |
|
591 |
|
592 mp_div_2d(&a, rr, &a, &e); |
|
593 a.sign = b.sign; |
|
594 if (a.used == b.used && a.used == 0) { a.sign = b.sign = MP_ZPOS; } |
|
595 if (mp_cmp(&a, &b) != MP_EQ) { |
|
596 printf("div2d failed, rr == %d\n",rr); |
|
597 draw(&a); |
|
598 draw(&b); |
|
599 return 0; |
|
600 } |
|
601 } else if (!strcmp(cmd, "add")) { ++add_n; |
|
602 fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); |
|
603 fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); |
|
604 fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); |
|
605 mp_copy(&a, &d); |
|
606 mp_add(&d, &b, &d); |
|
607 if (mp_cmp(&c, &d) != MP_EQ) { |
|
608 printf("add %lu failure!\n", add_n); |
|
609 draw(&a);draw(&b);draw(&c);draw(&d); |
|
610 return 0; |
|
611 } |
|
612 |
|
613 /* test the sign/unsigned storage functions */ |
|
614 |
|
615 rr = mp_signed_bin_size(&c); |
|
616 mp_to_signed_bin(&c, (unsigned char *)cmd); |
|
617 memset(cmd+rr, rand()&255, sizeof(cmd)-rr); |
|
618 mp_read_signed_bin(&d, (unsigned char *)cmd, rr); |
|
619 if (mp_cmp(&c, &d) != MP_EQ) { |
|
620 printf("mp_signed_bin failure!\n"); |
|
621 draw(&c); |
|
622 draw(&d); |
|
623 return 0; |
|
624 } |
|
625 |
|
626 |
|
627 rr = mp_unsigned_bin_size(&c); |
|
628 mp_to_unsigned_bin(&c, (unsigned char *)cmd); |
|
629 memset(cmd+rr, rand()&255, sizeof(cmd)-rr); |
|
630 mp_read_unsigned_bin(&d, (unsigned char *)cmd, rr); |
|
631 if (mp_cmp_mag(&c, &d) != MP_EQ) { |
|
632 printf("mp_unsigned_bin failure!\n"); |
|
633 draw(&c); |
|
634 draw(&d); |
|
635 return 0; |
|
636 } |
|
637 |
|
638 } else if (!strcmp(cmd, "sub")) { ++sub_n; |
|
639 fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); |
|
640 fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); |
|
641 fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); |
|
642 mp_copy(&a, &d); |
|
643 mp_sub(&d, &b, &d); |
|
644 if (mp_cmp(&c, &d) != MP_EQ) { |
|
645 printf("sub %lu failure!\n", sub_n); |
|
646 draw(&a);draw(&b);draw(&c);draw(&d); |
|
647 return 0; |
|
648 } |
|
649 } else if (!strcmp(cmd, "mul")) { ++mul_n; |
|
650 fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); |
|
651 fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); |
|
652 fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); |
|
653 mp_copy(&a, &d); |
|
654 mp_mul(&d, &b, &d); |
|
655 if (mp_cmp(&c, &d) != MP_EQ) { |
|
656 printf("mul %lu failure!\n", mul_n); |
|
657 draw(&a);draw(&b);draw(&c);draw(&d); |
|
658 return 0; |
|
659 } |
|
660 } else if (!strcmp(cmd, "div")) { ++div_n; |
|
661 fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); |
|
662 fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); |
|
663 fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); |
|
664 fgets(buf, 4095, stdin); mp_read_radix(&d, buf, 64); |
|
665 |
|
666 mp_div(&a, &b, &e, &f); |
|
667 if (mp_cmp(&c, &e) != MP_EQ || mp_cmp(&d, &f) != MP_EQ) { |
|
668 printf("div %lu failure!\n", div_n); |
|
669 draw(&a);draw(&b);draw(&c);draw(&d); draw(&e); draw(&f); |
|
670 return 0; |
|
671 } |
|
672 |
|
673 } else if (!strcmp(cmd, "sqr")) { ++sqr_n; |
|
674 fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); |
|
675 fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); |
|
676 mp_copy(&a, &c); |
|
677 mp_sqr(&c, &c); |
|
678 if (mp_cmp(&b, &c) != MP_EQ) { |
|
679 printf("sqr %lu failure!\n", sqr_n); |
|
680 draw(&a);draw(&b);draw(&c); |
|
681 return 0; |
|
682 } |
|
683 } else if (!strcmp(cmd, "gcd")) { ++gcd_n; |
|
684 fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); |
|
685 fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); |
|
