comparison common-kex.c @ 389:5ff8218bcee9

propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 2af95f00ebd5bb7a28b3817db1218442c935388e) to branch 'au.asn.ucc.matt.dropbear' (head ecd779509ef23a8cdf64888904fc9b31d78aa933)
author Matt Johnston <matt@ucc.asn.au>
date Thu, 11 Jan 2007 03:14:55 +0000
parents 3e098639b05f
children e66eec4dcba7 b895f91c2ee6
comparison
equal deleted inserted replaced
388:fb54020f78e1 389:5ff8218bcee9
1 /*
2 * Dropbear SSH
3 *
4 * Copyright (c) 2002-2004 Matt Johnston
5 * Portions Copyright (c) 2004 by Mihnea Stoenescu
6 * All rights reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * SOFTWARE. */
25
26 #include "includes.h"
27 #include "dbutil.h"
28 #include "algo.h"
29 #include "buffer.h"
30 #include "session.h"
31 #include "kex.h"
32 #include "ssh.h"
33 #include "packet.h"
34 #include "bignum.h"
35 #include "random.h"
36
37 /* diffie-hellman-group1-sha1 value for p */
38 static const unsigned char dh_p_val[] = {
39 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2,
40 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1,
41 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6,
42 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD,
43 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D,
44 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45,
45 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9,
46 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED,
47 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11,
48 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE6, 0x53, 0x81,
49 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
50 #define DH_P_LEN sizeof(dh_p_val)
51
52 static const int DH_G_VAL = 2;
53
54 static void kexinitialise();
55 void gen_new_keys();
56 #ifndef DISABLE_ZLIB
57 static void gen_new_zstreams();
58 #endif
59 static void read_kex_algos();
60 /* helper function for gen_new_keys */
61 static void hashkeys(unsigned char *out, int outlen,
62 const hash_state * hs, unsigned const char X);
63
64
65 /* Send our list of algorithms we can use */
66 void send_msg_kexinit() {
67
68 CHECKCLEARTOWRITE();
69 buf_putbyte(ses.writepayload, SSH_MSG_KEXINIT);
70
71 /* cookie */
72 genrandom(buf_getwriteptr(ses.writepayload, 16), 16);
73 buf_incrwritepos(ses.writepayload, 16);
74
75 /* kex algos */
76 buf_put_algolist(ses.writepayload, sshkex);
77
78 /* server_host_key_algorithms */
79 buf_put_algolist(ses.writepayload, sshhostkey);
80
81 /* encryption_algorithms_client_to_server */
82 buf_put_algolist(ses.writepayload, sshciphers);
83
84 /* encryption_algorithms_server_to_client */
85 buf_put_algolist(ses.writepayload, sshciphers);
86
87 /* mac_algorithms_client_to_server */
88 buf_put_algolist(ses.writepayload, sshhashes);
89
90 /* mac_algorithms_server_to_client */
91 buf_put_algolist(ses.writepayload, sshhashes);
92
93 /* compression_algorithms_client_to_server */
94 buf_put_algolist(ses.writepayload, sshcompress);
95
96 /* compression_algorithms_server_to_client */
97 buf_put_algolist(ses.writepayload, sshcompress);
98
99 /* languages_client_to_server */
100 buf_putstring(ses.writepayload, "", 0);
101
102 /* languages_server_to_client */
103 buf_putstring(ses.writepayload, "", 0);
104
105 /* first_kex_packet_follows - unimplemented for now */
106 buf_putbyte(ses.writepayload, 0x00);
107
108 /* reserved unit32 */
109 buf_putint(ses.writepayload, 0);
110
111 /* set up transmitted kex packet buffer for hashing.
112 * This is freed after the end of the kex */
113 ses.transkexinit = buf_newcopy(ses.writepayload);
114
115 encrypt_packet();
116 ses.dataallowed = 0; /* don't send other packets during kex */
117
118 TRACE(("DATAALLOWED=0"))
119 TRACE(("-> KEXINIT"))
120 ses.kexstate.sentkexinit = 1;
121 }
122
123 /* *** NOTE regarding (send|recv)_msg_newkeys ***
124 * Changed by mihnea from the original kex.c to set dataallowed after a
125 * completed key exchange, no matter the order in which it was performed.
126 * This enables client mode without affecting server functionality.
