Mercurial > dropbear
diff common-kex.c @ 389:5ff8218bcee9
propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 2af95f00ebd5bb7a28b3817db1218442c935388e)
to branch 'au.asn.ucc.matt.dropbear' (head ecd779509ef23a8cdf64888904fc9b31d78aa933)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Thu, 11 Jan 2007 03:14:55 +0000 |
parents | 3e098639b05f |
children | e66eec4dcba7 b895f91c2ee6 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/common-kex.c Thu Jan 11 03:14:55 2007 +0000 @@ -0,0 +1,722 @@ +/* + * Dropbear SSH + * + * Copyright (c) 2002-2004 Matt Johnston + * Portions Copyright (c) 2004 by Mihnea Stoenescu + * All rights reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. */ + +#include "includes.h" +#include "dbutil.h" +#include "algo.h" +#include "buffer.h" +#include "session.h" +#include "kex.h" +#include "ssh.h" +#include "packet.h" +#include "bignum.h" +#include "random.h" + +/* diffie-hellman-group1-sha1 value for p */ +static const unsigned char dh_p_val[] = { + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, + 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, + 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, + 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, + 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, + 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, + 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, + 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, + 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, + 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE6, 0x53, 0x81, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; +#define DH_P_LEN sizeof(dh_p_val) + +static const int DH_G_VAL = 2; + +static void kexinitialise(); +void gen_new_keys(); +#ifndef DISABLE_ZLIB +static void gen_new_zstreams(); +#endif +static void read_kex_algos(); +/* helper function for gen_new_keys */ +static void hashkeys(unsigned char *out, int outlen, + const hash_state * hs, unsigned const char X); + + +/* Send our list of algorithms we can use */ +void send_msg_kexinit() { + + CHECKCLEARTOWRITE(); + buf_putbyte(ses.writepayload, SSH_MSG_KEXINIT); + + /* cookie */ + genrandom(buf_getwriteptr(ses.writepayload, 16), 16); + buf_incrwritepos(ses.writepayload, 16); + + /* kex algos */ + buf_put_algolist(ses.writepayload, sshkex); + + /* server_host_key_algorithms */ + buf_put_algolist(ses.writepayload, sshhostkey); + + /* encryption_algorithms_client_to_server */ + buf_put_algolist(ses.writepayload, sshciphers); + + /* encryption_algorithms_server_to_client */ + buf_put_algolist(ses.writepayload, sshciphers); + + /* mac_algorithms_client_to_server */ + buf_put_algolist(ses.writepayload, sshhashes); + + /* mac_algorithms_server_to_client */ + buf_put_algolist(ses.writepayload, sshhashes); + + /* compression_algorithms_client_to_server */ + buf_put_algolist(ses.writepayload, sshcompress); + + /* compression_algorithms_server_to_client */ + buf_put_algolist(ses.writepayload, sshcompress); + + /* languages_client_to_server */ + buf_putstring(ses.writepayload, "", 0); + + /* languages_server_to_client */ + buf_putstring(ses.writepayload, "", 0); + + /* first_kex_packet_follows - unimplemented for now */ + buf_putbyte(ses.writepayload, 0x00); + + /* reserved unit32 */ + buf_putint(ses.writepayload, 0); + + /* set up transmitted kex packet buffer for hashing. + * This is freed after the end of the kex */ + ses.transkexinit = buf_newcopy(ses.writepayload); + + encrypt_packet(); + ses.dataallowed = 0; /* don't send other packets during kex */ + + TRACE(("DATAALLOWED=0")) + TRACE(("-> KEXINIT")) + ses.kexstate.sentkexinit = 1; +} + +/* *** NOTE regarding (send|recv)_msg_newkeys *** + * Changed by mihnea from the original kex.c to set dataallowed after a + * completed key exchange, no matter the order in which it was performed. + * This enables client mode without affecting server functionality. + */ + +/* Bring new keys into use after a key exchange, and let the client know*/ +void send_msg_newkeys() { + + TRACE(("enter send_msg_newkeys")) + + /* generate the kexinit request */ + CHECKCLEARTOWRITE(); + buf_putbyte(ses.writepayload, SSH_MSG_NEWKEYS); + encrypt_packet(); + + + /* set up our state */ + if (ses.kexstate.recvnewkeys) { + TRACE(("while RECVNEWKEYS=1")) + gen_new_keys(); + kexinitialise(); /* we've finished with this kex */ + TRACE((" -> DATAALLOWED=1")) + ses.dataallowed = 1; /* we can send other packets again now */ + ses.kexstate.donefirstkex = 1; + } else { + ses.kexstate.sentnewkeys = 1; + TRACE(("SENTNEWKEYS=1")) + } + + TRACE(("-> MSG_NEWKEYS")) + TRACE(("leave send_msg_newkeys")) +} + +/* Bring the new keys into use after a key exchange */ +void recv_msg_newkeys() { + + TRACE(("<- MSG_NEWKEYS")) + TRACE(("enter recv_msg_newkeys")) + + /* simply check if we've sent SSH_MSG_NEWKEYS, and if so, + * switch to the new keys */ + if (ses.kexstate.sentnewkeys) { + TRACE(("while SENTNEWKEYS=1")) + gen_new_keys(); + kexinitialise(); /* we've finished with this kex */ + TRACE((" -> DATAALLOWED=1")) + ses.dataallowed = 1; /* we can send other packets again now */ + ses.kexstate.donefirstkex = 1; + } else { + TRACE(("RECVNEWKEYS=1")) + ses.kexstate.recvnewkeys = 1; + } + + TRACE(("leave recv_msg_newkeys")) +} + + +/* Set up the kex for the first time */ +void kexfirstinitialise() { + + ses.kexstate.donefirstkex = 0; + kexinitialise(); +} + +/* Reset the kex state, ready for a new negotiation */ +static void kexinitialise() { + + struct timeval tv; + + TRACE(("kexinitialise()")) + + /* sent/recv'd MSG_KEXINIT */ + ses.kexstate.sentkexinit = 0; + ses.kexstate.recvkexinit = 0; + + /* sent/recv'd MSG_NEWKEYS */ + ses.kexstate.recvnewkeys = 0; + ses.kexstate.sentnewkeys = 0; + + /* first_packet_follows */ + ses.kexstate.firstfollows = 0; + + ses.kexstate.datatrans = 0; + ses.kexstate.datarecv = 0; + + if (gettimeofday(&tv, 0) < 0) { + dropbear_exit("Error getting time"); + } + ses.kexstate.lastkextime = tv.tv_sec; + +} + +/* Helper function for gen_new_keys, creates a hash. It makes a copy of the + * already initialised hash_state hs, which should already have processed + * the dh_K and hash, since these are common. X is the letter 'A', 'B' etc. + * out must have at least