comparison src/ciphers/noekeon.c @ 192:9cc34777b479 libtomcrypt

propagate from branch 'au.asn.ucc.matt.ltc-orig' (head 9ba8f01f44320e9cb9f19881105ae84f84a43ea9) to branch 'au.asn.ucc.matt.dropbear.ltc' (head dbf51c569bc34956ad948e4cc87a0eeb2170b768)
author Matt Johnston <matt@ucc.asn.au>
date Sun, 08 May 2005 06:36:47 +0000
parents 1c15b283127b
children 39d5d58461d6
comparison
equal deleted inserted replaced
164:cd1143579f00 192:9cc34777b479
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2 *
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
5 *
6 * The library is free for all purposes without any express
7 * guarantee it works.
8 *
9 * Tom St Denis, [email protected], http://libtomcrypt.org
10 */
11 /**
12 @file noekeon.c
13 Implementation of the Noekeon block cipher by Tom St Denis
14 */
15 #include "tomcrypt.h"
16
17 #ifdef NOEKEON
18
19 const struct ltc_cipher_descriptor noekeon_desc =
20 {
21 "noekeon",
22 16,
23 16, 16, 16, 16,
24 &noekeon_setup,
25 &noekeon_ecb_encrypt,
26 &noekeon_ecb_decrypt,
27 &noekeon_test,
28 &noekeon_done,
29 &noekeon_keysize,
30 NULL, NULL, NULL, NULL, NULL, NULL, NULL
31 };
32
33 static const ulong32 RC[] = {
34 0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL,
35 0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL,
36 0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL,
37 0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL,
38 0x000000d4UL
39 };
40
41 #define kTHETA(a, b, c, d) \
42 temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
43 b ^= temp; d ^= temp; \
44 temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
45 a ^= temp; c ^= temp;
46
47 #define THETA(k, a, b, c, d) \
48 temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
49 b ^= temp ^ k[1]; d ^= temp ^ k[3]; \
50 temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
51 a ^= temp ^ k[0]; c ^= temp ^ k[2];
52
53 #define GAMMA(a, b, c, d) \
54 b ^= ~(d|c); \
55 a ^= c&b; \
56 temp = d; d = a; a = temp;\
57 c ^= a ^ b ^ d; \
58 b ^= ~(d|c); \
59 a ^= c&b;
60
61 #define PI1(a, b, c, d) \
62 a = ROLc(a, 1); c = ROLc(c, 5); d = ROLc(d, 2);
63
64 #define PI2(a, b, c, d) \
65 a = RORc(a, 1); c = RORc(c, 5); d = RORc(d, 2);
66
67 /**
68 Initialize the Noekeon block cipher
69 @param key The symmetric key you wish to pass
70 @param keylen The key length in bytes
71 @param num_rounds The number of rounds desired (0 for default)
72 @param skey The key in as scheduled by this function.
73 @return CRYPT_OK if successful
74 */
75 int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
76 {
77 ulong32 temp;
78
79 LTC_ARGCHK(key != NULL);
80 LTC_ARGCHK(skey != NULL);
81
82 if (keylen != 16) {
83 return CRYPT_INVALID_KEYSIZE;
84 }
85
86 if (num_rounds != 16 && num_rounds != 0) {
87 return CRYPT_INVALID_ROUNDS;
88 }
89
90 LOAD32H(skey->noekeon.K[0],&key[0]);
91 LOAD32H(skey->noekeon.K[1],&key[4]);
92 LOAD32H(skey->noekeon.K[2],&key[8]);
93 LOAD32H(skey->noekeon.K[3],&key[12]);
94
95 LOAD32H(skey->noekeon.dK[0],&key[0]);
96 LOAD32H(skey->noekeon.dK[1],&key[4]);
97 LOAD32H(skey->noekeon.dK[2],&key[8]);
98 LOAD32H(skey->noekeon.dK[3],&key[12]);
99
100 kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]);
101
102 return CRYPT_OK;
103 }
104
105 /**
106 Encrypts a block of text with Noekeon
107 @param pt The input plaintext (16 bytes)
108 @param ct The output ciphertext (16 bytes)
109 @param skey The key as scheduled
110 */
111 #ifdef LTC_CLEAN_STACK
112 static void _noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
113 #else
114 void noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
115 #endif
116 {
117 ulong32 a,b,c,d,temp;
118 int r;
119
120 LTC_ARGCHK(skey != NULL);
121 LTC_ARGCHK(pt != NULL);
122 LTC_ARGCHK(ct != NULL);
123
124 LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]);
125 LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]);
126
127 #define ROUND(i) \
128 a ^= RC[i]; \
129 THETA(skey->noekeon.K, a,b,c,d); \
130 PI1(a,b,c,d); \