127 */
128
129 /* Bring new keys into use after a key exchange, and let the client know*/
130 void send_msg_newkeys() {
131
132 TRACE(("enter send_msg_newkeys"))
133
134 /* generate the kexinit request */
135 CHECKCLEARTOWRITE();
136 buf_putbyte(ses.writepayload, SSH_MSG_NEWKEYS);
137 encrypt_packet();
138
139
140 /* set up our state */
141 if (ses.kexstate.recvnewkeys) {
142 TRACE(("while RECVNEWKEYS=1"))
143 gen_new_keys();
144 kexinitialise(); /* we've finished with this kex */
145 TRACE((" -> DATAALLOWED=1"))
146 ses.dataallowed = 1; /* we can send other packets again now */
147 ses.kexstate.donefirstkex = 1;
148 } else {
149 ses.kexstate.sentnewkeys = 1;
150 TRACE(("SENTNEWKEYS=1"))
151 }
152
153 TRACE(("-> MSG_NEWKEYS"))
154 TRACE(("leave send_msg_newkeys"))
155 }
156
157 /* Bring the new keys into use after a key exchange */
158 void recv_msg_newkeys() {
159
160 TRACE(("<- MSG_NEWKEYS"))
161 TRACE(("enter recv_msg_newkeys"))
162
163 /* simply check if we've sent SSH_MSG_NEWKEYS, and if so,
164 * switch to the new keys */
165 if (ses.kexstate.sentnewkeys) {
166 TRACE(("while SENTNEWKEYS=1"))
167 gen_new_keys();
168 kexinitialise(); /* we've finished with this kex */
169 TRACE((" -> DATAALLOWED=1"))
170 ses.dataallowed = 1; /* we can send other packets again now */
171 ses.kexstate.donefirstkex = 1;
172 } else {
173 TRACE(("RECVNEWKEYS=1"))
174 ses.kexstate.recvnewkeys = 1;
175 }
176
177 TRACE(("leave recv_msg_newkeys"))
178 }
179
180
181 /* Set up the kex for the first time */
182 void kexfirstinitialise() {
183
184 ses.kexstate.donefirstkex = 0;
185 kexinitialise();
186 }
187
188 /* Reset the kex state, ready for a new negotiation */
189 static void kexinitialise() {
190
191 struct timeval tv;
192
193 TRACE(("kexinitialise()"))
194
195 /* sent/recv'd MSG_KEXINIT */
196 ses.kexstate.sentkexinit = 0;
197 ses.kexstate.recvkexinit = 0;
198
199 /* sent/recv'd MSG_NEWKEYS */
200 ses.kexstate.recvnewkeys = 0;
201 ses.kexstate.sentnewkeys = 0;
202
203 /* first_packet_follows */
204 ses.kexstate.firstfollows = 0;
205
206 ses.kexstate.datatrans = 0;
207 ses.kexstate.datarecv = 0;
208
209 if (gettimeofday(&tv, 0) < 0) {
210 dropbear_exit("Error getting time");
211 }
212 ses.kexstate.lastkextime = tv.tv_sec;
213
214 }
215
216 /* Helper function for gen_new_keys, creates a hash. It makes a copy of the
217 * already initialised hash_state hs, which should already have processed
218 * the dh_K and hash, since these are common. X is the letter 'A', 'B' etc.
219 * out must have at least min(SHA1_HASH_SIZE, outlen) bytes allocated.
220 * The output will only be expanded once, since that is all that is required
221 * (for 3DES and SHA, with 24 and 20 bytes respectively).
222 *
223 * See Section 5.2 of the IETF secsh Transport Draft for details */
224
225 /* Duplicated verbatim from kex.c --mihnea */
226 static void hashkeys(unsigned char *out, int outlen,
227 const hash_state * hs, const unsigned char X) {
228
229 hash_state hs2;
230 unsigned char k2[SHA1_HASH_SIZE]; /* used to extending */
231
232 memcpy(&hs2, hs, sizeof(hash_state));
233 sha1_process(&hs2, &X, 1);
234 sha1_process(&hs2, ses.session_id, SHA1_HASH_SIZE);
235 sha1_done(&hs2, out);
236 if (SHA1_HASH_SIZE < outlen) {
237 /* need to extend */
238 memcpy(&hs2, hs, sizeof(hash_state));
239 sha1_process(&hs2, out, SHA1_HASH_SIZE);
240 sha1_done(&hs2, k2);
241 memcpy(&out[SHA1_HASH_SIZE], k2, outlen - SHA1_HASH_SIZE);
242 }
243 }
244
245 /* Generate the actual encryption/integrity keys, using the results of the
246 * key exchange, as specified in section 5.2 of the IETF secsh-transport
247 * draft. This occurs after the DH key-exchange.