686 fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); |
|
687 mp_copy(&a, &d); |
|
688 mp_gcd(&d, &b, &d); |
|
689 d.sign = c.sign; |
|
690 if (mp_cmp(&c, &d) != MP_EQ) { |
|
691 printf("gcd %lu failure!\n", gcd_n); |
|
692 draw(&a);draw(&b);draw(&c);draw(&d); |
|
693 return 0; |
|
694 } |
|
695 } else if (!strcmp(cmd, "lcm")) { ++lcm_n; |
|
696 fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); |
|
697 fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); |
|
698 fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); |
|
699 mp_copy(&a, &d); |
|
700 mp_lcm(&d, &b, &d); |
|
701 d.sign = c.sign; |
|
702 if (mp_cmp(&c, &d) != MP_EQ) { |
|
703 printf("lcm %lu failure!\n", lcm_n); |
|
704 draw(&a);draw(&b);draw(&c);draw(&d); |
|
705 return 0; |
|
706 } |
|
707 } else if (!strcmp(cmd, "expt")) { ++expt_n; |
|
708 fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); |
|
709 fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); |
|
710 fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); |
|
711 fgets(buf, 4095, stdin); mp_read_radix(&d, buf, 64); |
|
712 mp_copy(&a, &e); |
|
713 mp_exptmod(&e, &b, &c, &e); |
|
714 if (mp_cmp(&d, &e) != MP_EQ) { |
|
715 printf("expt %lu failure!\n", expt_n); |
|
716 draw(&a);draw(&b);draw(&c);draw(&d); draw(&e); |
|
717 return 0; |
|
718 } |
|
719 } else if (!strcmp(cmd, "invmod")) { ++inv_n; |
|
720 fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); |
|
721 fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); |
|
722 fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); |
|
723 mp_invmod(&a, &b, &d); |
|
724 mp_mulmod(&d,&a,&b,&e); |
|
725 if (mp_cmp_d(&e, 1) != MP_EQ) { |
|
726 printf("inv [wrong value from MPI?!] failure\n"); |
|
727 draw(&a);draw(&b);draw(&c);draw(&d); |
|
728 mp_gcd(&a, &b, &e); |
|
729 draw(&e); |
|
730 return 0; |
|
731 } |
|
732 |
|
733 } else if (!strcmp(cmd, "div2")) { ++div2_n; |
|
734 fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); |
|
735 fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); |
|
736 mp_div_2(&a, &c); |
|
737 if (mp_cmp(&c, &b) != MP_EQ) { |
|
738 printf("div_2 %lu failure\n", div2_n); |
|
739 draw(&a); |
|
740 draw(&b); |
|
741 draw(&c); |
|
742 return 0; |
|
743 } |
|
744 } else if (!strcmp(cmd, "mul2")) { ++mul2_n; |
|
745 fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); |
|
746 fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); |
|
747 mp_mul_2(&a, &c); |
|
748 if (mp_cmp(&c, &b) != MP_EQ) { |
|
749 printf("mul_2 %lu failure\n", mul2_n); |
|
750 draw(&a); |
|
751 draw(&b); |
|
752 draw(&c); |
|
753 return 0; |
|
754 } |
|
755 } else if (!strcmp(cmd, "add_d")) { ++add_d_n; |
|
756 fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); |
|
757 fgets(buf, 4095, stdin); sscanf(buf, "%d", &ix); |
|
758 fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); |
|
759 mp_add_d(&a, ix, &c); |
|
760 if (mp_cmp(&b, &c) != MP_EQ) { |
|
761 printf("add_d %lu failure\n", add_d_n); |
|
762 draw(&a); |
|
763 draw(&b); |
|
764 draw(&c); |
|
765 printf("d == %d\n", ix); |
|
766 return 0; |
|
767 } |
|
768 } else if (!strcmp(cmd, "sub_d")) { ++sub_d_n; |
|
769 fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); |
|
770 fgets(buf, 4095, stdin); sscanf(buf, "%d", &ix); |
|
771 fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); |
|
772 mp_sub_d(&a, ix, &c); |
|
773 if (mp_cmp(&b, &c) != MP_EQ) { |
|
774 printf("sub_d %lu failure\n", sub_d_n); |
|
775 draw(&a); |
|
776 draw(&b); |
|
777 draw(&c); |
|
778 printf("d == %d\n", ix); |
|
779 return 0; |
|
780 } |
|
781 } |
|
782 } |
|
783 return 0; |
|
784 } |
|
785 |