131 GAMMA(a,b,c,d); \
132 PI2(a,b,c,d);
133
134 for (r = 0; r < 16; ++r) {
135 ROUND(r);
136 }
137
138 #undef ROUND
139
140 a ^= RC[16];
141 THETA(skey->noekeon.K, a, b, c, d);
142
143 STORE32H(a,&ct[0]); STORE32H(b,&ct[4]);
144 STORE32H(c,&ct[8]); STORE32H(d,&ct[12]);
145 }
146
147 #ifdef LTC_CLEAN_STACK
148 void noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
149 {
150 _noekeon_ecb_encrypt(pt, ct, skey);
151 burn_stack(sizeof(ulong32) * 5 + sizeof(int));
152 }
153 #endif
154
155 /**
156 Decrypts a block of text with Noekeon
157 @param ct The input ciphertext (16 bytes)
158 @param pt The output plaintext (16 bytes)
159 @param skey The key as scheduled
160 */
161 #ifdef LTC_CLEAN_STACK
162 static void _noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
163 #else
164 void noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
165 #endif
166 {
167 ulong32 a,b,c,d, temp;
168 int r;
169
170 LTC_ARGCHK(skey != NULL);
171 LTC_ARGCHK(pt != NULL);
172 LTC_ARGCHK(ct != NULL);
173
174 LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]);
175 LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]);
176
177
178 #define ROUND(i) \
179 THETA(skey->noekeon.dK, a,b,c,d); \
180 a ^= RC[i]; \
181 PI1(a,b,c,d); \
182 GAMMA(a,b,c,d); \
183 PI2(a,b,c,d);
184
185 for (r = 16; r > 0; --r) {
186 ROUND(r);
187 }
188
189 #undef ROUND
190
191 THETA(skey->noekeon.dK, a,b,c,d);
192 a ^= RC[0];
193 STORE32H(a,&pt[0]); STORE32H(b, &pt[4]);
194 STORE32H(c,&pt[8]); STORE32H(d, &pt[12]);
195 }
196
197 #ifdef LTC_CLEAN_STACK
198 void noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
199 {
200 _noekeon_ecb_decrypt(ct, pt, skey);
201 burn_stack(sizeof(ulong32) * 5 + sizeof(int));
202 }
203 #endif
204
205 /**
206 Performs a self-test of the Noekeon block cipher
207 @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
208 */
209 int noekeon_test(void)
210 {
211 #ifndef LTC_TEST
212 return CRYPT_NOP;
213 #else
214 static const struct {
215 int keylen;
216 unsigned char key[16], pt[16], ct[16];
217 } tests[] = {
218 {
219 16,
220 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
221 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
222 { 0x18, 0xa6, 0xec, 0xe5, 0x28, 0xaa, 0x79, 0x73,
223 0x28, 0xb2, 0xc0, 0x91, 0xa0, 0x2f, 0x54, 0xc5}
224 }
225 };
226 symmetric_key key;
227 unsigned char tmp[2][16];
228 int err, i, y;
229
230 for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
231 zeromem(&key, sizeof(key));
232 if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
233 return err;
234 }
235
236 noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key);
237 noekeon_ecb_decrypt(tmp[0], tmp[1], &key);
238 if (memcmp(tmp[0], tests[i].ct, 16) || memcmp(tmp[1], tests[i].pt, 16)) {
239 #if 0
240 printf("\n\nTest %d failed\n", i);
241 if (memcmp(tmp[0], tests[i].ct, 16)) {
242 printf("CT: ");
243 for (i = 0; i < 16; i++) {
244 printf("%02x ", tmp[0][i]);
245 }
246 printf("\n");
247 } else {
248 printf("PT: ");
249 for (i = 0; i < 16; i++) {
250 printf("%02x ", tmp[1][i]);
251 }
252 printf("\n");
253 }
254 #endif
255 return CRYPT_FAIL_TESTVECTOR;
256 }
257
258 /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
259 for (y = 0; y < 16; y++) tmp[0][y] = 0;
260 for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key);
261 for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key);
262 for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
263 }
264 return CRYPT_OK;
265 #endif
266 }
267
268 /** Terminate the context
269 @param skey The scheduled key
270 */
271 void noekeon_done(symmetric_key *skey)
272 {
273 }
274
275 /**
276 Gets suitable key size
277 @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
278 @return CRYPT_OK if the input key size is acceptable.
279 */
280 int noekeon_keysize(int *keysize)
281 {
282 LTC_ARGCHK(keysize != NULL);
283 if (*keysize < 16) {
284 return CRYPT_INVALID_KEYSIZE;
285 } else {
286 *keysize = 16;
287 return CRYPT_OK;
288 }
289 }
290
291 #endif
292