248 *
249 * ses.newkeys is the new set of keys which are generated, these are only
250 * taken into use after both sides have sent a newkeys message */
251
252 /* Originally from kex.c, generalized for cli/svr mode --mihnea */
253 void gen_new_keys() {
254
255 unsigned char C2S_IV[MAX_IV_LEN];
256 unsigned char C2S_key[MAX_KEY_LEN];
257 unsigned char S2C_IV[MAX_IV_LEN];
258 unsigned char S2C_key[MAX_KEY_LEN];
259 /* unsigned char key[MAX_KEY_LEN]; */
260 unsigned char *trans_IV, *trans_key, *recv_IV, *recv_key;
261
262 hash_state hs;
263 unsigned int C2S_keysize, S2C_keysize;
264 char mactransletter, macrecvletter; /* Client or server specific */
265 int recv_cipher = 0, trans_cipher = 0;
266
267 TRACE(("enter gen_new_keys"))
268 /* the dh_K and hash are the start of all hashes, we make use of that */
269
270 sha1_init(&hs);
271 sha1_process_mp(&hs, ses.dh_K);
272 mp_clear(ses.dh_K);
273 m_free(ses.dh_K);
274 sha1_process(&hs, ses.hash, SHA1_HASH_SIZE);
275 m_burn(ses.hash, SHA1_HASH_SIZE);
276
277 if (IS_DROPBEAR_CLIENT) {
278 trans_IV = C2S_IV;
279 recv_IV = S2C_IV;
280 trans_key = C2S_key;
281 recv_key = S2C_key;
282 C2S_keysize = ses.newkeys->trans_algo_crypt->keysize;
283 S2C_keysize = ses.newkeys->recv_algo_crypt->keysize;
284 mactransletter = 'E';
285 macrecvletter = 'F';
286 } else {
287 trans_IV = S2C_IV;
288 recv_IV = C2S_IV;
289 trans_key = S2C_key;
290 recv_key = C2S_key;
291 C2S_keysize = ses.newkeys->recv_algo_crypt->keysize;
292 S2C_keysize = ses.newkeys->trans_algo_crypt->keysize;
293 mactransletter = 'F';
294 macrecvletter = 'E';
295 }
296
297 hashkeys(C2S_IV, SHA1_HASH_SIZE, &hs, 'A');
298 hashkeys(S2C_IV, SHA1_HASH_SIZE, &hs, 'B');
299 hashkeys(C2S_key, C2S_keysize, &hs, 'C');
300 hashkeys(S2C_key, S2C_keysize, &hs, 'D');
301
302 recv_cipher = find_cipher(ses.newkeys->recv_algo_crypt->cipherdesc->name);
303 if (recv_cipher < 0)
304 dropbear_exit("crypto error");
305
306 if (cbc_start(recv_cipher, recv_IV, recv_key,
307 ses.newkeys->recv_algo_crypt->keysize, 0,
308 &ses.newkeys->recv_symmetric_struct) != CRYPT_OK) {
309 dropbear_exit("crypto error");
310 }
311 trans_cipher = find_cipher(ses.newkeys->trans_algo_crypt->cipherdesc->name);
312 if (trans_cipher < 0)
313 dropbear_exit("crypto error");
314
315 if (cbc_start(trans_cipher, trans_IV, trans_key,
316 ses.newkeys->trans_algo_crypt->keysize, 0,
317 &ses.newkeys->trans_symmetric_struct) != CRYPT_OK) {
318 dropbear_exit("crypto error");
319 }
320
321 /* MAC keys */
322 hashkeys(ses.newkeys->transmackey,
323 ses.newkeys->trans_algo_mac->keysize, &hs, mactransletter);
324 hashkeys(ses.newkeys->recvmackey,
325 ses.newkeys->recv_algo_mac->keysize, &hs, macrecvletter);
326
327 #ifndef DISABLE_ZLIB
328 gen_new_zstreams();
329 #endif
330
331 /* Switch over to the new keys */
332 m_burn(ses.keys, sizeof(struct key_context));
333 m_free(ses.keys);
334 ses.keys = ses.newkeys;
335 ses.newkeys = NULL;
336
337 TRACE(("leave gen_new_keys"))
338 }
339
340 #ifndef DISABLE_ZLIB
341 /* Set up new zlib compression streams, close the old ones. Only
342 * called from gen_new_keys() */
343 static void gen_new_zstreams() {