min(SHA1_HASH_SIZE, outlen) bytes allocated. + * The output will only be expanded once, since that is all that is required + * (for 3DES and SHA, with 24 and 20 bytes respectively). + * + * See Section 5.2 of the IETF secsh Transport Draft for details */ + +/* Duplicated verbatim from kex.c --mihnea */ +static void hashkeys(unsigned char *out, int outlen, + const hash_state * hs, const unsigned char X) { + + hash_state hs2; + unsigned char k2[SHA1_HASH_SIZE]; /* used to extending */ + + memcpy(&hs2, hs, sizeof(hash_state)); + sha1_process(&hs2, &X, 1); + sha1_process(&hs2, ses.session_id, SHA1_HASH_SIZE); + sha1_done(&hs2, out); + if (SHA1_HASH_SIZE < outlen) { + /* need to extend */ + memcpy(&hs2, hs, sizeof(hash_state)); + sha1_process(&hs2, out, SHA1_HASH_SIZE); + sha1_done(&hs2, k2); + memcpy(&out[SHA1_HASH_SIZE], k2, outlen - SHA1_HASH_SIZE); + } +} + +/* Generate the actual encryption/integrity keys, using the results of the + * key exchange, as specified in section 5.2 of the IETF secsh-transport + * draft. This occurs after the DH key-exchange. + * + * ses.newkeys is the new set of keys which are generated, these are only + * taken into use after both sides have sent a newkeys message */ + +/* Originally from kex.c, generalized for cli/svr mode --mihnea */ +void gen_new_keys() { + + unsigned char C2S_IV[MAX_IV_LEN]; + unsigned char C2S_key[MAX_KEY_LEN]; + unsigned char S2C_IV[MAX_IV_LEN]; + unsigned char S2C_key[MAX_KEY_LEN]; + /* unsigned char key[MAX_KEY_LEN]; */ + unsigned char *trans_IV, *trans_key, *recv_IV, *recv_key; + + hash_state hs; + unsigned int C2S_keysize, S2C_keysize; + char mactransletter, macrecvletter; /* Client or server specific */ + int recv_cipher = 0, trans_cipher = 0; + + TRACE(("enter gen_new_keys")) + /* the dh_K and hash are the start of all hashes, we make use of that */ + + sha1_init(&hs); + sha1_process_mp(&hs, ses.dh_K); + mp_clear(ses.dh_K); + m_free(ses.dh_K); + sha1_process(&hs, ses.hash, SHA1_HASH_SIZE); + m_burn(ses.hash, SHA1_HASH_SIZE); + + if (IS_DROPBEAR_CLIENT) { + trans_IV = C2S_IV; + recv_IV = S2C_IV; + trans_key = C2S_key; + recv_key = S2C_key; + C2S_keysize = ses.newkeys->trans_algo_crypt->keysize; + S2C_keysize = ses.newkeys->recv_algo_crypt->keysize; + mactransletter = 'E'; + macrecvletter = 'F'; + } else { + trans_IV = S2C_IV; + recv_IV = C2S_IV; + trans_key = S2C_key; + recv_key = C2S_key; + C2S_keysize = ses.newkeys->recv_algo_crypt->keysize; + S2C_keysize = ses.newkeys->trans_algo_crypt->keysize; + mactransletter = 'F'; + macrecvletter = 'E'; + } + + hashkeys(C2S_IV, SHA1_HASH_SIZE, &hs, 'A'); + hashkeys(S2C_IV, SHA1_HASH_SIZE, &hs, 'B'); + hashkeys(C2S_key, C2S_keysize, &hs, 'C'); + hashkeys(S2C_key, S2C_keysize, &hs, 'D'); + + recv_cipher = find_cipher(ses.newkeys->recv_algo_crypt->cipherdesc->name); + if (recv_cipher < 0) + dropbear_exit("crypto error"); + + if (cbc_start(recv_cipher, recv_IV, recv_key, + ses.newkeys->recv_algo_crypt->keysize, 0, + &ses.newkeys->recv_symmetric_struct) != CRYPT_OK) { + dropbear_exit("crypto error"); + } + trans_cipher = find_cipher(ses.newkeys->trans_algo_crypt->cipherdesc->name); + if (trans_cipher < 0) + dropbear_exit("crypto error"); + + if (cbc_start(trans_cipher, trans_IV, trans_key, + ses.newkeys->trans_algo_crypt->keysize, 0, + &ses.newkeys->trans_symmetric_struct) != CRYPT_OK) { + dropbear_exit("crypto error"); + } + + /* MAC keys */ + hashkeys(ses.newkeys->transmackey, + ses.newkeys->trans_algo_mac->keysize, &hs, mactransletter); + hashkeys(ses.newkeys->recvmackey, + ses.newkeys->recv_algo_mac->keysize, &hs, macrecvletter); + +#ifndef DISABLE_ZLIB + gen_new_zstreams(); +#endif + + /* Switch over to the new keys */ + m_burn(ses.keys, sizeof(struct key_context)); + m_free(ses.keys); + ses.keys = ses.newkeys; + ses.newkeys = NULL; + + TRACE(("leave gen_new_keys")) +} + +#ifndef DISABLE_ZLIB +/* Set up new zlib compression streams, close the old ones. Only + * called from gen_new_keys() */ +static void gen_new_zstreams() { + + /* create new zstreams */ + if (ses.newkeys->recv_algo_comp == DROPBEAR_COMP_ZLIB) { + ses.newkeys->recv_zstream = (z_streamp)m_malloc(sizeof(z_stream)); + ses.newkeys->recv_zstream->zalloc = Z_NULL; + ses.newkeys->recv_zstream->zfree = Z_NULL; + + if (inflateInit(ses.newkeys->recv_zstream) != Z_OK) { + dropbear_exit("zlib error"); + } + } else { + ses.newkeys->recv_zstream = NULL; + } + + if (ses.newkeys->trans_algo_comp == DROPBEAR_COMP_ZLIB) { + ses.newkeys->trans_zstream = (z_streamp)m_malloc(sizeof(z_stream)); + ses.newkeys->trans_zstream->zalloc = Z_NULL; + ses.newkeys->trans_zstream->zfree = Z_NULL; + + if (deflateInit(ses.newkeys->trans_zstream, Z_DEFAULT_COMPRESSION) + != Z_OK) { + dropbear_exit("zlib error"); + } + } else { + ses.newkeys->trans_zstream = NULL; + } + + /* clean up old keys */ + if (ses.keys->recv_zstream != NULL) { + if (inflateEnd(ses.keys->recv_zstream) == Z_STREAM_ERROR) { + /* Z_DATA_ERROR is ok, just means that stream isn't ended */ + dropbear_exit("crypto error"); + } + m_free(ses.keys->recv_zstream); + } + if (ses.keys->trans_zstream != NULL) { + if (deflateEnd(ses.keys->trans_zstream) == Z_STREAM_ERROR) { + /* Z_DATA_ERROR is ok, just means that stream isn't ended */ + dropbear_exit("crypto error"); + } + m_free(ses.keys->trans_zstream); + } +} +#endif + + +/* Executed upon receiving a kexinit message from the client to initiate + * key exchange. If we haven't already done so, we send the list of our + * preferred algorithms. The client's requested algorithms are processed, + * and we calculate the first portion of the key-exchange-hash for used + * later in the key exchange. No response is sent, as the client should + * initiate the diffie-hellman key exchange */ + +/* Originally from kex.c, generalized for cli/svr mode --mihnea */ +/* Belongs in common_kex.c where it should be moved after review */ +void recv_msg_kexinit() { + + unsigned int kexhashbuf_len = 0; + unsigned int remote_ident_len = 0; + unsigned int local_ident_len = 0; + + TRACE(("<- KEXINIT")) + TRACE(("enter recv_msg_kexinit")) + + if (!ses.kexstate.sentkexinit) { + /* we need to send a kex packet */ + send_msg_kexinit(); + TRACE(("continue recv_msg_kexinit: sent kexinit")) + } + + /* start the kex hash */ + local_ident_len = strlen(LOCAL_IDENT); + remote_ident_len = strlen((char*)ses.remoteident); + + kexhashbuf_len = local_ident_len + remote_ident_len + + ses.transkexinit->len + ses.payload->len + + KEXHASHBUF_MAX_INTS; + + ses.kexhashbuf = buf_new(kexhashbuf_len); + + if (IS_DROPBEAR_CLIENT) { + + /* read the peer's choice of algos */ + read_kex_algos(); + + /* V_C, the client's version string (CR and NL excluded) */ + buf_putstring(ses.kexhashbuf, + (unsigned char*)LOCAL_IDENT, local_ident_len); + /* V_S, the server's version string (CR and NL excluded) */ + buf_putstring(ses.kexhashbuf, ses.remoteident, remote_ident_len); + + /* I_C, the payload of the client's SSH_MSG_KEXINIT */ + buf_putstring(ses.kexhashbuf, + ses.transkexinit->data, ses.transkexinit->len); + /* I_S, the payload of the server's SSH_MSG_KEXINIT */ + buf_setpos(ses.payload, 0); + buf_putstring(ses.kexhashbuf, ses.payload->data, ses.payload->len); + + } else { + /* SERVER */ + + /* read the peer's choice of algos */ + read_kex_algos(); + /* V_C, the client's version string (CR and NL excluded) */ + buf_putstring(ses.kexhashbuf, ses.remoteident, remote_ident_len); + /* V_S, the server's version string (CR and NL excluded) */ + buf_putstring(ses.kexhashbuf, + (unsigned char*)LOCAL_IDENT, local_ident_len); + + /* I_C, the payload of the client's SSH_MSG_KEXINIT */ + buf_setpos(ses.payload, 0); + buf_putstring(ses.kexhashbuf, ses.payload->data, ses.payload->len); + + /* I_S, the payload of the server's SSH_MSG_KEXINIT */ + buf_putstring(ses.kexhashbuf, + ses.transkexinit->data, ses.transkexinit->len); + + ses.requirenext = SSH_MSG_KEXDH_INIT; + } + + buf_free(ses.transkexinit); + ses.transkexinit = NULL; + /* the rest of ses.kexhashbuf will be done after DH exchange */ + + ses.kexstate.recvkexinit = 1; + + TRACE(("leave recv_msg_kexinit")) +} + +/* Initialises and generate one side of the diffie-hellman key exchange values. + * See the ietf-secsh-transport draft, section 6, for details */ +/* dh_pub and dh_priv MUST be already initialised */ +void gen_kexdh_vals(mp_int *dh_pub, mp_int *dh_priv) { + + DEF_MP_INT(dh_p); + DEF_MP_INT(dh_q); + DEF_MP_INT(dh_g); + + TRACE(("enter send_msg_kexdh_reply")) + + m_mp_init_multi(&dh_g, &dh_p, &dh_q, NULL); + + /* read the prime and generator*/ + bytes_to_mp(&dh_p, (unsigned char*)dh_p_val, DH_P_LEN); + + if (mp_set_int(&dh_g, DH_G_VAL) != MP_OKAY) { + dropbear_exit("Diffie-Hellman error"); + } + + /* calculate q = (p-1)/2 */ + /* dh_priv is just a temp var here */ + if (mp_sub_d(&dh_p, 1, dh_priv) != MP_OKAY) { + dropbear_exit("Diffie-Hellman error"); + } + if (mp_div_2(dh_priv, &dh_q) != MP_OKAY) { + dropbear_exit("Diffie-Hellman error"); + } + + /* Generate a private portion 0 < dh_priv < dh_q */ + gen_random_mpint(&dh_q, dh_priv); + + /* f = g^y mod p */ + if (mp_exptmod(&dh_g, dh_priv, &dh_p, dh_pub) != MP_OKAY) { + dropbear_exit("Diffie-Hellman error"); + } + mp_clear_multi(&dh_g, &dh_p, &dh_q, NULL); +} + +/* This function is fairly common between client/server, with some substitution + * of dh_e/dh_f etc. Hence these arguments: + * dh_pub_us is 'e' for the client, 'f' for the