142
|
1 #include <tommath.h> |
|
2 #ifdef BN_MP_KARATSUBA_MUL_C |
2
|
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4 * |
|
5 * LibTomMath is a library that provides multiple-precision |
|
6 * integer arithmetic as well as number theoretic functionality. |
|
7 * |
|
8 * The library was designed directly after the MPI library by |
|
9 * Michael Fromberger but has been written from scratch with |
|
10 * additional optimizations in place. |
|
11 * |
|
12 * The library is free for all purposes without any express |
|
13 * guarantee it works. |
|
14 * |
|
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
16 */ |
|
17 |
|
18 /* c = |a| * |b| using Karatsuba Multiplication using |
|
19 * three half size multiplications |
|
20 * |
|
21 * Let B represent the radix [e.g. 2**DIGIT_BIT] and |
|
22 * let n represent half of the number of digits in |
|
23 * the min(a,b) |
|
24 * |
|
25 * a = a1 * B**n + a0 |
|
26 * b = b1 * B**n + b0 |
|
27 * |
|
28 * Then, a * b => |
|
29 a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0 |
|
30 * |
|
31 * Note that a1b1 and a0b0 are used twice and only need to be |
|
32 * computed once. So in total three half size (half # of |
|
33 * digit) multiplications are performed, a0b0, a1b1 and |
|
34 * (a1-b1)(a0-b0) |
|
35 * |
|
36 * Note that a multiplication of half the digits requires |
|
37 * 1/4th the number of single precision multiplications so in |
|
38 * total after one call 25% of the single precision multiplications |
|
39 * are saved. Note also that the call to mp_mul can end up back |
|
40 * in this function if the a0, a1, b0, or b1 are above the threshold. |
|
41 * This is known as divide-and-conquer and leads to the famous |
|
42 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than |
|
43 * the standard O(N**2) that the baseline/comba methods use. |
|
44 * Generally though the overhead of this method doesn't pay off |
|
45 * until a certain size (N ~ 80) is reached. |
|
46 */ |
|
47 int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c) |
|
48 { |
|
49 mp_int x0, x1, y0, y1, t1, x0y0, x1y1; |
|
50 int B, err; |
|
51 |
|
52 /* default the return code to an error */ |
|
53 err = MP_MEM; |
|
54 |
|
55 /* min # of digits */ |
|
56 B = MIN (a->used, b->used); |
|
57 |
|
58 /* now divide in two */ |
|
59 B = B >> 1; |
|
60 |
|
61 /* init copy all the temps */ |
|
62 if (mp_init_size (&x0, B) != MP_OKAY) |
|
63 goto ERR; |
|
64 if (mp_init_size (&x1, a->used - B) != MP_OKAY) |
|
65 goto X0; |
|
66 if (mp_init_size (&y0, B) != MP_OKAY) |
|
67 goto X1; |
|
68 if (mp_init_size (&y1, b->used - B) != MP_OKAY) |
|
69 goto Y0; |
|
70 |
|
71 /* init temps */ |
|
72 if (mp_init_size (&t1, B * 2) != MP_OKAY) |
|
73 goto Y1; |
|
74 if (mp_init_size (&x0y0, B * 2) != MP_OKAY) |
|
75 goto T1; |
|
76 if (mp_init_size (&x1y1, B * 2) != MP_OKAY) |
|
77 goto X0Y0; |
|
78 |
|
79 /* now shift the digits */ |
|
80 x0.used = y0.used = B; |
|
81 x1.used = a->used - B; |
|
82 y1.used = b->used - B; |
|
83 |
|
84 { |
|
85 register int x; |
|
86 register mp_digit *tmpa, *tmpb, *tmpx, *tmpy; |
|
87 |
|
88 /* we copy the digits directly instead of using higher level functions |
|
89 * since we also need to shift the digits |
|
90 */ |
|
91 tmpa = a->dp; |
|
92 tmpb = b->dp; |
|
93 |
|
94 tmpx = x0.dp; |
|
95 tmpy = y0.dp; |
|
96 for (x = 0; x < B; x++) { |
|
97 *tmpx++ = *tmpa++; |
|
98 *tmpy++ = *tmpb++; |
|
99 } |
|
100 |
|
101 tmpx = x1.dp; |
|
102 for (x = B; x < a->used; x++) { |
|
103 *tmpx++ = *tmpa++; |
|
104 } |
|
105 |
|
106 tmpy = y1.dp; |
|
107 for (x = B; x < b->used; x++) { |
|
108 *tmpy++ = *tmpb++; |
|
109 } |
|
110 } |
|
111 |
|
112 /* only need to clamp the lower words since by definition the |
|
113 * upper words x1/y1 must have a known number of digits |
|
114 */ |
|
115 mp_clamp (&x0); |
|
116 mp_clamp (&y0); |
|
117 |
|
118 /* now calc the products x0y0 and x1y1 */ |
|
119 /* after this x0 is no longer required, free temp [x0==t2]! */ |
|
120 if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY) |
|
121 goto X1Y1; /* x0y0 = x0*y0 */ |
|
122 if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY) |
|
123 goto X1Y1; /* x1y1 = x1*y1 */ |
|
124 |
|
125 /* now calc x1-x0 and y1-y0 */ |
|
126 if (mp_sub (&x1, &x0, &t1) != MP_OKAY) |
|
127 goto X1Y1; /* t1 = x1 - x0 */ |
|
128 if (mp_sub (&y1, &y0, &x0) != MP_OKAY) |
|
129 goto X1Y1; /* t2 = y1 - y0 */ |
|
130 if (mp_mul (&t1, &x0, &t1) != MP_OKAY) |
|
131 goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */ |
|
132 |
|
133 /* add x0y0 */ |
|
134 if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY) |
|
135 goto X1Y1; /* t2 = x0y0 + x1y1 */ |
|
136 if (mp_sub (&x0, &t1, &t1) != MP_OKAY) |
|
137 goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */ |
|
138 |
|
139 /* shift by B */ |
|
140 if (mp_lshd (&t1, B) != MP_OKAY) |
|
141 goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */ |
|
142 if (mp_lshd (&x1y1, B * 2) != MP_OKAY) |
|
143 goto X1Y1; /* x1y1 = x1y1 << 2*B */ |
|
144 |
|
145 if (mp_add (&x0y0, &t1, &t1) != MP_OKAY) |
|
146 goto X1Y1; /* t1 = x0y0 + t1 */ |
|
147 if (mp_add (&t1, &x1y1, c) != MP_OKAY) |
|
148 goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */ |
|
149 |
|
150 /* Algorithm succeeded set the return code to MP_OKAY */ |
|
151 err = MP_OKAY; |
|
152 |
|
153 X1Y1:mp_clear (&x1y1); |
|
154 X0Y0:mp_clear (&x0y0); |
|
155 T1:mp_clear (&t1); |
|
156 Y1:mp_clear (&y1); |
|
157 Y0:mp_clear (&y0); |
|
158 X1:mp_clear (&x1); |
|
159 X0:mp_clear (&x0); |
|
160 ERR: |
|
161 return err; |
|
162 } |
142
|
163 #endif |