344
345 /* create new zstreams */
346 if (ses.newkeys->recv_algo_comp == DROPBEAR_COMP_ZLIB) {
347 ses.newkeys->recv_zstream = (z_streamp)m_malloc(sizeof(z_stream));
348 ses.newkeys->recv_zstream->zalloc = Z_NULL;
349 ses.newkeys->recv_zstream->zfree = Z_NULL;
350
351 if (inflateInit(ses.newkeys->recv_zstream) != Z_OK) {
352 dropbear_exit("zlib error");
353 }
354 } else {
355 ses.newkeys->recv_zstream = NULL;
356 }
357
358 if (ses.newkeys->trans_algo_comp == DROPBEAR_COMP_ZLIB) {
359 ses.newkeys->trans_zstream = (z_streamp)m_malloc(sizeof(z_stream));
360 ses.newkeys->trans_zstream->zalloc = Z_NULL;
361 ses.newkeys->trans_zstream->zfree = Z_NULL;
362
363 if (deflateInit(ses.newkeys->trans_zstream, Z_DEFAULT_COMPRESSION)
364 != Z_OK) {
365 dropbear_exit("zlib error");
366 }
367 } else {
368 ses.newkeys->trans_zstream = NULL;
369 }
370
371 /* clean up old keys */
372 if (ses.keys->recv_zstream != NULL) {
373 if (inflateEnd(ses.keys->recv_zstream) == Z_STREAM_ERROR) {
374 /* Z_DATA_ERROR is ok, just means that stream isn't ended */
375 dropbear_exit("crypto error");
376 }
377 m_free(ses.keys->recv_zstream);
378 }
379 if (ses.keys->trans_zstream != NULL) {
380 if (deflateEnd(ses.keys->trans_zstream) == Z_STREAM_ERROR) {
381 /* Z_DATA_ERROR is ok, just means that stream isn't ended */
382 dropbear_exit("crypto error");
383 }
384 m_free(ses.keys->trans_zstream);
385 }
386 }
387 #endif
388
389
390 /* Executed upon receiving a kexinit message from the client to initiate
391 * key exchange. If we haven't already done so, we send the list of our
392 * preferred algorithms. The client's requested algorithms are processed,
393 * and we calculate the first portion of the key-exchange-hash for used
394 * later in the key exchange. No response is sent, as the client should
395 * initiate the diffie-hellman key exchange */
396
397 /* Originally from kex.c, generalized for cli/svr mode --mihnea */
398 /* Belongs in common_kex.c where it should be moved after review */
399 void recv_msg_kexinit() {
400
401 unsigned int kexhashbuf_len = 0;
402 unsigned int remote_ident_len = 0;
403 unsigned int local_ident_len = 0;
404
405 TRACE(("<- KEXINIT"))
406 TRACE(("enter recv_msg_kexinit"))
407
408 if (!ses.kexstate.sentkexinit) {
409 /* we need to send a kex packet */
410 send_msg_kexinit();
411 TRACE(("continue recv_msg_kexinit: sent kexinit"))
412 }
413
414 /* start the kex hash */
415 local_ident_len = strlen(LOCAL_IDENT);
416 remote_ident_len = strlen((char*)ses.remoteident);
417
418 kexhashbuf_len = local_ident_len + remote_ident_len
419 + ses.transkexinit->len + ses.payload->len
420 + KEXHASHBUF_MAX_INTS;
421
422 ses.kexhashbuf = buf_new(kexhashbuf_len);
423
424 if (IS_DROPBEAR_CLIENT) {
425
426 /* read the peer's choice of algos */
427 read_kex_algos();
428
429 /* V_C, the client's version string (CR and NL excluded) */
430 buf_putstring(ses.kexhashbuf,
431 (unsigned char*)LOCAL_IDENT, local_ident_len);
432 /* V_S, the server's version string (CR and NL excluded) */
433 buf_putstring(ses.kexhashbuf, ses.remoteident, remote_ident_len);
434