server. dh_pub_them is + * vice-versa. dh_priv is the x/y value corresponding to dh_pub_us */ +void kexdh_comb_key(mp_int *dh_pub_us, mp_int *dh_priv, mp_int *dh_pub_them, + sign_key *hostkey) { + + mp_int dh_p; + mp_int *dh_e = NULL, *dh_f = NULL; + hash_state hs; + + /* read the prime and generator*/ + m_mp_init(&dh_p); + bytes_to_mp(&dh_p, dh_p_val, DH_P_LEN); + + /* Check that dh_pub_them (dh_e or dh_f) is in the range [1, p-1] */ + if (mp_cmp(dh_pub_them, &dh_p) != MP_LT + || mp_cmp_d(dh_pub_them, 0) != MP_GT) { + dropbear_exit("Diffie-Hellman error"); + } + + /* K = e^y mod p = f^x mod p */ + ses.dh_K = (mp_int*)m_malloc(sizeof(mp_int)); + m_mp_init(ses.dh_K); + if (mp_exptmod(dh_pub_them, dh_priv, &dh_p, ses.dh_K) != MP_OKAY) { + dropbear_exit("Diffie-Hellman error"); + } + + /* clear no longer needed vars */ + mp_clear_multi(&dh_p, NULL); + + /* From here on, the code needs to work with the _same_ vars on each side, + * not vice-versaing for client/server */ + if (IS_DROPBEAR_CLIENT) { + dh_e = dh_pub_us; + dh_f = dh_pub_them; + } else { + dh_e = dh_pub_them; + dh_f = dh_pub_us; + } + + /* Create the remainder of the hash buffer, to generate the exchange hash */ + /* K_S, the host key */ + buf_put_pub_key(ses.kexhashbuf, hostkey, ses.newkeys->algo_hostkey); + /* e, exchange value sent by the client */ + buf_putmpint(ses.kexhashbuf, dh_e); + /* f, exchange value sent by the server */ + buf_putmpint(ses.kexhashbuf, dh_f); + /* K, the shared secret */ + buf_putmpint(ses.kexhashbuf, ses.dh_K); + + /* calculate the hash H to sign */ + sha1_init(&hs); + buf_setpos(ses.kexhashbuf, 0); + sha1_process(&hs, buf_getptr(ses.kexhashbuf, ses.kexhashbuf->len), + ses.kexhashbuf->len); + sha1_done(&hs, ses.hash); + + buf_burn(ses.kexhashbuf); + buf_free(ses.kexhashbuf); + ses.kexhashbuf = NULL; + + /* first time around, we set the session_id to H */ + if (ses.session_id == NULL) { + /* create the session_id, this never needs freeing */ + ses.session_id = (unsigned char*)m_malloc(SHA1_HASH_SIZE); + memcpy(ses.session_id, ses.hash, SHA1_HASH_SIZE); + } +} + +/* read the other side's algo list. buf_match_algo is a callback to match + * algos for the client or server. */ +static void read_kex_algos() { + + /* for asymmetry */ + algo_type * c2s_hash_algo = NULL; + algo_type * s2c_hash_algo = NULL; + algo_type * c2s_cipher_algo = NULL; + algo_type * s2c_cipher_algo = NULL; + algo_type * c2s_comp_algo = NULL; + algo_type * s2c_comp_algo = NULL; + /* the generic one */ + algo_type * algo = NULL; + + /* which algo couldn't match */ + char * erralgo = NULL; + + int goodguess = 0; + int allgood = 1; /* we AND this with each goodguess and see if its still + true after */ + + buf_incrpos(ses.payload, 16); /* start after the cookie */ + + ses.newkeys = (struct key_context*)m_malloc(sizeof(struct key_context)); + + /* kex_algorithms */ + algo = ses.buf_match_algo(ses.payload, sshkex, &goodguess); + allgood &= goodguess; + if (algo == NULL) { + erralgo = "kex"; + goto error; + } + TRACE(("kex algo %s", algo->name)) + ses.newkeys->algo_kex = algo->val; + + /* server_host_key_algorithms */ + algo = ses.buf_match_algo(ses.payload, sshhostkey, &goodguess); + allgood &= goodguess; + if (algo == NULL) { + erralgo = "hostkey"; + goto error; + } + TRACE(("hostkey algo %s", algo->name)) + ses.newkeys->algo_hostkey = algo->val; + + /* encryption_algorithms_client_to_server */ + c2s_cipher_algo = ses.buf_match_algo(ses.payload, sshciphers, &goodguess); + if (c2s_cipher_algo == NULL) { + erralgo = "enc c->s"; + goto error; + } + TRACE(("enc c2s is %s", c2s_cipher_algo->name)) + + /* encryption_algorithms_server_to_client */ + s2c_cipher_algo = ses.buf_match_algo(ses.payload, sshciphers, &goodguess); + if (s2c_cipher_algo == NULL) { + erralgo = "enc s->c"; + goto error; + } + TRACE(("enc s2c is %s", s2c_cipher_algo->name)) + + /* mac_algorithms_client_to_server */ + c2s_hash_algo = ses.buf_match_algo(ses.payload, sshhashes, &goodguess); + if (c2s_hash_algo == NULL) { + erralgo = "mac c->s"; + goto error; + } + TRACE(("hash c2s is %s", c2s_hash_algo->name)) + + /* mac_algorithms_server_to_client */ + s2c_hash_algo = ses.buf_match_algo(ses.payload, sshhashes, &goodguess); + if (s2c_hash_algo == NULL) { + erralgo = "mac s->c"; + goto error; + } + TRACE(("hash s2c is %s", s2c_hash_algo->name)) + + /* compression_algorithms_client_to_server */ + c2s_comp_algo = ses.buf_match_algo(ses.payload, sshcompress, &goodguess); + if (c2s_comp_algo == NULL) { + erralgo = "comp c->s"; + goto error; + } + TRACE(("hash c2s is %s", c2s_comp_algo->name)) + + /* compression_algorithms_server_to_client */ + s2c_comp_algo = ses.buf_match_algo(ses.payload, sshcompress, &goodguess); + if (s2c_comp_algo == NULL) { + erralgo = "comp s->c"; + goto error; + } + TRACE(("hash s2c is %s", s2c_comp_algo->name)) + + /* languages_client_to_server */ + buf_eatstring(ses.payload); + + /* languages_server_to_client */ + buf_eatstring(ses.payload); + + /* first_kex_packet_follows */ + if (buf_getbool(ses.payload)) { + ses.kexstate.firstfollows = 1; + /* if the guess wasn't good, we ignore the packet sent */ + if (!allgood) { + ses.ignorenext = 1; + } + } + + /* Handle the asymmetry */ + if (IS_DROPBEAR_CLIENT) { + ses.newkeys->recv_algo_crypt = + (struct dropbear_cipher*)s2c_cipher_algo->data; + ses.newkeys->trans_algo_crypt = + (struct dropbear_cipher*)c2s_cipher_algo->data; + ses.newkeys->recv_algo_mac = + (struct dropbear_hash*)s2c_hash_algo->data; + ses.newkeys->trans_algo_mac = + (struct dropbear_hash*)c2s_hash_algo->data; + ses.newkeys->recv_algo_comp = s2c_comp_algo->val; + ses.newkeys->trans_algo_comp = c2s_comp_algo->val; + } else { + /* SERVER */ + ses.newkeys->recv_algo_crypt = + (struct dropbear_cipher*)c2s_cipher_algo->data; + ses.newkeys->trans_algo_crypt = + (struct dropbear_cipher*)s2c_cipher_algo->data; + ses.newkeys->recv_algo_mac = + (struct dropbear_hash*)c2s_hash_algo->data; + ses.newkeys->trans_algo_mac = + (struct dropbear_hash*)s2c_hash_algo->data; + ses.newkeys->recv_algo_comp = c2s_comp_algo->val; + ses.newkeys->trans_algo_comp = s2c_comp_algo->val; + } + + /* reserved for future extensions */ + buf_getint(ses.payload); + return; + +error: + dropbear_exit("no matching algo %s", erralgo); +}