435 /* I_C, the payload of the client's SSH_MSG_KEXINIT */
436 buf_putstring(ses.kexhashbuf,
437 ses.transkexinit->data, ses.transkexinit->len);
438 /* I_S, the payload of the server's SSH_MSG_KEXINIT */
439 buf_setpos(ses.payload, 0);
440 buf_putstring(ses.kexhashbuf, ses.payload->data, ses.payload->len);
441
442 } else {
443 /* SERVER */
444
445 /* read the peer's choice of algos */
446 read_kex_algos();
447 /* V_C, the client's version string (CR and NL excluded) */
448 buf_putstring(ses.kexhashbuf, ses.remoteident, remote_ident_len);
449 /* V_S, the server's version string (CR and NL excluded) */
450 buf_putstring(ses.kexhashbuf,
451 (unsigned char*)LOCAL_IDENT, local_ident_len);
452
453 /* I_C, the payload of the client's SSH_MSG_KEXINIT */
454 buf_setpos(ses.payload, 0);
455 buf_putstring(ses.kexhashbuf, ses.payload->data, ses.payload->len);
456
457 /* I_S, the payload of the server's SSH_MSG_KEXINIT */
458 buf_putstring(ses.kexhashbuf,
459 ses.transkexinit->data, ses.transkexinit->len);
460
461 ses.requirenext = SSH_MSG_KEXDH_INIT;
462 }
463
464 buf_free(ses.transkexinit);
465 ses.transkexinit = NULL;
466 /* the rest of ses.kexhashbuf will be done after DH exchange */
467
468 ses.kexstate.recvkexinit = 1;
469
470 TRACE(("leave recv_msg_kexinit"))
471 }
472
473 /* Initialises and generate one side of the diffie-hellman key exchange values.
474 * See the ietf-secsh-transport draft, section 6, for details */
475 /* dh_pub and dh_priv MUST be already initialised */
476 void gen_kexdh_vals(mp_int *dh_pub, mp_int *dh_priv) {
477
478 DEF_MP_INT(dh_p);
479 DEF_MP_INT(dh_q);
480 DEF_MP_INT(dh_g);
481
482 TRACE(("enter send_msg_kexdh_reply"))
483
484 m_mp_init_multi(&dh_g, &dh_p, &dh_q, NULL);
485
486 /* read the prime and generator*/
487 bytes_to_mp(&dh_p, (unsigned char*)dh_p_val, DH_P_LEN);
488
489 if (mp_set_int(&dh_g, DH_G_VAL) != MP_OKAY) {
490 dropbear_exit("Diffie-Hellman error");
491 }
492
493 /* calculate q = (p-1)/2 */
494 /* dh_priv is just a temp var here */
495 if (mp_sub_d(&dh_p, 1, dh_priv) != MP_OKAY) {
496 dropbear_exit("Diffie-Hellman error");
497 }
498 if (mp_div_2(dh_priv, &dh_q) != MP_OKAY) {
499 dropbear_exit("Diffie-Hellman error");
500 }
501
502 /* Generate a private portion 0 < dh_priv < dh_q */
503 gen_random_mpint(&dh_q, dh_priv);
504
505 /* f = g^y mod p */
506 if (mp_exptmod(&dh_g, dh_priv, &dh_p, dh_pub) != MP_OKAY) {
507 dropbear_exit("Diffie-Hellman error");
508 }
509 mp_clear_multi(&dh_g, &dh_p, &dh_q, NULL);
510 }
511
512 /* This function is fairly common between client/server, with some substitution
513 * of dh_e/dh_f etc. Hence these arguments:
514 * dh_pub_us is 'e' for the client, 'f' for the server. dh_pub_them is
515 * vice-versa. dh_priv is the x/y value corresponding to dh_pub_us */
516 void kexdh_comb_key(mp_int *dh_pub_us, mp_int *dh_priv, mp_int *dh_pub_them,
517 sign_key *hostkey) {
518
519 mp_int dh_p;
520 mp_int *dh_e = NULL, *dh_f = NULL;
521 hash_state hs;
522
523 /* read the prime and generator*/
524 m_mp_init(&dh_p);
525 bytes_to_mp(&dh_p, dh_p_val, DH_P_LEN);
526
527 /* Check that dh_pub_them (dh_e or dh_f) is in the range [1, p-1] */
528 if (mp_cmp(dh_pub_them, &dh_p) != MP_LT
529 || mp_cmp_d(dh_pub_them, 0) != MP_GT) {
530 dropbear_exit("Diffie-Hellman error");
531 }
532
533 /* K = e^y mod p = f^x mod p */
534 ses.dh_K = (mp_int*)m_malloc(sizeof(mp_int));
535 m_mp_init(ses.dh_K);
536 if (mp_exptmod(dh_pub_them, dh_priv, &dh_p, ses.dh_K) != MP_OKAY) {
537 dropbear_exit("Diffie-Hellman error");
538 }
539
540 /* clear no longer needed vars */
541 mp_clear_multi(&dh_p, NULL);
542
543 /* From here on, the code needs to work with the _same_ vars on each side,
544 * not vice-versaing for client/server */
545 if (IS_DROPBEAR_CLIENT) {
546 dh_e = dh_pub_us;
547 dh_f = dh_pub_them;
548 } else {
549 dh_e = dh_pub_them;
550 dh_f = dh_pub_us;
551 }
552
553 /* Create the remainder of the hash buffer, to generate the exchange hash */
554 /* K_S, the host key */
555 buf_put_pub_key(ses.kexhashbuf, hostkey, ses.newkeys->algo_hostkey);
556 /* e, exchange value sent by the client */
557 buf_putmpint(ses.kexhashbuf, dh_e);
558 /* f, exchange value sent by the server */
559 buf_putmpint(ses.kexhashbuf, dh_f);
560 /* K, the shared secret */
561 buf_putmpint(ses.kexhashbuf, ses.dh_K);
562
563 /* calculate the hash H to sign */
564 sha1_init(&hs);
565 buf_setpos(ses.kexhashbuf, 0);
566 sha1_process(&hs, buf_getptr(ses.kexhashbuf, ses.kexhashbuf->len),
567 ses.kexhashbuf->len);
568 sha1_done(&hs, ses.hash);
569
570 buf_burn(ses.kexhashbuf);
571 buf_free(ses.kexhashbuf);
572 ses.kexhashbuf = NULL;
573
574 /* first time around, we set the session_id to H */
575 if (ses.session_id == NULL) {
576 /* create the session_id, this never needs freeing */
577 ses.session_id = (unsigned char*)m_malloc(SHA1_HASH_SIZE);
578 memcpy(ses.session_id, ses.hash, SHA1_HASH_SIZE);
579 }
580 }
581
582 /* read the other side's algo list. buf_match_algo is a callback to match
583 * algos for the client or server. */
584 static void read_kex_algos() {
585
586 /* for asymmetry */
587 algo_type * c2s_hash_algo = NULL;
588 algo_type * s2c_hash_algo = NULL;
589 algo_type * c2s_cipher_algo = NULL;
590 algo_type * s2c_cipher_algo = NULL;
591 algo_type * c2s_comp_algo = NULL;
592 algo_type * s2c_comp_algo = NULL;
593 /* the generic one */
594 algo_type * algo = NULL;
595
596 /* which algo couldn't match */
597 char * erralgo = NULL;
598
599 int goodguess = 0;
600 int allgood = 1; /* we AND this with each goodguess and see if its still
601 true after */
602
603 buf_incrpos(ses.payload, 16); /* start after the cookie */
604
605 ses.newkeys = (struct key_context*)m_malloc(sizeof(struct key_context));
606
607 /* kex_algorithms */
608 algo = ses.buf_match_algo(ses.payload, sshkex, &goodguess);
609 allgood &= goodguess;
610 if (algo == NULL) {
611 erralgo = "kex";
612 goto error;
613 }
614 TRACE(("kex algo %s", algo->name))
615 ses.newkeys->algo_kex = algo->val;
616
617 /* server_host_key_algorithms */
618 algo = ses.buf_match_algo(ses.payload, sshhostkey, &goodguess);
619 allgood &= goodguess;
620 if (algo == NULL) {
621 erralgo = "hostkey";
622 goto error;
623 }
624 TRACE(("hostkey algo %s", algo->name))
625 ses.newkeys->algo_hostkey = algo->val;
626
627 /* encryption_algorithms_client_to_server */
628 c2s_cipher_algo = ses.buf_match_algo(ses.payload, sshciphers, &goodguess);
629 if (c2s_cipher_algo == NULL) {
630 erralgo = "enc c->s";
631 goto error;
632 }
633 TRACE(("enc c2s is %s", c2s_cipher_algo->name))
634
635 /* encryption_algorithms_server_to_client */
636 s2c_cipher_algo = ses.buf_match_algo(ses.payload, sshciphers, &goodguess);
637 if (s2c_cipher_algo == NULL) {
638 erralgo = "enc s->c";
639 goto error;
640 }
641 TRACE(("enc s2c is %s", s2c_cipher_algo->name))
642
643 /* mac_algorithms_client_to_server */
644 c2s_hash_algo = ses.buf_match_algo(ses.payload, sshhashes, &goodguess);
645 if (c2s_hash_algo == NULL) {
646 erralgo = "mac c->s";
647 goto error;
648 }
649 TRACE(("hash c2s is %s", c2s_hash_algo->name))
650
651 /* mac_algorithms_server_to_client */
652 s2c_hash_algo = ses.buf_match_algo(ses.payload, sshhashes, &goodguess);
653 if (s2c_hash_algo == NULL) {
654 erralgo = "mac s->c";
655 goto error;
656 }
657 TRACE(("hash s2c is %s", s2c_hash_algo->name))
658
659 /* compression_algorithms_client_to_server */
660 c2s_comp_algo = ses.buf_match_algo(ses.payload, sshcompress, &goodguess);
661 if (c2s_comp_algo == NULL) {
662 erralgo = "comp c->s";
663 goto error;
664 }
665 TRACE(("hash c2s is %s", c2s_comp_algo->name))
666
667 /* compression_algorithms_server_to_client */
668 s2c_comp_algo = ses.buf_match_algo(ses.payload, sshcompress, &goodguess);
669 if (s2c_comp_algo == NULL) {
670 erralgo = "comp s->c";
671 goto error;
672 }
673 TRACE(("hash s2c is %s", s2c_comp_algo->name))
674
675 /* languages_client_to_server */
676 buf_eatstring(ses.payload);
677
678 /* languages_server_to_client */
679 buf_eatstring(ses.payload);
680
681 /* first_kex_packet_follows */
682 if (buf_getbool(ses.payload)) {
683 ses.kexstate.firstfollows = 1;
684 /* if the guess wasn't good, we ignore the packet sent */
685 if (!allgood) {
686 ses.ignorenext = 1;
687 }
688 }
689
690 /* Handle the asymmetry */
691 if (IS_DROPBEAR_CLIENT) {
692 ses.newkeys->recv_algo_crypt =
693 (struct dropbear_cipher*)s2c_cipher_algo->data;
694 ses.newkeys->trans_algo_crypt =
695 (struct dropbear_cipher*)c2s_cipher_algo->data;
696 ses.newkeys->recv_algo_mac =
697 (struct dropbear_hash*)s2c_hash_algo->data;
698 ses.newkeys->trans_algo_mac =
699 (struct dropbear_hash*)c2s_hash_algo->data;
700 ses.newkeys->recv_algo_comp = s2c_comp_algo->val;
701 ses.newkeys->trans_algo_comp = c2s_comp_algo->val;
702 } else {
703 /* SERVER */
704 ses.newkeys->recv_algo_crypt =
705 (struct dropbear_cipher*)c2s_cipher_algo->data;
706 ses.newkeys->trans_algo_crypt =
707 (struct dropbear_cipher*)s2c_cipher_algo->data;
708 ses.newkeys->recv_algo_mac =
709 (struct dropbear_hash*)c2s_hash_algo->data;
710 ses.newkeys->trans_algo_mac =
711 (struct dropbear_hash*)s2c_hash_algo->data;
712 ses.newkeys->recv_algo_comp = c2s_comp_algo->val;
713 ses.newkeys->trans_algo_comp = s2c_comp_algo->val;
714 }
715
716 /* reserved for future extensions */
717 buf_getint(ses.payload);
718 return;
719
720 error:
721 dropbear_exit("no matching algo %s", erralgo);
722 }